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Making use of a modified version, due to McCord, of the Dold-Thom construction of
ordinary homology, we give a simple topological definition of a transfer for ramified cov-
ering maps in homology with arbitrary coefficients. The transfer is induced by a suitable
map between topological groups. We also define a new cohomology transfer which is
dual to the homology transfer. This duality allows us to show that our homology transfer
coincides with the one given by L. Smith. With our definition of the homology transfer
we can give simpler proofs of the properties of the known transfer and of some new ones.
Our transfers can also be defined in Karoubi’s approach to homology and cohomology.
Furthermore, we show that one can define mixed transfers from other homology or co-
homology theories to the ordinary ones.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let X be a pointed topological space (of the same homotopy type of a CW-complex). By
a theorem of Moore, the free topological abelian group F(X ,Z) generated by the points
of X (where the base point is zero in this group) is determined up to homotopy equiv-
alence by its homotopy groups. So, it is natural to associate to X the homotopy groups
πq(F(X ,Z)). By the Dold-Thom theorem these groups are isomorphic to the singular ho-

mology groups ˜Hq(X ;Z). In this paper, we use this approach to homology in order to
define a transfer for ramified covering maps. Furthermore, one can also use the same free
topological groups to define cohomology, since F(Sq,Z) is an Eilenberg-Mac Lane space
of type K(Z,q). We use this model of Eilenberg-Mac Lane spaces to define a transfer for
ramified covering maps also in singular cohomology.

This approach to homology and cohomology has proved to be extremely useful in
other branches of mathematics. Karoubi [11] used the groups F(Bq,Z), where Bq is the
closed q-ball, to construct a chain complex and a cochain complex. This complex is
called the complex of noncommutative topological forms and is related to the Connes
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noncommutative geometry. We show that the transfers for ramified covering maps can
also be defined in this setting.

On the other hand, let X be a complex projective variety. Lawson [12] (see also [13])
considered a topological abelian group Zp(X) generated by the subvarieties of dimen-
sion p, and he defined the Lawson homology of X by taking LpHq(X) = πq−2p(Zp(X)),
so that L0Hq(X) = πq(F(X ,Z)). Furthermore, the construction of Eilenberg-Mac Lane
spaces using F(Sq,Z) was generalized by Voevodsky [20] in order to have an analog of the
Eilenberg-Mac Lane spectrum in algebraic geometry. This allowed him to define motivic
cohomology.

The class of finite ramified covering maps on which we work was defined by Smith
[18], who constructed for them a transfer in singular homology. Later on, in [6] Dold
gave an alternative construction and characterized ramified covering maps as maps be-
tween orbit spaces of the action of a finite group and a subgroup, and giving a modified
definition of the transfer. Both definitions are algebraic in nature. These transfers have
the usual property that when composed with the homomorphism induced by the pro-
jection of the ramified covering map, they yield multiplication by the multiplicity of the
covering map in the homology of the base space.

There have been previous definitions of both the homology and the cohomology trans-
fers for maps between orbit spaces of certain actions of a finite group and a subgroup, see
Bredon [4] (and also tom Dieck [19]). These definitions depend on the equivariant struc-
ture of the spaces involved.

In this paper we use the McCord [16] version of the Dold-Thom construction of ordi-
nary homology mentioned above, to produce a topological transfer for general ramified
covering maps. Namely, we define a transfer that is a continuous map between the topo-
logical groups associated to the total and to the base space of the ramified covering map.
This codifies in a sense the fact that a transfer can be seen as a multivalued map. We
also define a cohomology transfer using models of Eilenberg-Mac Lane spaces that have
the structure of topological abelian groups. We apply either transfer to give some results
about the homology or cohomology of orbit maps of the action of a group and a sub-
group of finite index. The definitions of the new transfers are rather simple. This fact
simplifies their computation (see (7.1), for instance).

Friedlander and Mazur [7] constructed a trace map in the context of simplicial sets and
chain complexes, which is similar to our homology transfer. They use their trace maps to
study the homology of algebraic varieties. On the other hand, Cohen [5] defined a stable
version of the transfer of an n-fold ramified covering map, provided that one inverts n!.

In this paper, we will work entirely in the category of weak Hausdorff k-spaces, which
we will call compactly generated spaces (see [15]). Moreover, unless otherwise stated, we
will also assume that all spaces have the same homotopy type of CW-complexes.

2. McCord’s topological groups

In this section, we recall briefly the spaces B(G,X) introduced by McCord. We find it
convenient to use F(X ,L) as an alternative notation. Details can be seen in [16] or [1,
6.3.20ff].
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Let L be an abelian group and let X be a pointed topological space with base point
∗ ∈ X . F(X ,L) is the abelian group of all functions u : X → L such that u(∗) = 0 and
u(x)= 0 for all but a finite number of elements x ∈ X . If these elements are x1, . . . ,xn and
the values of u at each of them are l1, . . . , ln, respectively, it is sometimes convenient to
write u as

∑n
i=1 lixi = l1x1 + ···+ lnxn. In particular, for any x ∈ X , x �= ∗, one may see lx

as the element in F(X ,L) whose value at x is l and whose value elsewhere is 0 (l∗ = 0).
Taking L = R to be a commutative ring with 1 and x ∈ X , x �= ∗ then x ∈ F(X ,R) can
be interpreted as the function whose value at x is 1 and whose value elsewhere is 0. This
defines a canonical inclusion X↩F(X ,R). In this case, the elements x ∈ F(X ,R) generate
F(X ,R) freely as an R-module.

The abelian group F(X ,L) has a topology that turns it into a pointed space with base
point 0 ∈ F(X ,L). It is in fact a topological abelian group (in the category of compactly
generated spaces). Consider the natural filtration of closed subspaces

F0(X ,L)⊂ F1(X ,L)⊂ ··· ⊂ F(X ,L), (2.1)

where Fn(X ,L) consists of those functions u that are nonzero on at most n points in X .
The topology can then be defined as follows. For each n, take the surjection (L×X)n →
Fn(X ,L) given by mapping (l1,x1, . . . , ln,xn) to

∑n
i=1 lixi. Here (L×X)n is the product of n

copies of L×X , furnished with the compactly generated product topology, and Fn(X ,L) is
given the corresponding quotient topology. Then provide F(X ,L) with the weak topology
(of the union).

Given a pointed map ϕ : X → Y and a homomorphism α : L→M, one has a unique
pointed map F(ϕ,α) : F(X ,L)→ F(Y ,M) given by

F(ϕ,α)

( n
∑

i=1

lixi

)

=
n
∑

i=1

α
(

li
)

ϕ
(

xi
)

. (2.2)

In other words, F(ϕ,α)(u) is the function whose values at y ∈ Y are 0 unless y = ϕ(x)
and u(x) �= 0; in this case, F(ϕ,α)(u)(y)=∑ϕ(x)=y α(u(x)). An easy way of writing this is
F(ϕ,α)(u) =∑x∈X α(u(x))ϕ(x). This definition turns F into a covariant bifunctor from
the category �op∗ ×�b of pairs consisting of a pointed topological space and a topolog-
ical abelian group to the category �opab of topological abelian groups.

We will denote F(ϕ,1L) simply by ϕ∗ and F(idX ,α) by α∗.
The fundamental property of the McCord topological groups is the following.

Property 2.1. If (X ,A) is a pointed triangulable pair, then the quotient map p : X → X/A
induces a locally trivial principal F(A,L)-bundle, p∗ : F(X ,L)→ F(X/A,L) (see [16] or
[14]).

There is a natural H-isomorphism, that is, a pointed homotopy equivalence which is
also a morphism of H-groups:

F(Y ,L)−→ΩF(ΣY ,L), (2.3)
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where Ω means the loop space and Σ the (reduced) suspension given by ΣY = S1 ∧Y .
This H-isomorphism yields a group isomorphism

σ :
[

X ,F(Y ,L)
]

∗ −→
[

X ,ΩF(ΣY ,L)
]

∗ ∼=
[

ΣX ,F(ΣY ,L)
]

∗, (2.4)

where [−,−]∗ denotes pointed homotopy classes. We call this the suspension isomorphism
(see [16, 10.4]).

