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Abstract We prove an equivariant version of the Dold-Thom theorem by
giving an explicit isomorphism between Bredon-Illman homology H̃G

∗
(X ;L)

and equivariant homotopical homology π∗(F
G(X,L)), where G is a finite

group and L is a G-module. We use the homotopical definition to obtain
several properties of this theory and we do some calculations.
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0 Introduction

The presentation of homology using the Dold-Thom construction has been very
useful in algebraic geometry. Lawson homology (see [14, 15, 9, 10]) was defined
using this approach. In this paper we study the Dold-Thom-McCord theorem
(see [19]) in the equivariant case.

Let G be a finite group. If L is a G-module, then one can define a coefficient
system L on the category of canonical orbits of G by L(G/H) = LH , where LH

is the subgroup of fixed points of L under H ⊂ G. One then has an ordinary
equivariant homology theory HG

∗ (−;L), called Bredon-Illman homology, whose
associated coefficient system is precisely L. Let X be a (pointed) G-space and
let F (X,L) be the topological abelian group generated by the points of X , with
coefficients in L. Consider the subgroup FG(X,L) of equivariant elements, that
is, the elements

∑
lxx in F (X,L) such that lgx = g · lx . Then one can associate

to X the homotopy groups πq(F
G(X,L)), and one has that, if X is a G-

CW-complex, then H̃G
q (X;L) is isomorphic to πq(F

G(X,L)). When G is the

trivial group, HG
∗ (−;L) is singular homology and this statement is the classical

Dold-Thom theorem [7], which was extended to the equivariant case by Lima-
Filho [16] (when L = Z with trivial G-action) and by dos Santos [21] (when
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L is any G-module). Both the original result and its equivariant generalization
were proved by showing that the homotopical definition satisfies the axioms of
an ordinary or an equivariant homology theory, and then using a uniqueness
theorem for homology theories.

In this paper, we prove the equivariant Dold-Thom theorem by giving an explicit
isomorphism HG

q (X;L) −→ πq(F
G(X,L)) for all q and any X of the homotopy

type of a G-CW-complex (Theorem 1.2). This isomorphism is constructed in
Section 2 in two steps as follows. Let F (S∗(X), L) be the (reduced) singular
chain complex of X with coefficients in the G-module L. Since X is a G-space,
we have an action of G on the singular simplexes of X , which we denote by
σ 7→ g · σ . Let FG(S∗(X), L) be the subcomplex of equivariant chains, that is,
chains

∑
lσσ such that lg·σ = g · lσ . Using the theory of simplicial sets, we give

an isomorphism between the homology of this chain complex H∗(F
G(S∗(X), L))

and π∗(F
G(X,L)). Then we show that both the chain complex F G(S∗(X), L)

and Illman’s chain complex (see Section 2), which defines HG
∗ (X;L) have the

same universal property (Propositions 2.10 and 2.11) so that they are canon-
ically isomorphic. For a different approach to the nonequivariant Dold-Thom
theorem due to Friedlander and Mazur see [11].

In Section 1, we state the main theorem and prove that the theory HG
∗ (X;L) =

π∗(F
G(X,L)) is additive. In Section 3 we study the theory HG

∗ (X;L) in the gen-
eral context of equivariant homology theories and coefficient systems. To each
equivariant homology theory hG∗ (−) one can associate the G-module hG0 (G).
We show (Theorem 3.5) that there is an isomorphism between the group of nat-
ural transformations Nat(hG∗ ,H

G
∗ (−;L)) , and the group of G-homomorphisms

HomG(hG0 (G), L). We also show an analogous result for the classical equivariant
homology theory of Eilenberg and Steenrod.

Finally, in Section 4 we show that there is some interesting information in
the groups HG

0 (X;L), and using the transfer for ramified covering maps, we
calculate HZ2

q (X;L) for some Z2 -spaces X .

In this paper we shall work in the category of compactly generated weak Haus-

dorff spaces (see e.g. [18]).

1 Equivariant McCord’s topological groups

and equivariant homology

In [19], for a pointed topological space X and an abelian group L, McCord
introduced topological groups F (X,L) consisting of functions u : X −→ L
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such that u(∗) = 0 and u(x) = 0 for all but a finite number of elements x ∈ X
(see [1] for further details). If G is a finite group that acts continuously on X
leaving the base point fixed, and additively on L (on the left), then F (X,L)
has a natural (left) action of G given by defining (g · u)(x) = gu(g−1x). This
turns F (X,L) into a topological Z[G]-module.

Definition 1.1 Let G be a finite group, X a pointed G-space, and L a Z[G]-
module. Define

FG(X,L) = {u ∈ F (X,L) | u(gx) = gu(x) for all x ∈ X, g ∈ G} .

In other words, FG(X,L) consists of the functions u ∈ F (X,L) that are G-
functions, and coincides with the subspace F (X,L)G of fixed points under the
G-action on F (X,L) given above.

Given a Z[G]-module L, there is a covariant coefficient system L called the
system of invariants of L, which is given by taking the fixed point subgroups
LH of L under all subgroups H ⊂ G (see 3.2 3 below).

If X is a pointed G-space, then we denote by Sq(X) the set of singular q -
simplexes in X , which has an obvious G-action. We may define a chain complex
by taking as q -chains the elements of FG(Sq(X), L) (here Sq(X) is taken with
the discrete topology; see next section). The boundary operator is given as
the restriction of the boundary operator of the singular chain complex of X .
We show below (Theorem 2.9) that this chain complex is naturally isomorphic
to Illman’s chain complex [13], which defines the Bredon-Illman equivariant
homology of X with coefficients in L, HG

q (X;L).

The main theorem of the paper is the following.

Theorem 1.2 Let X be a pointed G-space of the same homotopy type of a

G-CW-complex. Then there is an isomorphism H̃G
q (X;L) −→ πq(F

G(X,L))
given by sending a homology class [u] represented by a cycle u =

∑
lσσ all

of whose faces are zero, to the map u : (∆q, ∆̇q) −→ (FG(X,L), ∗) such that

u(t) =
∑
lσσ(t).

In particular, when G is the trivial group and L = Z, this will give a new proof
of the classical Dold-Thom theorem, since SP∞X ≈ F (X,N) ' F (X,Z).

