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Abstract

We start from any small strict monoidal braided Ab-category and
extend it to a monoidal nonstrict braided Ab-category which contains
braided bialgebras. The objects of the original category turn out to be
modules for these bialgebras.

0 Introduction

The notion of bialgebras and Hopf algebras in braided categories was introduced
by S. Majid in [4]. He considered a braided monoidal (tensor) category, but in
the usual definitions of an algebra, a coalgebra, a bialgebra, and a Hopf algebra
he replaced the flip by the braiding in the obvious way. Majid called a bialgebra
in a braided category simply a braided bialgebra. We refer to [1] and [2] for
the general properties of braided monoidal categories and to [4], [5], and [6] for
the definition and results in the theory of braided bialgebras and braided Hopf
algebras.

The purpose of this paper is to present a construction in which, starting
from a small braided monoidal Ab-category C and an infinite set S0, we create
a new monoidal braided category CS0 that contains the original category C as a
subcategory and, more important, it contains objects with bialgebra structure,
in such a way that the objects of the original category C are modules over these
bialgebras. Remember that a category C is said to be an Ab-category (also called
preabelian category; cf. [7]) if for any pair of objects V , W the set of morphisms
hom(V,W ) is an additive abelian group and the composition of morphisms is
bilinear. In the context of monoidal Ab-categories we shall assume that the
tensor product of morphisms is bilinear. For the construction we proceed as
follows. Section 1 is divided into two parts; in the first part, out of any small
Ab-category C and any set S0, we construct the new category CS0 , which is also
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México, D.F., MEXICO
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an Ab-category. Then we assume that C is strict monoidal and that S0 is infinite,
and so we extend the monoidal structure to CS0 . However, the extended monoidal
structure is not strict, thus we have to work with associative constraints and left
and right units. In the second part we show how to extend a braiding and a twist
from C to CS0 . Since the new category is nonstrict monoidal, we need to define
algebras, coalgebras, bialgebras, and modules in this case. This is easily done,
if in the categorical definitions of the latter notions we replace the equalities by
an equivalence relation in the set of morphisms of CS0 . Roughly speaking, we
declare two morphisms of CS0 to be related if their domains and codomains are
related by associativity and/or units. This relation obviously agrees with the
identity if the category is strict; this is explained in detail at the end of Section
1. We start Section 2 defining algebras, coalgebras, bialgebras, and modules in
nonstrict monoidal categories in general, and then we state and prove the main
theorem (Theorem 2.1) of this paper. Throughout the proof we use graphical
calculus as explained in [1] and [2]. This work is influenced by Yetter’s paper
[3].

1 The category CS0

Let C be a small Ab-category. We shall denote by Obj(C) and H the sets of
its objects and morphisms, respectively. We are going to associate to C a new
category CS0 as follows. Let us take a fixed set S0 and consider the set

M(S0, Obj(C)) = { S0 ⊃ Sf
f // Obj(C) } ,

where Sf is any subset of S0 and f is a set-theoretical function. The objects
of CS0 will be the elements of M(S0,Obj(C)). Let f : Sf −→ Obj(C) and
g : Sg −→ Obj(C) be two objects. A morphism F : f −→ g will be a two-
variable function F : Sf × Sg −→ H such that:

(i) F (x, y) : f(x) −→ g(y), for all (x, y) ∈ Sf × Sg.

(ii) If Sg is infinite, then for each x ∈ Sf there exists a finite set SF
x ⊂ Sg,

such that F (x, y) = 0 if y ∈ Sg − SF
x .

Let f : Sf −→ Obj(C), g : Sg −→ Obj(C), and h : Sh −→ Obj(C) be objects,
and F : f −→ g, G : g −→ h be morphisms. Define G ◦ F : f −→ h as the
function G ◦ F : Sf × Sh −→ H given by:

(G ◦ F )(x, y) =
∑

z∈Sg

G(z, y) ◦ F (x, z) (1)

for x ∈ Sf and y ∈ Sh. This sum is always finite. Indeed, if we write SF
x =

{z1, ..., zk}, then the sum becomes

(G ◦ F )(x, y) =
k∑

i=1

G(zi, y) ◦ F (x, zi) (2)
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It is clear that the function G ◦ F satisfies condition (i). Besides, if y /∈ SG
z1
∪

...∪SG
zk

, then G(zi, y) = 0 for 1 ≤ i ≤ k, so if we choose S
(G◦F )
x = SG

z1
∪ ...∪SG

zk
,

then we have y ∈ Sh − S
(G◦F )
x , thus (G ◦ F )(x, y) = 0. Therefore G ◦ F also

satisfies condition (ii).
For any f : Sf −→ Obj(C) define Idf : f −→ f as the function Idf : Sf ×

Sf −→ H, given by Idf (x, y) = δx,yidf(x) : f(x) −→ f(y) for (x, y) ∈ Sf × Sf .
For G : f −→ g one has

(G ◦ Idf )(x, y) =
∑

z∈Sf

G(z, y) ◦ Id(x, z)

=
∑

z∈Sf

G(z, y) ◦ δx,zidf(x)

= G(x, y)

(3)

Therefore G ◦ Idf = G. Analogously Idg ◦G = G for any morphism G : f −→ g.
Furthermore this operation is associative. Indeed, if F : f −→ g, G : g −→ h,

and H : h −→ i, then

((H ◦G) ◦ F )(w, z) =
∑

x∈Sg

(H ◦G)(x, z) ◦ F (w, x)