Hence F(Sq,L)
	→ ΩF(Sq+1,L), and since F(S0,L) = L (see below), we have that the

space F(Sq,L) is an Eilenberg-Mac Lane space of type (L,q) that has the structure of a
topological abelian group.

Hence we have a long exact sequence for the homotopy groups πq(F(A,L)), πq(F(X ,
L)), and πq(F(X/A,L)) for a pair (X ,A) of the same homotopy type of a CW-pair. By this
and the previous comment, we have that the groups

˜Hq(X ;L)= πq
(

F(X ,L)
)

, ˜Hq(X ;L)= [X ,F
(

Sq,L
)]

∗ (2.5)

define ordinary (reduced) homology and cohomology theories with coefficients in L.

Remark 2.2. Observe that the unpointed homotopy classes [X ,F(Sq,L)] yield the unre-
duced cohomology groups Hq(X ;L).

Lemma 2.3. The map ε : F(X ,L)→ L given by
∑m

i=1 lixi 
→
∑m

i=1 li is well defined and contin-
uous. In particular, ε : F(S0,L)→ L is an isomorphism.

Proof. This follows easily from the fact that the restriction εn : Fn(X ,L)→ L of ε is contin-
uous, since its composite with the identification (X ×L)n→ Fn(X ,L) is obviously contin-
uous. �

Another useful property of the functor F is that one has a well-defined continuous
pairing,

F(X ,L)×F(Y ,M)−→ F(X ∧Y ,L⊗M), (2.6)

given by

(

∑

i

lixi,
∑

j

mj y j

)


−→
∑

i, j

(

li⊗mj
)(

xi∧ yj
)

(2.7)

(see [16, 11.6]). If, in particular, L =M = R is a commutative ring with 1, with m :
R⊗R→ R as the ring multiplication, then composing (2.6) with m∗, we obtain another
pairing,

F(X ,R)×F(Y ,R)−→ F(X ∧Y ,R). (2.8)

Using (2.8), one obtains products in homology and cohomology. We will be interested
in the following.
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Proposition 2.4. One has cap-products

Hq(X ;R)⊗Hk(X ;R)
�−→Hk−q(X ;R), (2.9)

if X is 0-connected and q ≤ k, and

Hq(X ;R)⊗Hk(X ;R)
�−→Hq−k(X ;R) (2.10)

if k ≤ q. In particular, if k = q one has a Kronecker product

Hq(X ;R)⊗Hq(X ;R)
〈−,−〉−−−−→ R. (2.11)

Proof. Taking smash-products and the pairing (2.6), we have

[

X+,F
(

Sq,R
)]

∗ ×
[

Sk,F
(

X+,R
)]

∗

κ

[

X+∧Sk,F
(

Sq,R
)∧F(X+,R

)]

∗

[

ΣkX+,F
(

ΣqX+,R
)]

∗

(2.12)

If q ≤ k, using σ−q of the suspension property, we desuspend q times. Composing κ with
the homomorphism

[

Σk−qX+,F
(

X+,R
)]

∗ −→
[

Sk−q,F
(

X+,R
)]

∗ (2.13)

induced by the pointed inclusion S0 → X+ that sends −1 to some point x−1 in the path-
connected space X , we obtain the homology�-product

�:
[

X+,F
(

Sq,R
)]

∗ ×
[

Sk,F
(

X+,R
)]

∗ −→
[

Sk−q,F
(

X+,R
)]

∗. (2.14)

On the other hand, if k ≤ q, using σ−k, we desuspend k times. And then, composing κ
with the homomorphism

[

X+,F
(

Σq−kX+,R
)]

∗ −→
[

X+,F
(

Sq−k,R
)]

∗ (2.15)

induced by the obvious map X+ → S0, we obtain the cohomology�-product

�:
[

X+,F
(

Sq,R
)]

∗ ×
[

Sk,F
(

X+,R
)]

∗ −→
[

X+,F
(

Sq−k,R
)]

∗. (2.16)

In order to obtain the Kronecker product 〈−,−〉, we take q = k and consider the com-
posite

[

X+,F
(

Sq,R
)]

∗ ×
[

Sq,F
(

X+,R
)]

∗
�−→ [

X+,F
(

S0,R
)]

∗ −→
[

S0,F
(

S0,R
)]

∗ = R,
(2.17)
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where the last arrow is induced by the pointed inclusion S0 → X+, and the equality follows
from the bijection ε : F(S0,R)→ R given in Lemma 2.3. �

3. Ramified covering maps

To give the definition of a ramified covering map, we will need the concept of nth sym-
metric product of a compactly generated space Y . It is defined by SPnY = Yn/Σn, where
Yn has the compactly generated topology and the symmetric group Σn acts by permuting
the coordinates. We denote its elements by 〈y1, y2, . . . , yn〉.
Definition 3.1. An n-fold ramified covering map is a continuous map p : E→ X together
with a multiplicity function μ : E→N such that the following hold:

(i) the fibers p−1(x) are finite (discrete), x ∈ X ;

(ii) for each x ∈ X ,
∑

e∈p−1(x)μ(e)= n;

(iii) the map ϕp : X → SPnE given by

ϕp(x)= 〈e1, . . . ,e1
︸ ︷︷ ︸

μ(e1)

, . . . ,em, . . . ,em
︸ ︷︷ ︸

μ(em)

〉

, (3.1)

where p−1(x)= {e1, . . . ,em}, is continuous.

In the original definition of Smith (see [18]), SPnE is taken with the usual topology.
Since in this paper we are assuming that all spaces are compactly generated, we have to
check that the original definition is equivalent to the one given above. To that end and
for the time being, we denote by En the product of n copies of E with the usual product
topology. Recall that there is a functor k from the category of weak Hausdorff spaces to
the category of compactly generated spaces such that the identity k(X)→ X is continuous.

Remark 3.2. If E is a weak Hausdorff space, then one can show that En with the usual
product topology is also weak Hausdorff. Recall that in a weak Hausdorff space X a set
C ⊂ X is closed in k(X) if and only if C∩K is closed for every compact Hausdorff sub-
space K ⊂ X (see [15]).

Lemma 3.3. Let E be a compactly generated space. Then, k(En/Σn)= k(En)/Σn.

Proof. Let p : En→ En/Σn be the quotient map, which is proper, since Σn is a finite group.
Consider the following commutative diagram of continuous maps:

k
(

En
)

p

En

p

k
(

En
)

/Σn ι
En/Σn

(3.2)

Note that the quotient space k(En)/Σn is again compactly generated (see [15]). Con-
sider the continuous map k(ι) : k(k(En)/Σn) → k(En/Σn) and note that k(k(En)/Σn) =
k(En)/Σn; therefore, any closed set in k(En/Σn) is closed in k(En)/Σn.

Now take a closed setC ⊂ k(En)/Σn. To see thatC is closed in k(En/Σn), considerC∩L,
where L ⊂ En/Σn is compact Hausdorff. Since p−1(C ∩ L) = p−1C ∩ p−1L and p−1L is
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compact Hausdorff in En, and by assumption p−1(C∩ L) is closed in En, then C∩ L is
closed in En/Σn. Thus C is closed in k(En/Σn). �

Proposition 3.4. Let X and E be compactly generated spaces. A map ϕ : X → SPnE is con-
tinuous with respect to the usual topology on SPnE if and only if it is continuous with respect
to the compactly generated topology on SPnE.