Definition 1.3 Define the (reduced) equivariant homology theory H̃G
∗ with

coefficients in the coefficient system L by

H̃G
q (X;L) = πq(F

G(X,L)) .
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As usual, HG
q (X;L) = H̃G

q (X+;L), where X+ = X t {∗} has the obvious
extended action.

We devote the next section to the proof of Theorem 1.2. Meanwhile, we make
some further considerations on our equivariant homology groups.

We shall now prove that our equivariant homology theory HG
∗ is additive. To

prove that, we need the following concept. Let Xα , α ∈ Λ, be a family of
pointed G-spaces and let L be a Z[G]-module. Then we have (algebraically)
the direct sum F =

⊕
α∈Λ F

G(Xα, L). In order to furnish it with a convenient
topology, take

F n = {(uα) ∈ F | #{α ∈ Λ | uα 6= 0} ≤ n} .

Then obviously F n ⊂ F n+1 , and
⋃
n F

n = F . For each n, there is a surjection
∐

α1,...,αn∈Λ

(Xα1 × L) × · · · × (Xαn × L) � F n .

Furnish F n with the identification topology and F with the topology of the
union of the F ns. One clearly has the following.

Lemma 1.4 There is an isomorphism of topological groups
⊕

α∈Λ

FG(Xα, L) ∼= FG(
∨

α∈Λ

Xα, L))

induced by the inclusions Xα ↪→
∨
Xα .

Proof: The inverse is given by the restrictions F G(
∨
Xα, L) −→ FG(Xα, L),

u 7→ u|Xα .

Since obviously πq(
⊕

α F
G(Xα, L)) ∼=

⊕
α πq(F

G(Xα, L)), as a consequence,
we have the next.

Theorem 1.5 There is an isomorphism H̃G
q (
∨
αXα;L) ∼=

⊕
α H̃G

q (Xα;L).

A more general case is as follows.

Definition 1.6 A G-space X is said to be G-0-connected (or G-path con-

nected), if given any two points x, y ∈ X , then there exists a G-path (σ, g) :
x 'G y , that is, an element g ∈ G and an ordinary path σ from x to gy . The
relation 'G is clearly an equivalence relation, and the equivalence classes are
called the G-path components of X (see [20]).

4



Assume that a G-space X is locally 0-connected, then, since every G-path
component Xα of X is a topological sum of ordinary path components, there is
a decomposition X =

∐
αXα . Given that (

∐
αXα)

+ =
∨
αX

+
α , a consequence

of the additivity (1.4) is the following.

Corollary 1.7 Let X be a locally 0-connected G-space. There is an isomor-

phism HG
q (X;L) ∼=

⊕
α HG

q (Xα;L), where the G-spaces Xα denote the G-path

components of X .

2 Proof of the main theorem

In this section we prove Theorem 1.2. We use the techniques of simplicial sets
for this. As already mentioned, in particular, this will provide a new proof of
the classical Dold-Thom theorem [7].

We denote by ∆ the category whose objects are the sets n = {0, 1, 2, . . . , n}
and whose morphisms f ∈ ∆(m,n) are monotonic functions f : m −→ n.
Recall that a simplicial set is a contravariant functor K : ∆ −→ Set; we denote
the set K(n) simply by Kn . Let ∆[q] be the simplicial set ∆[q]n = ∆(−, q).
We write |K| for the geometrical realization given by

|K| =
⊔

n

(Kn × ∆n)/∼ ,

where ∆n = {(t0, t1, . . . , tn) ∈ Rn+1 | ti ≥ 0, i = 0, 1, 2, . . . , n, t0 + t1 + · · · +
tn = 1} is the standard n-simplex, and the equivalence relation is given by
(fK(σ), t) ∼ (σ, f#(t)), σ ∈ Kn , t ∈ ∆m . Here f# denotes the map affinely
induced by f in the standard simplices. Denote the elements of |K| by [σ, t],
σ ∈ Kn and t ∈ ∆n .

We say that a simplicial set K is pointed, if it is provided with a morphism
(natural transformation) ∆[0] −→ K . This means that each set Kn has a base
point and that for each f : m −→ n, the induced function fK : Kn −→ Km is
base-point preserving.

Definition 2.1 Given a pointed simplicial set K and an abelian group L, we
define the simplicial abelian group F (K,L) by F (K,L)n = F (Kn, L) (as men-
tioned in Section 1, where Kn has the discrete topology). The homomorphism
induced by f : m −→ n is fK∗ : F (Kn, L) −→ F (Km, L).

The proof of the following uses results of Milnor (see [17]).
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Lemma 2.2 The geometric realization |F (K,L)| is an abelian topological

group such that [v, t] + [v′, t] = [v + v′, t].

Proof: Consider the projections pi : F (K,L)×F (K,L) −→ F (K,L), i = 1, 2,
and the induced maps |pi| : |F (K,L) × F (K,L)| −→ |F (K,L)|, and define
η : |F (K,L) × F (K,L)| −→ |F (K,L)| × |F (K,L)| by

η[(v, v′), t] = (|p1|[(v, v
′), t], |p2|[(v, v

′), t])

= ([p1(v, v
′), t], [p2(v, v

′), t])

= ([v, t], [v′, t]) .

By [17, 14.3], η is a homeomorphism. The group structure + in |F (K,L)| is
then given by the diagram

|F (K,L)| × |F (K,L)|
η−1

//

+ **UUUUUUUUUUUUUUUU
|F (K,L) × F (K,L)|

|µ|
��

|F (K,L)| ,

where µ : F (K,L)×F (K,L) −→ F (K,L) is the simplicial group structure.

Proposition 2.3 The topological groups F (|K|, L)| and |F (K,L)| are natu-

rally isomorphic.

Proof: Take
ϕ : F (|K|, L) −→ |F (K,L)|

given by

ϕ(u) =
∑

[σ,t]∈|K|

[u[σ, t]σ, t] ,

where u : |K| −→ L, σ ∈ Kn , and t ∈ ∆n (thus u[σ, t]σ ∈ F (Kn, L)). Using
Lemma 2.2 one shows that ϕ is a homomorphism. Thus we only need to check
that ϕ|Fk(|K|,L) is continuous. Consider the diagram

(L× |K|)k //______

��

|F (K,L)|k

sum

��
Fk(|K|, L)

ϕ|Fk(|K|,L)

// |F (K,L)| ,

where the map on the top is the product of the maps given by the next diagram.

L× (
⊔
n(Kn × ∆n) //___

��

⊔
n(F (Kn, L) × ∆n

��
L× |K| // F (|K|, L) ,
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where the top map is given by (l, σ, t) 7→ (lσ, t).