Proof. By the previous lemma, we can consider the following commutative diagram:

k(X)
k(ϕ)

k
(

SPnE
)

k
(

En
)

/Σn

X ϕ SPnE

(3.3)

Therefore, ϕ is continuous if and only if k(ϕ) is continuous. �

Remark 3.5. Given an n-fold ramified covering map p : E→ X with multiplicity function
μ, one can construct an n-fold ramified covering map p+ : E+ → X+, where Y+ = Y �{∗}
for any space Y , p+ extends p by defining p+(∗) = ∗, and the multiplicity function μ+

extends μ by setting μ+(∗)= n. More generally, given a (closed) subspace A⊂ X , one can
construct an n-fold ramified covering map p′ : E′ → X/A, where E′ = E/p−1A, p′ is the
map between quotients, and the multiplicity function μ′ coincides with μ off p−1A and is
extended by setting μ′(∗)= n if ∗ is the base point onto which p−1A collapses.

On the other hand, given a map f : Y → X , one can construct the induced n-fold ram-
ified covering map f ∗(p) : f ∗(E)→ Y by taking the pullback f ∗(E) = {(y,e) ∈ Y × E |
f (y)= p(e)} and f ∗(p)= projY . The induced multiplicity function f ∗(μ) : f ∗(E)→N is

given by f ∗(μ)(y,e)= μ(e). Denote by ˜f : f ∗(E)→ E the projection projE.

Examples 3.6. Typical examples of ramified covering maps are the following:
(1) standard covering maps with finitely many leaves;
(2) orbit maps E/H → E/G for actions of a finite groupG on a space E andH ⊂G. They

can be considered as [G :H]-fold ramified covering maps. In fact, Dold [6] proves that all
ramified covering maps are of this form for G= Σn and H = Σn−1 (see Proposition 7.2).

(3) Branched covering maps on manifolds, namely, open maps p :Md →Nd, where Md

and Nd are orientable closed topological manifolds of dimension d, p has finite fibers
and its degree is n. Indeed, Berstein and Edmonds [3] prove that p is of the form E/H →
E/G, with [G : H] = n, so that by (2), p is in fact an n-fold ramified covering map. An
interesting special case of this is given by Montesinos [17] and Hilden [9], who show that
for any closed orientable 3-manifold M3, there is a branched covering map p : M3 → S3

of degree 3.
(4) It will be of particular interest to consider the following example. Let B be a space

and let πB : Bn×Σn n→ SPnB, where n= {1,2, . . . ,n} and ×Σn represents the twisted prod-
uct, be given by πB〈b1,b2, . . . ,bn; i〉 = 〈b1,b2, . . . ,bn〉. Then πB is an n-fold ramified cover-
ing map with multiplicity function μB : Bn×Σn n→N given by μB〈b1,b2, . . . ,bn; i〉 = #{ j |
bj = bi} (see [18]).
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4. The homology transfer

We will now define the homology transfer. In this section we will assume that all spaces
and maps are pointed.

Definition 4.1. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ. Define the pretransfer

tp : F(X ,L)−→ F(E,L) by tp(u)= ũ, (4.1)

where ũ(e)= μ(e)u(p(e)). In other words, if u=∑n
i=1 lixi ∈ F(X ,L), then

tp(u)=
∑

p(e)=xi
i=1,...,n

μ(e)lie. (4.2)

Remark 4.2. The pretransfer tp : F(X ,L)→ F(E,L) is clearly a homomorphism of topo-
logical groups and it is thus convenient to see what it does to generators. Namely, if lx is
the function in F(X ,L) such that it is zero everywhere, with the exception of x, where its
value is l, then it is a generator and the pretransfer satisfies

tp(lx)(e)= μ(e)lx
(

p(e)
)=

⎧

⎨

⎩

μ(e)l if p(e)= x, that is, if e ∈ p−1(x),

0 otherwise.
(4.3)

Hence, the only points where tp(lx) is nonzero are the elements of p−1(x)= {e1,e2, . . . ,er},
that is,

tp(lx)
(

e1
)= μ(e1

)

l, tp(lx)
(

e2
)= μ(e2

)

l, . . . , tp(lx)
(

er
)= μ(er

)

l, (4.4)

and thus

tp(lx)= μ(e1
)

le1 +μ
(

e2
)

le2 + ···+μ
(

er
)

ler . (4.5)

We will prove below that tp is continuous. Hence, on homotopy groups, the map tp
induces the homolgy transfer

τp : ˜Hq(X ;L)−→ ˜Hq(E;L). (4.6)

We have the following.

Proposition 4.3. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ : E→N. Then the pretransfer tp : F(X ,L)→ F(E,L) is continuous.

Proof. Since F(X ,L) has the topology of the union of the closed subspaces

··· ⊂ Fr(X ,L)⊂ Fr+1(X ,L)⊂ ··· ⊂ F(X ,L), (4.7)

tp is continuous if and only if the restriction tp|Fr (X ,L) is continuous for each r ∈N. We
have a quotient map qr : (L×X)r � Fr(X ,L) for each r. Define δ : L×X → Fn(E,L) by
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δ(l,x)= tpq1(l,x)= tp(lx), and α : L×X → (L×E)n/Σn by

α(l,x)= 〈(l,e1
)

, . . . ,
(

l,e1
)

︸ ︷︷ ︸

μ(e1)

, . . . ,
(

l,em
)

, . . . ,
(

l,em
)

︸ ︷︷ ︸

μ(em)

〉

, (4.8)

where p−1(x) = {e1, . . . ,em}. For each l ∈ L, let il : X → L×X be given by il(x) = (l,x),
and let jl : En/Σn → (L× E)n/Σn be given by jl〈e1, . . . ,en〉 = 〈(l,e1), . . . , (l,en)〉. Then α ◦
il = jl ◦ ϕp, where ϕp : X → SPnE. Since jl and ϕp are continuous and L is discrete, α is
continuous.

The quotient map qn factors through the quotient map q′n : (L× E)n � (L× E)n/Σn,
yielding the following commutative diagram:

(L×E)n
q′n

qn

(L×E)n/Σn

ρn

Fn(E,L)

(4.9)

where ρn is also a quotient map.
Now, δ makes the following diagram commute:

(L×E)n/Σn

ρn

L×X

α

δ
Fn(E,L)

(4.10)

therefore, δ is continuous.
In order to show that tp|Fr (X ,L) is continuous, consider the diagram

(L×X)r
δr

qr

Fn(E,L)×···×Fn(E,L)

sum

Fr(X ,L)
tp|Fr (X ,L)

F(E,L)

(4.11)

where sum is given by the operation in F(E,L), which is continuous. Since δ is continuous
and qr is a quotient map, tp|Fr (X ,L) is continuous. �

Corollary 4.4. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ : E→N. Then there is a homology transfer τp : ˜Hq(X ;L)→ ˜Hq(E;L).

Remark 4.5. Besides the transfer τp defined above, for every integer k there is another
homology transfer kτ given by (kτ)p(ξ) = k · τp(ξ), ξ ∈Hq(X ;L). This transfer, in turn,
is determined by the pretransfer (kt)p : F(X ,L) → F(E,L) given by (kt)p(u) = k · tp(u),
u∈ F(X ,L).
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Example 4.6. For the ramified covering map πB : Bn ×Σn n→ SPnB of Examples 3.6, the
homology transfer is given as follows. We first compute

tπB : F
(

SPnB,L
)−→ F

(

Bn×Σn n,L
)

(4.12)

on the generators. Set

b = (b1, . . . ,b1
︸ ︷︷ ︸

i1

,b2, . . . ,b2
︸ ︷︷ ︸

i2

, . . . ,br , . . . ,br
︸ ︷︷ ︸

ir

)∈ Bn, (4.13)

where i1 + i2 + ···+ ir = n. Then

π−1
B 〈b〉 =

{〈

b, i1
〉

,
〈

b, i1 + i2,
〉

, . . . ,〈b,n〉}. (4.14)