To see that ϕ is an isomorphism of topological groups, we define its inverse
ψ : |F (K,L)| −→ F (|K|, L) as follows. Take v ∈ F (Kn, L); then ψ[v, t] =∑

σ∈Kn
v(σ[σ, t]. To see that ψ is well defined, take v =

∑r
i=1 liσi ; then fK∗ (v) =∑r

i=1 lif
K(σi). Thus

ψ[fK∗ (v), t] =

r∑

i=1

[fK(σi), t] =

r∑

i=1

[σi, f#(t)] = ψ[v, f#(t)] .

To see that ψ is continuous, consider the diagram
⊔
n(F (Kn, L) × ∆n //___

��

SP∞F (|K|, L)

sum

��
|F (K,L)|

ψ
// F (|K|, L) ,

where the top arrow given by (
∑

i li, σi), t) 7→ 〈l1[σ1, t], . . . 〉 is obviously con-
tinuous.

Moreover, ψ is a homomorphism. Namely, given [v, t], [v ′, t′] ∈ |F (K,L)|, by
Lemma 2.2, there exist unique elements, w,w′, t′′ such that [v, t] = [w, t′′],
[v′, t′] = [w′, t′′]. Thus

ψ([v, t] + [v′, t′] = ψ([w, t′′] + [w′, t′′])

= ψ[w + w′, t′′]

=
∑

σ

(w +w′)(σ)[σ, t′′]

= ψ[w, t′′] + ψ[w′, t′′] = ψ[v, t] + ψ[v′, t′] .

In generators, we have that ψϕ(l[σ, t]) = ψ[lσ, t] = l[σ, t], thus ψ◦ϕ is the iden-
tity. On the other hand, ϕψ[v, t] = ϕ(

∑
σ∈Kn

v(σ[σ, t]) =
∑

σ∈Kn
[v(σ)σ, t] =

[
∑

σ∈Kn
v(σ)σ, t] = [v, t], where the next to the last equality follows by Lemma

2.2.

Definition 2.4 Let G be a finite group. A (pointed) G-simplicial set is a
(pointed) simplicial set K such that G acts on each Kn and the action of every
g ∈ G determines a (pointed) isomorphism of K . In other words, it is a functor
K : ∆ −→ G-Set∗ .

Given a pointed G-simplicial set K and a Z[G]-module L, then F (K,L) inher-
its an action of G, as also do |K|, F (|K|, L), and |F (K,L)|. By the naturality
of the isomorphism of Proposition 2.3 we obtain the following.
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Corollary 2.5 Let K be a G-simplicial set. Then the topological groups

F (|K|, L) and |F (K,L)| are G-isomorphic.

Let K be a G-simplicial set and H ⊂ G be a subgroup. Define KH as the
simplicial set such that (KH)n = (Kn)

H (write this set as KH
n ). Then KH

is a simplicial subset of K and one easily verifies that |KH | = |K|H and
|FH(K,L)| = |F (K,L)|H . Thus we have the following.

Corollary 2.6 Let K be a G-simplicial set. Then the topological groups

FH(|K|, L), |F (K,L)|H , and |FH(K,L)| are isomorphic.

Let A be a simplicial abelian group. Recall that the q -homotopy group of A is
defined by

πq(A) = Hq(N(A), ∂̃) ,

where N(A)q = Aq ∩ ker d0 ∩ · · · ∩ ker dq−1 and ∂̃q = (−1)qdq ; here di is the
ith face operator of A. On the other hand, A can be seen as a chain complex,
with ∂ : Aq −→ Aq−1 given by

∑q
i=0(−1)idi .

We have the following result (cf. [17, 22.1]).

Proposition 2.7 The canonical inclusion of chain complexes N(A) ↪→ A in-

duces an isomorphism in homology.

Proof: The chain complex A is filtered by chain complexes A
p , where

A
p
q = {u ∈ Aq | di(u) = 0, 0 ≤ i < min{q, p}} .

The canonical inclusion ip : A
p+1 ↪→ A

p is a chain homotopy equivalence with
inverse rp : A

p −→ A
p+1 given by rp(u) = u − spdp(u), where sp is the pth

degeneracy operator of A. Obviously, rp◦ ip = 1Ap+1 ; conversely, ip ◦rp is chain
homotopic to 1Ap via the chain homotopy hp : A

p
q −→ A

p
q+1 given by

hp(u) =

{
0 if q < p

(−1)psp(u) if q ≥ p .

Let G be a finite group and X a pointed G-space and let S(X) denote the
singular simplicial set given for each q by

Sq(X) = {σ : ∆q −→ X | σ is a map} .
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Then, in fact, S(X) is a pointed simplicial G-set with the usual simplicial
structure. On the other hand, let T

G
q (X) be the G-singular set given by

T
G
q (X) = {T : ∆q ×G/H −→ X | T is an equivariant map and H ⊂ G} ,

q ∈ N (here ∆q has trivial G-action).

Let L be a Z[G]-module. Define F̂ (TGq (X), L) = {v : T
G
q (X)+ −→ L | v ∈

F (TGq (X)+, L), v(T ) ∈ LH if T : ∆q×G/H −→ X}. One easily sees that these

groups are exactly Illman’s groups ĈGq (X;L) ([13, Def. 3.3]). As Illman does, we
may declare that the generator lT is related to l′T ′ if there exists a G-function
α : G/H −→ G/H ′ such that the following diagram commutes

∆q ×G/H

T %%JJJJJJJJJJ

id×α // ∆q ×G/H ′

T ′
yyssssssssss

X

and l′ = α∗(l) ∈ LH
′

(see 3.2 3. below). Divide the group F̂ (TGq (X), L) by
the subgroup generated by the differences lT − l′T ′ where either lT is related
to l′T ′ or l′T ′ is related to lT , as well as by all elements lT such that T :
∆q×G/H −→ X is constant with value the base point x0 , to obtain the group
F ′(TGq (X), L). The following is clear.

Proposition 2.8 The simplicial group FG(S(X), L) and the graded group

F ′(TG(X), L) are chain complexes.

In fact, the chain complex F ′(TG(X), L) is identical to Illman’s chain complex
SG(X,x0;L) (cf. [13, p. 15]). Then we have the following.

Theorem 2.9 The chain complexes F ′(TG(X), L) and FG(S(X), L) are iso-

morphic.