Therefore,

tπB
(

l〈x〉)= μ〈b, i1
〉

l
〈

b, i1
〉

+μ
〈

b, i1 + i2
〉

l
〈

b, i1 + i2
〉

+ ···+μ
〈

b, i1 + i2 + ···+ ir
〉

l
〈

b, i1 + i2 + ···+ ir
〉

= i1l
〈

b, i1
〉

+ i2l
〈

b, i1 + i2
〉

+ ···+ ir l
〈

b, i1 + i2 + ··· ir
〉

= l〈b, i1
〉

+ l
〈

b, i1
〉

+ ···+ l
〈

b, i1
〉

︸ ︷︷ ︸

i1

+ l
〈

b, i1 + i2
〉

+ l
〈

b, i1 + i2
〉

+ ···+ l
〈

b, i1 + i2
〉

︸ ︷︷ ︸

i2

+ ···+ l〈b,n〉+ l〈b,n〉+ ···+ l〈b,n〉
︸ ︷︷ ︸

ir

= l〈b,1〉+ ···+ l
〈

b, i1
〉

+ l
〈

b, i1 + 1
〉

+ ···+ l
〈

b, i1 + i2
〉

+ ···+ l
〈

b, i1 + i2 + ···+ ir−1 + 1
〉

+ ···+ l〈b,n〉
= l〈b,1〉+ l〈b,2〉+ ···+ l〈b,n〉,

(4.15)

hence,

tπB
(

l
〈

b1, . . . ,bn
〉)= l〈b1, . . . ,bn;1

〉

+ ···+ l
〈

b1, . . . ,bn;n
〉

. (4.16)

Thus, in general, if β =∑k
i=1 li〈bi1, . . . ,bin〉, then

tπB (β)=
(k,n)
∑

(i, j)=(1,1)

li
〈

bi1, . . . ,bin; j
〉

, (4.17)

since by varying j from 1 to n, the fiber elements over 〈bi1, . . . ,bin〉, namely 〈bi1, . . . ,bin; j〉,
are repeated μB〈bi1, . . . ,bin; j〉 times.
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Remark 4.7. Given an n-fold ramified covering map p : E→ X with multiplicity function
μ : E→ N, and a (closed) subspace A ⊂ X , we have the restricted ramified covering map
pA : EA→ A, EA = p−1A, and the quotient ramified covering map p′ : E′ = E/EA→ X/A, as
described in Remark 3.5. The following diagram obviously commutes:

EA

pA

E

p

E′

p′

A X X/A

(4.18)

Thus the above diagram yields

F(A,L)

tA

F(X ,L)

t

F(X/A,L)

t′

F
(

EA,L
)

F(E,L) F(E′,L)

(4.19)

where the horizontal arrows are obvious and tA, t, and t′ are the corresponding pretrans-
fers. Therefore, using t′, we have a relative homology transfer τp :Hn(X ,A;L)→Hn(E,EA;
L), and by the commutativity of the diagram, also this transfer maps the long exact se-
quences of (X ,A) into the long exact sequence of (E,EA), provided that the inclusion
A↩X is a closed cofibration (in general it is also true by constructing an adequate rami-
fied covering map over X ∪CA).

The following theorems establish the fundamental properties of the transfer.

Theorem 4.8. Let p : E→ X be an n-fold ramified covering map. Then the composite

p∗ ◦ τp : ˜Hq(X ;L)−→ ˜Hq(X ;L) (4.20)

is multiplication by n.

The proof follows immediately from the following proposition.

Proposition 4.9. If p : E→ X is an n-fold ramified covering map, then the composite

F(X ,L)
tp−→ F(E,L)

p∗−→ F(X ,L) (4.21)

is multiplication by n.

Proof. If u =∑r
i=1 lixi ∈ F(X ,L), then p∗tp(u) = p∗tp(

∑r
i=1 lixi) =

∑

p(e)=xi, i=1,...,r μ(e)lixi
=∑r

i=1 lixi
∑

p(e)=xi μ(e)= n∑r
i=1 lixi = n ·u. �

The invariance under pullbacks is given by the following.
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Theorem 4.10. Let p : E→ X be an n-fold ramified covering map and assume that f : Y →
X is continuous. Then the following diagram commutes:

˜Hq(Y ;L)
τ f∗(p)

f∗

˜Hq
(

f ∗(E);L
)

˜f∗

˜Hq(X ;L) τp
˜Hq(E;L)

(4.22)

where f ∗(p) : f ∗(E)→ Y is the n-fold ramified covering map induced by p : E→ X over f .

As for the previous theorem, the proof follows immediately from the next proposition.

Proposition 4.11. If p : E→ X is an n-fold ramified covering map and f : Y → X is con-
tinuous, then the following diagram commutes:

F(Y ,L)
t f∗(p)

f∗

F
(

f ∗(E),L
)

˜f∗

F(X ,L)
tp

F(E,L)

(4.23)

Proof. Let v =∑r
i=1 li yi ∈ F(Y ,L). Then t f ∗(p)(v)∈ F( f ∗(E),L) is such that

˜f∗
(

t f ∗(p)(v)
)= ˜f∗

⎛

⎜

⎜

⎜

⎝

∑

f ∗(p)(y,e)=yi
i=1,...,r

f ∗(μ)(y,e)li(y,e)

⎞

⎟

⎟

⎟

⎠

=
∑

f ∗(p)(y,e)=yi
i=1,...,r

μ(e)li ˜f (y,e)=
∑

p(e)= f (yi)
i=1,...,r

μ(e)lie = tp
(

f∗(v)
)

.

(4.24)

�

Take maps f0, f1 : Y → X and let p : E→ X be an n-fold ramified covering map. We
have the induced covering maps over Y as follows:

f ∗0 (E)
˜f0

p0

E

p

Y
f0

X

f ∗1 (E)
˜f1

p1

E

p

Y
f1

X

(4.25)

Another property of the transfer is the following homotopy invariance.

Theorem 4.12. If f0, f1 : Y → X are homotopic and p : E→ X is an n-fold ramified covering
map, then

˜f0∗ ◦ τp0 = ˜f1∗ ◦ τp1 : ˜Hq(Y ;L)−→ ˜Hq(E;L). (4.26)
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The proof is an immediate consequence of the next proposition.

Proposition 4.13. If f0 	 f1 : Y → X and p : E→ X is an n-fold ramified covering map,
then

˜f0∗ ◦ tp0 	 ˜f1∗ ◦ tp1 : F(Y ,L)−→ F(E,L). (4.27)

Proof. If H : Y × I → X is a homotopy from f0 to f1, then ̂H : F(Y ,L)× I → F(X ,L) given
by ̂H(v, t)=∑y∈Y v(y)H(y, t) is a (continuous) homotopy from f0∗ to f1∗. Thus, apply-

ing Proposition 4.11, ˜f0∗ ◦ tp0 = tp ◦ f0∗ 	 tp ◦ f1∗ = ˜f1∗ ◦ tp1 . �

One further property of the homology transfer that is useful is given by the following
proposition.

Proposition 4.14. Let f : B→ C be continuous and consider the commutative diagram

Bn×Σn n
f n×Σn1n

πB

Cn×Σn n

πC

SPnB
SPn f

SPnC

(4.28)

Then the following diagram commutes:

F
(

Bn×Σn n,L
) ( f n×Σn1n)∗

F
(

Cn×Σn n,L
)

F
(

SPnB,L
)

tπB

(SPn f )∗
F
(

SPnC,L
)

tπC (4.29)

Proof. Using the description of the transfers given in Example 4.6, one can easily verify
that the diagram commutes. �

In Proposition 4.9, we computed the composite p∗ ◦ tp. The opposite composite tp ◦
p∗ is also interesting. An immediate computation yields the following.

Proposition 4.15. Let p : E → X by an n-fold ramified covering map with multiplicity
function μ. Then the composite

F(E,L)
p∗−→ F(X ,L)

tp−→ F(E,L) (4.30)

is given by

tp p∗(v)(e)= μ(e)
∑

p(e′)=p(e)

v(e′), (4.31)

for any v ∈ F(E,L).



14 Transfers for ramified covering maps

In the case of an action of a finite group G on E and X = E/G, we have the following
consequence.

Corollary 4.16. For v ∈ F(E,L), one has tp p∗(v)(e) =∑g∈G v(ge). Therefore, the com-
posite

F(E,L)
p∗−→ F(E/G,L)

tp−→ F(E,L) (4.32)

is given by tp p∗(v)=∑g∈G g∗(v).

Proof. Just observe that the element ge is repeated in the sum μ(e)= |Ge| times. �

The two previous results yield the following in homology.

Theorem 4.17. Let p : E→ X by an n-fold ramified covering map with multiplicity function
μ. Then the composite

˜Hq(E;L)
p∗−→ ˜Hq(X ;L)

τp−→ ˜Hq(E;L) (4.33)

is given by τp p∗(y)= y′, where y′ = [v′]∈ πq(F(E,L)) and

v′(s)(e)= μ(e)
∑

p(e′)=p(e)

v(s)(e′), (4.34)

where y = [v]∈ πq(F(E,L)) and s∈ Sq.

Corollary 4.18. For an action of a finite group G on E and X = E/G, one has that the
composite

˜Hq(E;L)
p∗−→ ˜Hq(E/G;L)

τp−→ ˜Hq(E;L) (4.35)

is given by τp p∗(y)=∑g∈G g∗(y).

Remark 4.19. Considering an action of G on E and a subgroup H ⊂ G, one has different
ramified covering maps as depicted in

E
qH qG

E/H
qHG

E/G

(4.36)

One may easily compute several combinations of the maps induced by these covering
maps and their transfers.

Another interesting property of the transfer is the relationship given by computing the
transfer of the composition of two ramified covering maps. Before giving it we need the
following.
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Definition 4.20. Let p : Y → X be an n-fold ramified covering map, with multiplicity
function μ : Y → N, and let q : Z → Y be an m-fold ramified covering map, with mul-
tiplicity function ν : Z → N. Then, the composite p ◦ q : Z → X is an mn-fold ramified
covering map, with multiplicity function ξ : Z → N given by ξ(z) = ν(z)μ(q(z)). In or-
der to verify that this composite is indeed an mn-fold ramified covering map, consider
the wreath product Σn �Σm, defined as the semidirect product of Σn and (Σm)n, where Σn
acts on (Σm)n by permuting the n factors. There exists an action (Zm×···×Zm)×Σn �
Σm → Zm × ··· ×Zm given by (ζ1, . . . ,ζn) · (σ ,τ1, . . . ,τn) = (ζσ(1) · τ1, . . . ,ζσ(n) · τn), where
ζi ∈ Zm. Then we have the following diagram, where all maps are open:

Zm×···×Zm q×···×q

π

Zm/Σm×···×Zm/Σm
π′

(

Zm
)n
/Σn �Σm SPn

(

SPmZ
)

(4.37)

One may easily show that π is compatible with π′ ◦ (q × ··· × q). Therefore, there is
a homeomorphism Zmn/Σn �Σm ≈ SPn(SPmZ), and hence one has a canonical quotient
map ρ : SPn(SPmZ) → SPmnZ. Then one can easily verify that ϕp◦q = ρ ◦ SPn(ϕq) ◦ ϕp :

X → SPn(SPmZ)
ρ→ SPmnZ. Thus ϕp◦q is continuous.

The homology transfer behaves well with respect to composite ramified covering maps.

Theorem 4.21. Let p : Y → X and q : Z → Y be ramified covering maps. Then the following
hold:

tp◦q = tq ◦ tp : F(X ;L)
tp−→ F(Y ;L)

tq−→ F(Z;L);

τp◦q = τq ◦ τp :Hk(X ;L)
τp−→Hk(Y ;L)

τq−→Hk(Z;L).
(4.38)

Proof. As before, the second formula follows from the first. Take u∈ F(X ;L), v ∈ F(Y ;L),
w ∈ F(Z;L), then v = tp(u) if v(y) = μ(y)u(p(y)), and w = tq(v) if w(z) = ν(z)v(q(z)).
Hence (tqtp(u))(z)= ν(z)v(q(z))= ν(z)μ(q(z))u(pq(z))= ξ(z)u((p ◦ q)(z))= tp◦q(u)(z).

�

Corollary 4.22. Given an n-fold ramified covering map p : E → X with multiplicity
function μ and an integerm, there is anmn-fold ramified covering map pm : E→ X such that
pm = p and μm(e) = mμ(e), e ∈ E. Then tpm = mtp : F(X ;L) → F(E;L) and τpm = mτp :
˜Hk(X ;L)→ ˜Hk(E;L).

Proof. Consider the m-fold ramified covering map q : E→ E such that q = idE and ν(e)=
m for all e ∈ E. Hence pm = p ◦ q. Then apply Theorem 4.21. �

Remark 4.23. The mn-fold covering map pm obtained from p is a sort of spurious rami-
fied covering map, since the multiplicity of p is artificially multiplied bym. It is interesting
to remark that the previous result shows that the transfer of this new ramified covering
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map pm is just the corresponding multiple of the transfer of the original ramified cov-
ering map p. Thus on this sort of artificial ramified covering maps, the transfer remains
essentially unchanged.

5. The cohomology transfer

In this section, we define the cohomology transfer and prove some of its properties.

Definition 5.1. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ. Define its cohomology transfer

τ p :Hq(E;L)= [E,F
(

Sq,L
)]−→ [

X ,F
(

Sq,L
)]=Hq(X ;L) (5.1)

by τ p([α̃])= [α], where α(x)=∑p(e)=x μ(e)α̃(e), x ∈ X . To see that the map α is continu-
ous and that its homotopy class depends only on the homotopy class of α̃, observe that α
is given by the composite

α : X
ϕp−→ SPnE

SPnα̃−−−→ SPnF
(

Sq,L
)−→ F

(

Sq,L
)

, (5.2)

where the last map is given by the group structure on F(Sq,L), adding the components.

Remark 5.2. We might assume that E and X are paracompact spaces instead of spaces
of the same homotopy type of a CW-complex. In this case, the same definition yields a
transfer that is a homomorphism between Čech cohomology groups:

τ p : Ȟq(E;L)−→ Ȟq(X ;L), (5.3)

since in this case homotopical cohomology coincides with Čech cohomology (see [10]).

Note 5.3. In order to define the cohomology transfer, the only property of the Eilenberg-
Mac Lane spaces given by F(Sq,L) required is the fact that they are topological abelian
groups in the category of compactly generated spaces.

Similarly to the homology transfer, the cohomology transfer has the following funda-
mental properties.

Theorem 5.4. If p : E→ X is an n-fold ramified covering map, then the composite

τ p ◦ p∗ :Hq(X ;L)−→Hq(X ;L) (5.4)

is multiplication by n.

Proof. If [α]∈ [X ,F(Sq,L)], then τ p p∗(α)= τ p(α◦ p) : X → F(Sq,L), and τ p(α◦ p)(x)=
∑

p(e)=x μ(e)αp(e)= (
∑

p(e)=x μ(e))α(x)= n ·α(x). Thus, τ p p∗([α])= n · [α]. �
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Theorem 5.5. Let p : E→ X be an n-fold ramified covering map and assume that f : Y → X
is continuous. Then the following diagram commutes:

Hq(E;L)
τ p

˜f ∗

Hq(X ;L)

f ∗

Hq
(

f ∗(E);L
)

τ f
∗(p)

Hq(Y ;L)

(5.5)

where f ∗(p) : f ∗(E)→ Y is the n-fold ramified covering map induced by p : E→ X over f .

Proof. Let α̃ : E→ F(Sq,L) represent an element in Hq(E;L). Then the map

y 
−→
∑

f∗(p)(y,e)=y
f ∗(μ)(y,e) ˜f ∗(α̃)(y,e)=

∑

p(e)= f (y)

μ(e)α̃(e), (5.6)

that represents τ f
∗(p) ˜f ∗(α̃), clearly represents also f ∗τ p([α̃])∈Hq(Y ;L). �

Similarly to Theorem 4.12, we also have the next property, which easily follows from
Theorem 5.5.