The proof of this theorem requires some preparation.

Let S be a pointed G-set with G-fixed base point σ0 . For each σ ∈ S , let µσ :
LGσ −→ FG(S,L) be given by µσ(l) =

∑n
i=1(gil)(giσ), where {[g1], . . . [gn]} =

G/Gσ . Then µσ0 = 0 and µσ = µgσ ◦ λg , where λg(l) = gl .

We have the following universal property of FG(S,L).
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Proposition 2.10 If A is an abelian group and there is a family of homomor-

phisms γσ : LGσ −→ A satisfying γσ0 = 0 and γσ = γgσ ◦ λg , then there is a

unique γ : FG(S,L) −→ A such that γ ◦ µσ = γσ . Thus we have

LGσ
µσ //

γσ
%%JJJJJJJJJJ

FG(S,L)

γ

���
�

�

A .

Proof: Take u ∈ FG(S,L). Write u as a sum
∑n

i=1 liσi , where no two of
the elements σi are equal. Select one of them, for instance σ = σ1 . Since
u(gσ1) = gl1 , gσ1 has to be some other σi . So the full orbit of σ appears in the
sum, namely

∑k
i=1(gil)(giσ), where {[g1], . . . , [gk]} = G/Gσ is a subsum of u.

Consider now u′ = u−
∑k

i=1(gil)(giσ) ∈ FG(S,L) and repeat the process until
getting zero. Thus we rewrite u =

∑
j µσj

(lj) and define γ(u) =
∑

j γσj
(lj).

This is obviously well defined and has the desired property.

Observe that since u is G-equivariant, the sum
∑k

i=1(gil)(giσ) can be presented

by different pairs (l, σ), namely,
∑k

i=1(gil)(giσ) =
∑k

i=1(gigl)(gigσ), where
{[g′1], . . . , [g′k]} = G/Ggσ is also presented by the pair (gl, gσ), g ∈ G. But
since γσ = γgσ ◦ λg , we have that γgσj

(glj) = µσj
(lj), so the value of γ(u) does

not change.

Let X be a pointed G-space. Then the groups F ′(TGq (X), L) have the same uni-

versal property for S = Sq(X). Namely, take the homomorphisms νσ : LGσ −→
F ′(TGq (X), L) given by νσ(l) = [lTσ], where Tσ : ∆q ×G/Gσ −→ X is defined
by Tσ(t, [g]) = gσ(t). Then νσ0 = 0 and νσ = νgσ ◦ λg . Then the universal
property is given by the following.

Proposition 2.11 If A is an abelian group and there is a family of homomor-

phisms γσ : LGσ −→ A satisfying γσ0 = 0 and γσ = γgσ ◦ λg , then there is a

unique γ : F ′(TG(X), L) −→ A such that γ ◦ νσ = γσ . Thus we have

LGσ
νσ //

γσ
&&MMMMMMMMMMMM

F ′(TGq (X), L)

γ

���
�

�

A .

Proof: Given a G-map T : ∆q × G/H −→ X , define σT : ∆q −→ X by
σT (t) = T (t, [e]), where e ∈ G is the neutral element.

Define γ : F ′(TG(X), L) −→ A by γ[lT ] = γσT
(
∑n

i=1 gil), where GσT
/H =

{[g1]H , . . . , [gn]H}. This is well defined; if lT is related to l′T ′ , we analyze two
cases.
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We assume first that H ⊂ H ′ and that α : G/H −→ G/H ′ is the quotient
map. Then T ′ ◦ (id×α) = T , thus T (t, [g]H) = T ′(t, [g]H′), and l′ = α∗(l) =∑r

j=1 h
′
jl , where H ′/H = {[h′1]H , . . . , [h

′
r]H}. Notice that therefore σT ′ = σT ,

so that we have H ⊂ H ′ ⊂ GσT
. Let GσT

/H ′ = {[g′1]H′ , . . . , [g′m]H′}. Therefore,
GσT

/H = g′1(H
′/H) ∪ · · · ∪ g′m(H ′/H). Hence

γ[lT ] = γσT




r∑

j=1

(g′1h
′
jl) + · · · +

r∑

j=1

(g′mh
′
jl)




On the other hand,

γ[l′T ′] = γσT

(
m∑

i=1

(g′il
′)

)
,

but l′ =
∑r

i=1 h
′
il . Thus γ[lT ] = γ[l′T ′].

Now assume that H ′ = g−1
0 Hg0 and α = ρg0 : G/H −→ G/H ′ is given by

right translation with g0 . Then α∗ : LH −→ LH
′

is given by left translation
with g−1

0 , namely α∗(l) = g−1
0 l . Hence l′ = g−1

0 l and σT ′ = g−1
0 σT . Moreover,

GσT ′ = g−1
0 GσT

g0 . Thus, if GσT
/H = {[g1]H , . . . , [gn]H}, then GσT ′ /H

′ =

{[g−1
0 g1g0]H′ , . . . , [g−1

0 gng0]H′}, and so

γ[l′T ′] = γσT ′

(
n∑

i=1

g−1
0 gig0l

′

)
= γg−1

0 σT

(
n∑

i=1

g−1
0 gil

)

= γσT
g0

(
n∑

i=1

g−1
0 gil

)
= γσT

(
n∑

i=1

gil

)
= γ[lT ] .

Obviously, γ has the desired properties.

Proof of Theorem 2.9: The isomorphism F ′(TGq (X), L) −→ FG(Sq(X), L) in the
previous corollary, as provided by the universal property, is given by

[lT ] 7−→

n∑

i=1

(gil)(giσT ) ,

where T : ∆q × G/H −→ X , l ∈ LH , and G/H = {[g1]H , . . . , [gn]H}. One
easily verifies that this is a chain map.

The following proposition is a generalization to the equivariant case of a theorem
of Milnor (see [17, 16.6]).
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Proposition 2.12 Let X be a pointed G-space of the same homotopy type

of a G-CW-complex. Then ρ : |S(X)| −→ X given by ρ[σ, t] = σ(t) is a G-

homotopy equivalence.