Theorem 5.6. If f0, f1 : Y → X are homotopic and p : E→ X is an n-fold ramified covering
map, then

τ p0 ◦ ˜f ∗0 = τ p1 ◦ ˜f ∗1 :Hq(E;L)−→Hq(Y ;L). (5.7)

In Theorem 5.4 we computed the composite τ p ◦ p∗. The opposite composite p∗ ◦ τ p
is also interesting. As it was the case for the homology transfer, an immediate computa-
tion yields the following results for the cohomology transfer.

Proposition 5.7. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ. Then the composite

Hq(E;L)
τ p−→Hq(X ;L)

p∗−→Hq(E;L) (5.8)

is given as follows. Take [α̃] ∈Hq(E;L)= [E,F(Sq,L)], then p∗τ p[α̃] is represented by the
map α̃′ : E→ F(Sq,L) given by

α̃′(e)=
∑

p(e′)=p(e)

μ(e′)α̃(e′). (5.9)

In the case of an action of a finite group G on E and X = E/G, we have the following
consequence.

Corollary 5.8. If ξ ∈Hq(E;L), then

p∗τ p(ξ)=
∑

g∈G
g∗(ξ)∈Hq(E;L). (5.10)

Proof. Just observe that in the sum the element g∗(ξ) is repeated μ(e)= |Ge| times. �
Generalizations and further properties of the cohomology transfer are studied in [2].
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6. Transfers in other theories

Karoubi [11] has defined the cohomology of a pointed space X as the cohomology of the
de Rham complex of noncommutative topological forms on X . The de Rham complex
is defined as follows. Let L be any abelian group and consider the group of continuous
maps

Ωq(X ;L)=Map
(

X ,F
(

Bq+1,L
))

, (6.1)

where Bq+1 is the (q+ 1)-dimensional ball. The coboundary homomorphism

δ : Ωq−1(X ;L)−→Ωq(X ;L) (6.2)

is given by sending f : X → F(Bq,L) to the composite

X
f−→ F

(

Bq,F
) κ∗−→ F

(

Bq+1,L
)

, (6.3)

where κ : Bq → Sq↩Bq+1; here the first map collapses the boundary of the ball to a point
while the second includes the sphere as the boundary of the next ball.

Given an n-fold ramified covering map p : E→ X , define

ρp : Ωq(E;L)−→Ωq(X ;L) (6.4)

by f 
→mBq+1 ◦ SPn f ◦ϕp, namely, by the diagram

X
ϕp

ρp( f )

SPnE
SPn f

SPnF
(

Bq+1,L
)

mBq+1

F
(

Bq+1,L
)

(6.5)

where ϕp is the structure map of p andmBq+1 stands for the group operation in F(Bq+1,L).
One easily proves that this is a cochain homomorphism and thus it defines a transfer

in the cohomology of Karoubi’s cochain complex

ρp :Hq
(

Ω∗(E;L)
)−→Hq

(

Ω∗(X ;L)
)

. (6.6)

Karoubi [11] has also defined (reduced) homology as follows. Take the group of con-
tinuous pointed maps

˜Ωq(X ;L)=Map∗
(

Bq,F(X ,L)
)

, (6.7)

where the boundary homomorphism

∂ : ˜Ωq+1(X ;L)−→ ˜Ωq(X ;L) (6.8)

is given by f 
→ f ◦ κ, κ as above. For a ramified covering map p : E→ X , using the pre-
transfer of Definition 4.1, tp : F(X ,L) → F(E,L), we define ρp : ˜Ωq(X ;L) → ˜Ωq(E;L) by
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f 
→ tp ◦ f . This map is easily seen to commute with the boundary homomorphism, so
that one has a transfer in the homology of Karoubi’s chain complex

ρp :Hq
(

˜Ω∗(X ;L)
)−→Hq

(

˜Ω∗(E;L)
)

. (6.9)

These transfers are equivalent to the ones defined above; namely, one has the follow-
ing.

Theorem 6.1. Let p : E→ X be a ramified covering map.
(a) There is a natural isomorphism [−,F(Sq,L)]→Hq(Ω∗(−;L)) such that the follow-

ing is a commutative diagram:

[

E,F
(

Sq,L
)] ∼=

τ p

Hq
(

Ω∗(E;L)
)

ρp

[

X ,F
(

Sq,L
)] ∼=

Hq
(

Ω∗(X ;L)
)

(6.10)

(b) There is a natural isomorphismHq( ˜Ω∗(−;L))→ πq(F(−,L)) such that the following
is a commutative diagram:

Hq
(

˜Ω∗(X ;L)
) ∼=

ρp

πq
(

F(X ,L)
)

tp∗=τp

Hq
(

˜Ω∗(E;L)
) ∼=

πq
(

F(E,L)
)

(6.11)

Proof. (a) The isomorphism on the top of the diagram is given by mapping the homotopy
class [ f ] to the cohomology class [i∗ ◦ f ], where i : Sq↩Bq+1 is the canonical inclusion.
The isomorphism on the bottom is given similarly. It is now a direct confirmation that
the diagram commutes.

(b) The isomorphism on the top of the diagram is given by mapping the homology
class of the cycle [ f ] (which is such that f |∂Bq is constant) to the homotopy class [ f ],
where f : Sq = Bq/∂Bq → F(X ;L) is induced by f . The isomorphism on the bottom is
similar and the diagram is clearly commutative. �

More generally, given a natural transformation of Φ : h→ Hq(−;L), where h is any
homotopy functor, and given an n-fold ramified covering map p : E→ X , one can define
a transfer

Tp : h(X)
ΦX−→Hq(X ;L)

τp−→Hq(E;L). (6.12)

This transfer has similar properties to those established in Theorem 4.10 and Proposition
4.14. Also we have the following formula:

Hq(p)Tp(a)= nΦX(a). (6.13)
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Examples of such natural transformations are the following:
(1) the Hurewicz homomorphisms

πq −→Hq(−;Z), πst
q −→Hq(−;Z); (6.14)

(2) the ones given by the Thom homomorphisms

NG
q (−)−→Hq(−;L), (6.15)

where NG
q is any bordism theory, for instance, unoriented, oriented, or complex

bordism (G=O, SO, U); L varies according to the bordism theory.
Similarly, given a natural transformation Φ : h→ Hq(−;L) of any contravariant ho-

motopy functor h, one has a transfer

Tp : h(E)
ΦX−→Hq(E;L)

τ p−→Hq(X ;L) (6.16)

with similar properties to those of the cohomology transfer like Theorem 5.4 (see [2],
where a classification of transfers between representable cofunctors is given). Examples
of these natural transformations are the Hurewicz homomorphisms from stable coho-
motopy to cohomology or the Thom homomorphisms from cobordism theories to co-
homology.

7. Some applications of the transfers

First we start considering a standard n-fold covering map p : E→ X . In this case, the pre-
transfer (and thus also the transfer in homology) has a particularly nice definition. Since
the multiplicity function μ : E → N is constant μ(e) = 1, the pretransfer tp : F(X ,L) →
F(E,L) is given by

tp(u)(e)= u(p(e)
)

. (7.1)

This fact has a nice consequence.

Theorem 7.1. Let G be a finite group acting freely on a Hausdorff space E. Then the orbit
map p : E→ E/G is a standard covering map, and its pretransfer induces an isomorphism

tp : F(E/G,L)
∼=−→ F(E,L)G, (7.2)

where the second term represents the fixed points under the induced G-action on F(E,L).
Consequently, the pretransfer yields an isomorphism

˜Hq(E/G;L)
∼=−→ πq

(

F(E,L)G
)

, (7.3)

for all q.

Proof. We assume that the projection p : E→ E/G maps the base point to the base point.
The pretransfer tp is a monomorphism. Namely, if tp(u) = 0, then, by (7.1), u(p(e)) =
tp(u)(e)= 0 for all e ∈ E. Since p is surjective, u= 0.
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On the other hand, obviously tp(u) ∈ F(E,L)G for all u ∈ F(E/G,L). To see that it
is an epimorphism, take any v ∈ F(E,L)G. Then v(e) = v(eg) for all g ∈ G, and thus v
determines a well-defined element u∈ F(E/G,L) by u(eG)= v(e). Then clearly tp(u)= v.

Finally, note that p∗(F(E,L)G) ⊂ F(E/G,|G|L). Dividing by |G| yields a continuous
homomorphism γ :F(E/G,|G|L)→F(E/G,L). Thus, the inverse is given by γ ◦ (p∗|F(E,L)G).

�

In what follows, we use the fundamental properties of Theorem 4.8 and Corollary 4.18,
and Theorem 5.4 and Corollary 5.8 of both the homology and the cohomology transfers
to prove some results about the homology and cohomology of orbit maps between orbit
spaces of the action of a topological group G and a subgroup H of finite index. We will
require that the (right) action of a topological group G on a space Y , both in the category
of compactly generated spaces, satisfies that the set {(y, yg) | g ∈ G} ⊂ Y ×Y is closed.
This guarantees that the orbit space Y/G is again compactly generated (see [15]). This will
always be the case, when G is a compact group. (There are corresponding results in Čech
cohomology for paracompact spaces.)

Before starting we need to recall Dold’s definition of an n-fold ramified covering map
[6]. It is a finite-to-one map p : E→ X together with a continuous map ψp : X → SPnE
such that

(i) for every e ∈ E, e appears in the n-tuple ψp(p(e))= 〈e1, . . . ,en〉,
(ii) SPn(p)ψp(x)= 〈x, . . . ,x〉 ∈ SPnX .

This definition is equivalent to Smith’s (see Definition 3.1), by setting ϕp = ψp and defin-
ing μ(e) as the number of times that e is repeated in ψp(p(e)).

Proposition 7.2. Let G be a topological group acting on a space Y on the right and let
H ⊂ G be a subgroup of finite index n. Then the orbit map p : Y/H → Y/G is an n-fold
ramified covering map.

Proof. There is a commutative diagram

Y ×G Y

Y × (G/H)
ν Y/H

(7.4)

where the top map is the action and the vertical maps are the quotient maps (with
the compactly generated topology in the products). Take the adjoint map of ν, η : Y →
Map(G/H ,Y/H). The function space Map(G/H ,Y/H) has a right G-action given as fol-
lows. For an f : G/H → Y/H , define ( f · g)(g1H)= f (g(g1H))= f (gg1H). The map η is
then G-equivariant and thus induces a map

η : Y/G−→Map(G/H ,Y/H)/G. (7.5)

On the other hand, if we identify G/H with the set n= {1, . . . ,n}, then we have a map

Map(G/H ,Y/H)/G−→Map(n,Y/H)/Σn = SPn(Y/H). (7.6)
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Let ψp : Y/G→ SPn(Y/H) be η followed by the previous map. Then ψp satisfies conditions
(i) and (ii) and thus p is an n-fold ramified covering map. �

We apply the results of Proposition 4.9 and Corollary 4.16 that we have for the pre-
transfer to the n-fold ramified covering map described above to obtain the following
proposition.

Proposition 7.3. Let Y be a space with an action of a topological group G and let H ⊂ G
be a subgroup of finite index n. Assume that R is a ring where the integer n is invertible. Then
p∗ : F(Y/H ,R) → F(Y/G,R) is a split (continuous) epimorphism. Moreover, if G is finite
and its order m is invertible in R, then the kernel of p∗ is the complement in F(Y/H ,R) of
the invariant subgroup F(Y/H ,R)G under the induced action of G. Thus in this case,

F(Y/G,R)∼= F(Y/H ,R)G; (7.7)

in particular, if G is finite and H is trivial, then m= n and

F(Y/G,R)∼= F(Y ,R)G. (7.8)

Proof. By Proposition 7.2, p : Y/H → Y/G is an n-fold ramified covering map. By
Proposition 4.9, p∗ ◦ tp : F(Y/H ,R)→ F(Y/H ,R) is multiplication by n, hence it is an iso-
morphism, and consequently p∗ is a split epimorphism. Moreover, if G is finite of order
m, by Corollary 4.16, we have that tp ◦ p∗ : F(Y/H ,R)G→ F(Y/H ,R)G is multiplication by
m. So, if m is invertible in R, then p∗ : F(Y/H ,R)G→ F(Y/G,R) is an isomorphism. �

With a similar proof to the one above, but now applying Theorem 4.8 and Corollary
4.18, we obtain the following two well-known results (cf. [18, 2.5], [4, 19]).

Theorem 7.4. Let Y be a space with an action of a topological group G and let H ⊂ G be
a subgroup of finite index n. Assume that R is a ring where the integer n is invertible. Then
p∗ : Hq(Y/H ;R)→Hq(Y/G;R) is a split epimorphism. Moreover, if G is finite and its order
m is invertible in R, then the kernel of p∗ is the complement of Hq(Y/H ;R)G in Hq(Y/H ;R).
Thus in this case

Hq(Y/G;R)∼=Hq(Y/H ;R)G; (7.9)

and in particular,

Hq(Y/G;R)∼=Hq(Y ;R)G. (7.10)

Similarly, using Theorem 5.4 and Corollary 5.8 one has for cohomology the following
theorem.

Theorem 7.5. Let Y be a space with an action of a topological group G and let H ⊂ G be
a subgroup of finite index n. Assume that R is a ring where the integer n is invertible. Then
p∗ : Hq(Y/G;R) → Hq(Y/H ;R) is a split monomorphism. Moreover, if G is finite and its
order m is invertible in R, then the image of p∗ is Hq(X ;R)G. Thus in this case

Hq(Y/G;R)∼=Hq(Y/H ;R)G; (7.11)
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and in particular,

Hq(Y/G;R)∼=Hq(Y ;R)G. (7.12)

Remark 7.6. One may take a paracompact spaceY with an action of a topological groupG
and obtain for Čech cohomology an analogous result, namely, p∗ : Ȟq(Y/G;R)→Ȟq(Y/H ;
R) is a split monomorphism, and

Ȟq(Y/G;R)∼= Ȟq(Y/H ;R)G. (7.13)

A nice application of the previous ideas is the following generalization of a well-known
result of Grothendieck [8] (who considers the case Y = EG).

Theorem 7.7. Let G be a compact Lie group and let G1 be the component of 1∈G. Let R be
a ring where n= [G : G1] is an invertible element. For an action of G on a topological space
Y , one has

Hq(Y/G;R)∼=Hq(Y/G1;R)G/G1 ,

Hq(Y/G;R)∼=Hq(Y/G1;R)G/G1 .
(7.14)

Moreover, if Y is paracompact instead of having the same homotopy type of a CW-complex,
then Ȟq(Y/G;R)∼= Ȟq(Y/G1;R)G/G1 .

8. Duality between the homology and cohomology transfers

In this section, we prove the existence of a duality between the homology transfer and the
cohomology transfer.

Theorem 8.1. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ : E→N and E path connected, and let τp :Hq(X ;R)→Hq(E;R) and τ p :Hq(E;R)→
Hq(X ;R) be its homology and cohomolgy transfers. If ξ ∈Hq(X ;L) and ˜ξ ∈Hq(E;L), then

〈

τp(ξ), ˜ξ
〉

E =
〈

ξ,τ p(˜ξ)
〉

X ∈ R, (8.1)

for the Kronecker products for E and X , respectively, and R a commutative ring with 1 (see
(2.11)).