Proof: Let H ⊂ G be any subgroup. Note first, as already mentioned before,
that the identity induces a homeomorphism |KH | ≈ |K|H for any simplicial G-
set K . On the other hand, one also has a canonical isomorphism of simplicial
sets S(XH ) ∼= S(X)H . We have that Milnor’s map ρ : |S(X)| −→ X , being
natural, is a G-map. On the other hand, again by the naturality, it restricts to
ρH : |S(XH )| −→ XH , which by a theorem of Milnor is a homotopy equivalence.
Therefore, one has the following commutative triangle

|S(X)|H
ρH

// XH

|S(XH)|

≈

OO

ρH

;;vvvvvvvvv

where the vertical arrow is a homeomorphism, as mentioned above. Hence, ρH

is a homotopy equivalence for every H ⊂ G. By a result of Bredon [4, II(5.5)],
then ρ is a G-homotopy equivalence.

Proof of Theorem 1.2: We shall give an isomorphism

H̃G(X;L) ∼= Hq(F
G(Sq(X), L)) −→ πq(F

G(X,L)) = H̃G
q (X;L) .

Here the left-hand side is the Bredon-Illman (reduced) homology of X , and the
first isomorphism follows from the natural isomorphism of Theorem 2.9.

To construct the arrow, we shall give several isomorphisms as depicted in the
following diagram, where H ⊂ G is any subgroup.

Hq(F
H(S(X), L)) oo i∗

∼=

���
�

�
πq(F

H(S(X), L))
Ψ
∼=

// πq(S(|FH (S(X), L)|))

Φ∼=
��

πq(F
H(X,L)) oo

∼=
ρ∗

πq(F
H(|S(X)|, L)) oo

∼=

ψ∗
πq(|F

H(S(X), L)|)

By Proposition 2.7, i∗ is an isomorphism. In particular, this shows that every
cycle in H̃G(X;L) is represented by a chain u, all of whose faces are zero. We
shall call this a special chain.

The homomorphism Ψ, which is given by Ψ(u)[t] = [u, t], where u is a special
q -chain and t ∈ ∆q , is an isomorphism, as follows from [17, 16.6].
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In order to define Φ, we must express Ψ(u) as a map γ : (∆[q], ∆̇[q]) −→
(S|FH (S(X), L)|, ∗). By the Yoneda lemma, γ is the unique map such that
γ(δq) = Ψ(u), where δq = id : q −→ q . The homomorphism Φ, defined by
Φ[γ][f, s] = γ(f)(s), for f ∈ ∆[q]n and s ∈ ∆n , is given by the adjunction
between the realization functor and the singular complex functor (see [17, 16.1]).

That ψ∗ is an isomorphism follows from Proposition 2.3. Finally, the homomor-
phism ρ∗ is an isomorphism by 2.12.

Chasing along this diagram and using the homeomorphism |∆[q]| −→ ∆q given
by [f, t] 7→ f#(t), one obtains that the isomorphism maps a homology class
[u] ∈ Hq(F

H(S(X), L)) represented by a special chain u =
∑

σ lσσ , to the map
u : (∆q, ∆̇q) −→ (FH(X,L), ∗) given by u(t) =

∑
lσσ(t).

3 Equivariant homology and other coefficient systems

In this section we recall the general concept of a (covariant) coefficient system
for a group G and give explicit examples of ordinary equivariant homology
theories with particular systems as coefficients.

Definition 3.1 Let G be a finite group. A covariant coefficient system for
G, M , is a covariant functor from the category of homogeneous sets G/H ,
H a subgroup of G, and G-functions α : G/H −→ G/K , to the category of
abelian groups. We denote the induced homomorphisms by α∗ : M(G/H) −→
M(G/K). There is, of course, a category CoeffsysG of covariant coefficient
systems for G.

Examples 3.2 Let L be a Z[G]-module. We have the following associated
covariant coefficient systems.

1. To start with, consider the constant coefficient system, denoted again by
L, with value the group L given by L(G/H) = L for all H ⊂ G and for
α : G/H −→ G/K , H ⊂ K ⊂ G, by α∗ = 1L . This is realized by the
theory

hGq (X;L) = Hq(X/G;L) ,

where the second term is singular homology with coefficients in L.

2. Another useful example is the following. Let L be given by defining
L(G/H) = LH , the quotient of L by the subgroup generated by the
elements of the form l − h · l , l ∈ L, h ∈ H , and for a : G/H −→ G/K ,
a∗ : LH −→ LK is the quotient homomorphism. We call it the system of
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coinvariants of L. If, in particular, L has trivial action, then this coeffi-
cient system coincides with the constant system given in 1. The coefficient
system L is realized by a theory constructed by Eilenberg and Steenrod
[8] (see also [6]) as follows. Consider the usual singular complex S∗(X)
on which G acts (here G acts on X on the right). Take the complex
S∗(X) ⊗Z[G] L. Define the classical ordinary equivariant homology theory

by

H
G
q (X;L) = Hq(S∗(X) ⊗Z[G] L) .

If X = G/H , then H
G
q (G/H;L) = 0 if q > 0 and H

G
0 (G/H;L) =

S0(G/H) ⊗Z[G] L = Z[G/H] ⊗Z[G] L ∼= LH .

3. The other example that we consider is L, that we call the system of
invariants of L.† It is defined as follows. Take L(G/H) = LH = {l ∈
L | h · l = l for all h ∈ H}. For H ⊂ K ⊂ G and α : G/H −→ G/K
the quotient function, take α∗(l) =

∑
k∈[K/H] kl , where [K/H] denotes a

set of representatives in K of the cosets of H in K . For any equivariant
map α : G/H −→ G/K one has that H ⊂ aK = aKa−1 for some a ∈ G,
and so α is the composite of the quotient map G/H −→ G/aK and the
obvious bijection G/aK ≈ G/K . Hence we define a∗ : LH −→ LK as
the composite of LH −→ L

aK given by l 7→
∑

k∈[aK/H] kl followed by

the isomorphism L
aK −→ LK given by l 7→ a−1l . As shown in the main

theorem, our theory

HG
q (X;L) = πq(F

G(X,L))

realizes L. Observe that if L has trivial G-action, then L defines the
semiconstant coefficient system, namely, L(G/H) = L for all H ⊂ G and
for α : G/H −→ G/K , define α∗ : L −→ L by α∗(l) = (|K|/|H|)l .

As shown in [12], the system of invariants is right adjoint to the forgetful func-
tor from the category of coefficient systems to the category of Z[G]-modules.
Similarly, one can show that the system of coinvariants is left adjoint to the
same forgetful functor. One has the following.

Proposition 3.3 There are natural bijections

CoeffsysG(L,M) ∼= HomG(L,M(G)) ,

CoeffsysG(M,L) ∼= HomG(M(G), L) .

†Notice that the system of invariants of L is denoted by L in [16] and [21].
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As shown by Illman [13], given any (covariant) coefficient system, there is an
ordinary equivariant homology theory HG

∗ (−;M) with M as coefficients. More-
over, given any natural transformation µ : M −→ N of coefficient systems,
there is an extension of it to a natural transformation µ̂ : HG

∗ (−;M) −→
HG

∗ (−;N) of (ordinary) homology theories. On the other hand, Willson [22]
constructs for any equivariant homology theory hG a (natural) spectral se-
quence such that E2

p q
∼= HG

p (X;hGq (·)), where hGq (·) is the coefficient system

given by G/H 7→ hGq (G/H), that converges to hGp+q(X). Clearly, if hG is or-

dinary, then this spectral sequence collapses. This shows that if µ : hG −→ kG

is a natural transformation of ordinary homology theories such that it induces
the zero transformation in coefficients hG(·) −→ kG(·), then µ itself has to be
zero. We thus have the following.

Proposition 3.4 There is an isomorphism between natural transformations of

coefficient systems and natural transformations of ordinary homology theories.

More precisely, we have

CoeffsysG(M,N) ∼= Nat(HG
∗ (−;M),HG

∗ (−;N)) .

By this and the adjunction result 3.3 above, we have the following.

Theorem 3.5 There are isomorphisms

HomZ[G](L, h
G
0 (G)) ∼= Nat(HG

∗ (−;L), hG∗ ) ,

HomZ[G](h
G
0 (G), L) ∼= Nat(hG∗ ,H

G
∗ (−;L)) ,

where hG∗ represents any ordinary equivariant homology theory, H
G
∗ (−;L) the

classical equivariant homology theory, and HG
∗ (−;L) the homology theory that

we defined in 1.3.

4 Some computations of the equivariant homology groups

HG
∗ (−; L)

In this section, we compute some equivariant homology groups, especially in
dimension 0, for the theory defined in 1.3.

Theorem 4.1 Let X be a 0-connected space with a free G-action, and let L
be a Z[G]-module. Then

HG
0 (X;L) ∼= LG ,
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where LG = L/〈l−g · l〉 is the quotient of L divided by the subgroup generated

by the elements l − g · l , l ∈ L, g ∈ G.

Proof: First observe that if the G-action on L is trivial, then the transfer of

p : X −→ X/G yields an isomorphism tp : F (X/G+, L)
∼=

−→ FG(X+, L) (see
[2, Thm. 6.2]), that implies the result.

For the general case, let {xi} be a set of representatives in X of the orbits (in
X/G), and define

εG : FG(X+, L) −→ LG by εG(u) =
∑

i

u(xi) ,

where l ∈ LG denotes the class of l ∈ L. One easily verifies that εG is inde-
pendent of the choice of the representatives xi . We shall show below that εG

is continuous, but for the time being, we assume it is.

Let α : L −→ FG(X+, L) be given by α(l) = l̃x0 , where

l̃x0(x) =

{
g · l if x = gx0,

0 if x /∈ orbit(x0),

and x0 is one of the representatives of the orbits taken above. We then have a
commutative diagram

L

��

α // FG(X+, L)

��
LG α

//___ π0(F
G(X+, L)) .

Namely, if we take h ∈ G, we have to prove that both l̃x0 and (̃hl)x0 lie

in the same path component of FG(X+, L). Clearly, (̃hl)x0 = ˜l(h−1x0). Let
σ : I −→ X be a path from x0 to h−1x0 , and define σ̃ : I −→ FG(X+, L) by

σ̃(t) = l̃σ(t). Then σ̃(0) = l̃x0 , and σ̃(1) = ˜l(h−1x0) = (̃hl)x0 .

In order to prove that σ̃ is continuous, note first that l̃x =
∑

g∈G(g · l)(gx),
where

(lx)(x′) =

{
l if x′ = x,

0 if x′ 6= x,

and t 7→ (g · l)(gσ(t)) is continuous because the action of G on X is continuous.
Thus, σ̃ is continuous and α is well defined.

Consider εGα(l) = εG[l̃x0] = l . Thus εG ◦ α = 1LG
and hence α is injective.
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To see that α is also surjective, take any u ∈ FG(X+, L) and call li = u(xi) for

each representative xi of the orbits in X . Then u =
∑

i l̃ixi and hence {l̃xi}, l ∈
L, is a set of generators of FG(X+, L). Since α is obviously a homomorphism,

it is enough to show that every generator [l̃xi] of π0(F
G(X+, L)) is in the image

of α. Let now σ : I −→ X be a path from x0 to xi , then σ̃(t) = l̃σ(t) is a path

from α(l) = l̃x0 to l̃xi .

To finish the proof we have to show that εG is indeed continuous. Let π : L −→
LG be the quotient homomorphism and call q = p∗|FG(X+,L) : FG(X+, L) −→

F (X/G+, L). Take u ∈ FG(X+, L); then

(π∗q(u))[x] = π


 ∑

x′∈p−1[x]

u(x′)




= π


∑

g∈G

u(gx)




= π


∑

g∈G

g · u(x)




=
∑

g∈G

π (g · u(x))

= |G|u(x),

hence the image of π∗ ◦ q lies in F (X/G+, |G|LG) where one can divide by
|G|. Call γ∗ : F (X/G+, |G|LG) −→ F (X/G+, LG) the homomorphism given by
dividing the values of the elements by |G|. Then εG is the composite

FG(X+, L)
γ∗◦π∗◦q // F (X/G+, LG)

ε // LG ,

where ε : F (X/G+, LG) −→ LG is the augmentation given by

ε(v) =
∑

x∈X/G

v(x) .

Since all maps in the composite are continuous, so is εG too.

Theorem 4.2 Let X be a G-0-connected G-space with a single orbit type

and let L have trivial G-action. Then HG
0 (X;L) ∼= L.

Proof: The result follows from the same arguments of 4.1, but, on the one
hand, since L has trivial G-action, G-paths are good enough, and on the other,
instead of dividing by the order of G, we divide by the order of any orbit.
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As a consequence of 1.7 and 4.2, we have the next result.

Corollary 4.3 Let X be a locally path-connected G-space and let Xα , α ∈ Λ,

be the G-path components of X such that each G-path component has a single

orbit type. Then

HG
0 (X;L) ∼=

⊕

α∈Λ

Lα , Lα = L ∀α .