Proof. We have to prove the commutativity of the following diagram:

[

X+,F
(

Sq,R
)]

∗ ×
[

Sq,F
(

X+,R
)]

∗
� [

X+,F
(

S0,R
)]

∗

[

E+,F
(

Sq,R
)]

∗ ×
[

Sq,F
(

X+,R
)]

∗

τ p×1

1×τp

R

[

E+,F
(

Sq,R
)]

∗ ×
[

Sq,F
(

E+,R
)]

∗ �
[

E+,F
(

S0,R
)]

∗

(8.2)
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By the naturality of the construction of the pretransfers and the definition of the �-
product (see Proposition 2.4), it is fairly easy to check that this commutativity follows
from the commutativity of the following:

[

X+,F
(

X+,R
)]

∗
[

S0,F
(

X+,R
)]

∗

[

E+,F
(

X+,R
)]

∗

τ p

τp

R

[

E+,F
(

E+,R
)]

∗
[

S0,F
(

E+,R
)]

∗

(8.3)

Let δ : E+ → F(X+,R) be given by δ(e) =∑m(e)
i=1 ri(e)xi(e), e ∈ E. Chasing this element δ

along the top of the diagram, one easily verifies that it maps to the element

d =
∑

p(e)=x−1

μ(e)
m(e)
∑

i=1

ri(e), (8.4)

while chasing it along the bottom of the diagram, it maps to the element

d′ =
m(e−1)
∑

i=1

ri
(

e−1
)

∑

p(ei)=xi(e−1)

μ
(

ei
)= n

m(e−1)
∑

i=1

ri
(

e−1
)

. (8.5)

Call ρ(e) =∑m(e)
i=1 ri(e). Since ρ = ε ◦ δ, this defines by Lemma 2.3 a continuous map ρ :

E→ R, but since E is path connected and R is discrete, ρ is constant with value rδ ∈ R.
Hence

d =
∑

p(e)=x−1

μ(e)ρ(e)= n · rδ , d′ = nρ(e−1
)= n · rδ. (8.6)

Thus d = d′ and the diagram commutes. �

For simplicity, in what follows we omit to write the coefficient ring R in homology and
cohomology. Taking the adjoints of the Kronecker product 〈−,−〉Y :Hq(Y)⊗Hq(Y)→ R
one has induced natural homomorphisms

ΦY :Hq(Y)−→Hom
(

Hq(Y),R
)

, ΨY :Hq(Y)−→Hom
(

Hq(Y),R
)

(8.7)

for every space Y , given by ΦY (y)(η)= 〈y,η〉Y and ΨY (η)(y)= 〈y,η〉Y , y ∈Hq(Y), η ∈
Hq(Y).
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Corollary 8.2. The following diagrams commute:

Hq(E)
ΦE

τ p

Hom
(

Hq(E),R
)

Hom(τp ,1)

Hq(X)
ΦX

Hom
(

Hq(X),R
)

Hq(X)
ΨX

τp

Hom
(

Hq(X),R
)

Hom(τ p ,1)

Hq(E)
ΨE

Hom
(

Hq(E),R
)

(8.8)

Remark 8.3. Under suitable conditions, Φ or Ψ are isomorphisms, in whose case one of
the transfers determines the other.

9. Comparison with Smith’s transfer

In this section, we show that the transfer defined in [18] coincides with ours if we take
Z-coefficients. To that end, we first recall Smith’s definition of the transfer. It makes use
of a result of Moore, that we state below. Recall that the weak product ˜

∏∞
n=1Xn of a family

of pointed spaces is the colimit over n of the directed system of spaces

X1 X1×X2 X1×X2×X3
. . . , (9.1)

where the inclusions are given by letting the last coordinate be the base point. Moore’s
result, as it appears in [21], is as follows.

Theorem 9.1 (Moore). A connected space X of the same homotopy type of a CW-complex

is homotopy equivalent to the weak product ˜
∏

n≥1K(πn(X),n) of Eilenberg-Mac Lane spaces
if and only if the Hurewicz homomorphism hn : πn(X)→ ˜Hn(X ;Z) is a split monomorphism
for all n≥ 1.

Suppose that ρn : ˜Hn(X) = ˜Hn(X ;Z) → πn(X) is a left inverse of hn. The Kronecker
product defined in Section 2 determines an epimorphism

˜Hn
(

X ;πn(X)
)−→Hom

(

˜Hn(X),πn(X)
)

. (9.2)

Let [ξn]∈ ˜Hn(X ;πn(X))= [X ,K(πn(X),n)]∗ be some preimage of ρn. Then the family of
pointed maps (ξn) defines the homotopy equivalence of the previous theorem.

Corollary 9.2. If X is a connected topological abelian monoid of the same homotopy type

of a CW-complex, then there is a homotopy equivalence X →˜

∏

n≥1K(πn(X),n).

Proof. Since X is a topological abelian monoid, there is a retraction r : SP∞X → X given
by the retractions

rm : SPmX −→ X , rm
〈

x1,x2, . . . ,xm
〉= x1 + x2 + ···+ xm. (9.3)
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Recall, on the other hand, that by the Dold-Thom theorem one has an isomorphism
πn(SP∞X)∼= ˜Hn(X), so that the inclusion i : X↩ SP∞X defines the Hurewicz homomor-
phism (see [1]). Since r ◦ i = idX , the homomorphism ρn = r∗ : ˜Hn(X) = πn(SP∞X) →
πn(X) provides a left inverse of the Hurewicz homomorphism hn. Hence, by Moore’s the-
orem, we obtain the result. �

For any space E, the space SP∞E is a topological abelian monoid. Thus we have the
following.

Corollary 9.3. For a connected space E of the same homotopy type of a CW-complex, there

is a homotopy equivalence wE : SP∞E→ K( ˜H∗(E))=˜∏∞
n=1K( ˜Hn(E),n).

The definition of Smith’s transfer is as follows. Given an n-fold ramified covering map
p : E→ X with multiplicity function μ : E→N, consider the following composite:

p̂ : X
ϕp−→ SPnE −→ SP∞E 	−→ K

(

˜H∗(E)
)

. (9.4)

This map defines a family of elements [ p̂]∈ ˜H∗(X ; ˜H∗(E)). On the other hand, the Kro-
necker product determines a homomorphism

ψ : ˜H∗(X ; ˜H∗(E)
)−→Hom

(

˜H∗(X), ˜H∗(E)
)

. (9.5)

Smith’s transfer is the image p� : ˜H∗(X)→ ˜H∗(E) of [ p̂] under the homomorphism ψ.

Theorem 9.4. Let p : E→ X be an n-fold ramified covering map with multiplicity func-
tion μ : E → N. Then p� = τp : ˜H∗(X ;Z) → ˜H∗(E;Z), where τp is the transfer in reduced
homology.

Proof. Consider the following commutative diagram:

[

E,SPnE
]

∗

τ p

[

E,SP∞E
]

∗
∼=

τ p

˜H∗(E, ˜H∗(E)
)

τ p

Hom
(

˜H∗(E), ˜H∗(E)
)

Hom(τp ,1)

[

X ,SPnE
]

∗
[

X ,SP∞E
]

∗
∼=

˜H∗(X , ˜H∗(E)
)

Hom
(

˜H∗(X), ˜H∗(E)
)

(9.6)

The two squares on the left-hand side, where τ p represents the cohomology transfer,
commute obviously. The one on the right-hand side commutes by Corollary 8.2. Take
[i]∈ [E,SPnE]∗, where i : E↩ SPnE is the canonical inclusion. Chasing [i] down and then
right on the bottom of the diagram, we obtain p�, while chasing it to the right on the top
of the diagram and then down, we obtain τp. This is true, because the image of [i] along

the top row of the diagram is the identity homomorphism 1∈Hom( ˜H∗(E), ˜H∗(E)). This
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follows from the naturality of the Kronecker product, since by Corollary 9.2, we have an
explicit description of the weak homotopy equivalence that defines the isomorphism in
the middle arrow. �
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