Remark 4.4 Call πG0 (Y ) the set of G-path connected components of the G-
space Y . There is a canonical function πG0 (Y ) −→ π0(Y/G) which is obviously
surjective. It is also injective. To see this one has to apply the Covering Homo-
topy Theorem for orbit maps q : Y −→ Y/G of Palais (see [5, II.7.3]). Namely,
let x and y be two points in Y such that q(x) and q(y) are connected in Y/G
by a path ω . Taking X = G in Palais’ theorem (in Bredon’s notation), then
ω can be seen as a homotopy F ′ : X/G × I −→ Y/G. Taking f : X −→ Y to
be given by f(g) = gx, we have an equivariant map, so that the assumptions
of the theorem are fulfilled (then f ′ : X/G −→ Y/G chooses q(x)). Thus there
exists an equivariant homotopy F : X × I −→ Y starting at F and covering
F ′ , that is, by restricting F to {e}×I we have a path ω̃ in Y starting at x and
covering ω . Hence, qω̃(1) = ω(1) = q(y), and so ω̃(1) = gy for some g ∈ G.
This means that x and y are in the same G-path component of Y .

By the previous remark, it is the trivial G-homology theory hG∗ given by
hG∗ (X;L) = H∗(X/G;L), the one that has the property that if X is locally 0-
connected, then hG0 (X;L) ∼= ⊕πG

0 (X)L, L some abelian group with no G-action.
That is, the trivial zero-G-homology groups measure the G-path-connectedness.
In what follows we analyze the groups HG

0 (X;L) in some special cases.

Let X be a G-space with (at least) one fixed point x0 . The inclusion i : S0 ↪→
X+ that sends one point to + and the other to x0 is an equivariant embedding
whose image is a retract with the obvious retraction r : X+ −→ S0 . Thus
we have that r∗ : FG(X+, L) −→ F (S0, L) = L is a split epimorphism. Thus
FG(X+, L) ∼= L× ker r∗ . Thus we have the following.

Proposition 4.5 Let X be a G-space with a fixed point x0 under the G-

action, and let L have a trivial G-action. Then HG
0 (X;L) ∼= L × π0(ker r∗).
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In what follows we analyze the 0-connectedness of ker r∗ . In case that the
G-0-connected G-space X has one fixed point x0 (thus it is 0-connected)
and G acts freely in the complement, let {xi} be a set of representatives of
the orbits of X and let σi : I −→ X be a path from x0 to xi for each i
(σ0 is the constant path). Assume that u ∈ ker r∗ ; this means that r∗(u) =∑

x∈X u(x) = 0. For each x ∈ X , x = gxi for some i and some unique
g ∈ G. Let σx : I −→ X be given by σx(t) = gσi(t) and define σ̃ : I −→
FG(X+, L) by σ̃(t) =

∑
x∈X u(x)σx(t). Then σ̃(t) is G-invariant. Namely,∑

gx∈X u(gx)σgx(t) =
∑

x∈X u(x)gσx(t), since u(gx) = u(x) and σgx(t) =
gσx(t). On the other hand, σ̃(0) =

∑
x∈X u(x)x0 = 0, σ̃(1) =

∑
x∈X u(x)x = u;

moreover, for any t ∈ I , r∗(σ̃(t)) =
∑

y∈X(
∑

x∈X u(x)σx(t))(y) =
∑

x∈X u(x) =
0 and hence σ̃(t) ∈ ker r∗ for every t. Hence we have the following.

Proposition 4.6 Let X be G-0-connected G-space with one fixed point x0

and such that G acts freely in the complement. Then ker(r∗) is 0-connected

and so HG
0 (X;L) ∼= L if L has trivial G-action.

It is quite straightforward to verify that the previous proof holds also if the
G-0-connected G-space X has exactly one fixed point x0 and for any other
point x the isotropy group Gx is a fixed subgroup H ⊂ G. Thus we have the
following too.

Proposition 4.7 Let X be G-0-connected G-space with one fixed point x0

and such that Gx = H ⊂ G for all x 6= x0 , for some fixed subgroup H . Then

ker(r∗) is 0-connected and so HG
0 (X;L) ∼= L if L has trivial G-action.

The following proposition deals with the transfer for the ramified covering map
X −→ X/G studied in [2] and it will be useful below. It generalizes Theorem
6.2 therein.

Proposition 4.8 Let G act on a space X such that the fixed point set XG

coincides with the base point ∗ and the action in the complement of XG is free.

Then the transfer for p : X −→ X/G induces an isomorphism

τ : H̃n(X/G) −→ H̃G
n (X) .

Its inverse is given by 1
|G| · p∗ .
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Proof: In the McCord topological groups F (X/G,Z) and F G(X,Z) every
element is zero in the base point. Thus in the diagram

X
p //

u
��?

??
??

??
?

X/G

u}}{{
{{

{{
{{

Z

where u is G-invariant, u exists if and only if u exists. Since off the fixed point
∗ the multiplicity function of the |G|-fold ramified covering map p : X −→
X/G is equal 1 (except in ∗, where it is |G|, but u(∗) = 0 = u(∗)), the
transfer τ : F (X/G,Z) −→ FG(X,Z) is given by τ(u) = p ◦ u and thus it is
an isomorphism. Since τp∗(u)(x) ∈ |G|Z, we can divide by |G|, which yields a
continuous homomorphism. Thus the inverse is given by u 7→ 1

|G| · u.

The following theorem shows, in particular, that there is nontrivial information
contained in the equivariant homology groups of dimension 0.

Theorem 4.9 Let X be a G-CW-complex such that the fixed point set XG

is finite, say XG = {x1, x2, , . . . , xk}, and the action on the complement of XG

is free. Then

H̃G
0 (X) ∼=

⊕

k−1

Z|G| and τ : H̃n(X/G)
∼=

−→ H̃G
n (X) , if n ≥ 1 ,

where Z|G| is the cyclic group of order |G|.

Proof: Let X̃ denote the G-space obtained by collapsing XG in X to one
(fixed) point, and consider the diagram of cofiber sequences of G-maps

XG �

� // X // //

p

��

X̃

p

��

XG �

� // X/G // // X̃/G

Applying equivariant homology in dimensions 0 and 1 we obtain

0 // H̃G
1 (X) //

p∗
��

H̃G
1 (X̃) //

p∗
��

⊕
k−1 Z // H̃G

0 (X) // 0

0 // H̃1(X/G) //

τ ∼=

TT

H̃1(X̃/G) //

τ ∼=

TT

⊕
k−1 Z // 0

By 4.8, the transfer τ in the middle is an isomorphism and so, by the five lemma,
the transfer τ on the left is an isomorphism too, thus the second assertion in
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the case n = 1 follows. Moreover, the last epimorphism on the bottom right
splits. Hence, the diagram transforms into the following.

0 // H̃G
1 (X) //

p∗

��

H̃1(X/G) ⊕
⊕

k−1 Z //

|G|·1
��

⊕
k−1 Z // H̃G

0 (X) // 0

0 // H̃1(X/G) // H̃1(X/G) ⊕
⊕

k−1 Z //
⊕

k−1 Z // 0

From this, the first assertion follows easily. For the second if n > 1, apply
equivariant homology in dimension n, to obtain, by the pullback property of
the transfer and [3, Theorem 2.11],

0 // H̃G
n (X)

∼= //

p∗

��

H̃G
n (X̃) //

p∗

��

0

0 // H̃n(X/G)
∼= //

τ

TT

H̃n(X̃/G) //

τ ∼=

TT

0

From here the second part follows.

The following example is an interesting application of the previous theorem.

Example 4.10 Let G = Z2 act on S1 by complex conjugation. Then S0 =
{−1, 1} ⊂ S1 is the fixed point set of the action and we have

H̃Z2
0 (S1) ∼= Z2 and H̃Z2

n (S1) = 0 if n ≥ 1 .

More generally than the previous example we have the following.

Example 4.11 Let G = Z2 act on Sn ⊂ Rn+1 , with n > 1, by changing the
sign of the last coordinate. Then Sn−1 ⊂ Sn is the fixed point set of this action
and it is connected, and we have the G-cofiber sequence

Sn−1 ↪→ Sn � Sn ∨ Sn ,

where Z2 acts on the wedge by interchanging the summands. Passing this se-
quence to the orbit spaces we have a commutative diagram

Sn−1 �

� //

��

Sn // //

��

Sn ∨ Sn

��
Sn−1 �

� // Bn // // Sn ,
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that yields a commutative diagram of homology groups with exact sequences
on top and bottom

H̃Z2
k+1(S

n ∨ Sn) //

��

H̃Z2
k (Sn−1) //

��

H̃Z2
k (Sn) //

��

H̃Z2
k (Sn ∨ Sn)

��

H̃k+1(S
n) // H̃k(S

n−1) // H̃k(B
n) // H̃k(S

n) .

In the case k = n− 1, the diagram translates into

Z
? //

·2

��

Z // H̃Z2
n−1(S

n) //

��

0

Z ∼=
// Z // 0 .

In order to verify that, indeed, the vertical arrow on the left-hand side is mul-
tiplication by 2, it is enough to note that F Z2(Sn ∨ Sn,Z) ⊂ F (Sn ∨ Sn,Z) ∼=
F (Sn,Z) ⊕ F (Sn,Z) corresponds to the diagonal, that is, F Z2(Sn ∨ Sn,Z) ∼=
F (Sn,Z). Since the orbit map induces the sum of the factors in F (Sn,Z) ⊕
F (Sn,Z) −→ F (Sn,Z), its restriction to the diagonal (modulo the obvious iso-
morphism) yields multiplication by 2. On the other hand, H̃Z2

n−1(S
n ∨ Sn) ∼=

H̃n−1(S
n) = 0. Hence the commutativity of the diagram implies that the ques-

tion mark is also multiplication by ±2 and so

H̃Z2
n−1(S

n) ∼= Z2 .

In the case k = n, the (extended) top row becomes 0 −→ 0 −→ H̃Z2
n (Sn) −→

Z
·2

−→ Z, hence H̃Z2
n (Sn) = 0. Moreover, in the case 0 ≤ k ≤ n − 2 or k > n,

the top row of the diagram converts into 0 −→ 0 −→ H̃Z2
k (Sn) −→ 0, thus

H̃Z2
k (Sn) = 0 if k 6= n− 1 .

The following two are other examples of a computation of H̃Z2
0 (X) and H̃Z2

1 (X).

Example 4.12 Let X consist of a 2-sphere on which Z/2 acts rotating it
180◦ around its (horizontal) axis. Glue to its poles two symmetric arcs, which
are exchanged by the group. This Z2 -space has two fixed points (the poles) and
the action is free elsewhere. Call X̃ the quotient of X by identifying the poles.
See the figure.
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The equivariant cofiber sequence S0 ↪→ X � X̃ and that of its orbit spaces
S0 ↪→ X/Z2 � X̃/Z2 yield a commutative diagram with exact rows

0 // H̃Z2
1 (X) //

��

H̃Z2
1 (X̃) //

��

H̃Z2
0 (S0) // H̃Z2

0 (X) // 0

0 // H̃1(X/Z2)
// H̃1(X̃/Z2)

//

τ ∼=

TT

H̃0(S
0) // 0 .

This diagram translates into

0 // H̃Z2
1 (X) //

��

Z ⊕ Z //

·2

��

Z // H̃Z2
0 (X) // 0

0 // Z
∆

// Z ⊕ Z // Z // 0 .

(One easily shows that H̃1(X/Z2) ∼= Z ⊕ Z.) Thus we conclude that

H̃Z2
1 (X) ∼= Z and H̃Z2

0 (X) ∼= Z2 .

By 4.9 we may easily see that H̃Z2
2 (X) ∼= H̃Z2

2 (X̃) ∼= Z, and H̃Z2
n (X) ∼= H̃Z2

n (X̃) =
0, n > 2.

Example 4.13 Set T = S1 × S1 and let Z2 act on T by (−1) · (ζ, η) = (ζ, η).
Then T Z2 = {−1, 1} × S1 = S1 t S1 . Moreover, T/T Z2 ≈ X̃ ∨ X̃ , where X̃ is
the result of identifying in a 2-sphere the two poles in one point, and Z2 acts
interchanging the summands (see figure).

Using similar techniques as in the previous examples, one can prove that

H̃Z2
1 (T ) ∼= Z ⊕ Z2 and H̃Z2

0 (T ) ∼= Z2 .
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Once more these groups differ from the corresponding nonequivariant groups of
the orbit spaces.
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