=
∑

x∈Sg

∑

y∈Sh

(H(y, z) ◦G(x, y)) ◦ F (w, x)

=
∑

y∈Sh

H(y, z) ◦ (
∑

x∈Sg

G(x, y) ◦ F (w, x))

=
∑

y∈Sh

H(y, z) ◦ (G ◦ F )(w, y)

= (H ◦ (G ◦ F ))(w, z)

(4)

Hence we have proved that CS0 is a category. If for two morphisms F, G :
f −→ g we define the function (F +G)(x, y) = F (x, y)+G(x, y), which trivially
satisfies conditions (i) and (ii), we see that CS0 is also an Ab-category. The
following proposition proves that the direct sum of certain collections of objects
in CS0 is defined.

Proposition 1.1. Let {fi : Si −→ Obj(C)}i∈I be any collection of functions
such that the sets Si, i ∈ I, are pairwise disjoint subsets of S0. Then (f :∐

i∈I Si −→ Obj(C), Ji), where f |Si = fi and Jk : Sk×
∐

i∈I Si −→ H is given by
Jk(x, y) = δxyidx : Sk −→

∐
i∈I Si, is the coproduct of {fi : Si −→ Obj(C)}i∈I

in CS0 .

Proof. Suppose we are given an object g : Sg −→ Obj(C) and a family of
morphisms Ti : (fi : Si −→ Obj(C)) −→ (g : Sg −→ Obj(C)). Define T : (f :∐

i∈I Si −→ Obj(C)) −→ (g : Sg −→ Obj(C)) to be the function T (t, y) =
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Tk(t, y) : f(t) −→ g(y) if t ∈ Sk. Then if x ∈ Sk and y ∈ Sg, we have

(T ◦ Jk)(x, y) =
∑

t∈∐
Si

T (t, x) ◦ Jk(x, t)

=
∑

t∈∐
Si

δxtT (t, y) ◦ idx

= T (x, y)
= Tk(x, y)

(5)

The last equality also shows the uniqueness of T .

In particular we have the following.

Corollary 1.2. If ∅ 6= Sf ⊂ S0, then any object f : Sf −→ Obj(C) is isomor-
phic to the direct sum of the objects {f |{x} : {x} −→ Obj(C)}x∈S.

Let us suppose now that the category C is strict monoidal and that the set
S0 is infinite. In what follows we shall endow CS0 with a monoidal structure
extending the one given in C. However, as we shall see, the structure that we
define is not strict in general.

We start by defining the tensor product of objects and morphisms and a
unit object. Next we define the associative constraint A, the left and right units
L and R, and finally we prove that they satisfy the required conditions.

First, we fix once and for all a bijection γ : S0 × S0 −→ S0. Given two
objects f : Sf −→ Obj(C) and g : Sg −→ Obj(C), define f ⊗ g by the following
composite

f ⊗ g : γ(Sf × Sg)
γ−1| // Sf × Sg

f×g // Obj(C)×Obj(C) ⊗ // Obj(C) . (6)

Choose any point ∗ en S0 and define I : {∗} −→ Obj(C) by I(∗) = I ∈ Obj(C).
Now, for two morphisms F : f −→ f ′, G : g −→ g′, and a point (z, z′) ∈

γ(Sf × Sg)× γ(Sf ′ × Sg′), define F ⊗G : f ⊗ g −→ f ′ ⊗ g′ by

(F⊗G)(z, z′) := F (xz, x
′
z′)⊗G(yz, y

′
z′) : f(xz)⊗g(yz) −→ f ′(x′z′)⊗g′(y′z′), (7)

where γ−1(z) = (xz, yz) ∈ Sf × Sg and γ−1(z′) = (x′z′ , y
′
z′) ∈ Sf ′ × Sg′ are the

pairs such that (f ⊗ g)(z) = f(xz)⊗ g(yz) and (f ′ ⊗ g′)(z′) = f ′(x′z′)⊗ g′(y′z′).
It is clear that γ(SF

xz
× SG

yz
) ⊂ γ(Sf ′ × Sg′) is a finite set and that if z′ ∈

γ(Sf ′ × Sg′)− γ(SF
xz
× SG

yz
), then γ−1(z′) /∈ SF

xz
× SG

yz
. Hence, either x′z′ /∈ SF

xz

or y′z′ /∈ SG
yz

and so (F ⊗G)(z, z′) = 0 if z′ /∈ γ(SF
xz
× SG

yz
).

Before we define the associative constraint A, we shall adopt the following
notation. If, for example, v ∈ γ(γ(Sf × Sg)× Sh), then we write

(γ−1 × id)γ−1(v) = ((xv, yv), zv) ∈ Sf × Sg × Sh.

Here, γ(xv, yv) is the unique element in γ(Sf×Sg) ⊂ S0 such that γ(γ(xv, yv), zv) =
v. In other words, the inner parentheses will indicate the place from left to
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right of the second γ−1 in the composition (γ−1 × id)γ−1. Analogously for
w ∈ γ(Sf × γ(Sg × Sh)) we write

(id× γ−1)γ−1(w) = (xw, (yw, zw)) ∈ Sf × Sg × Sh.

When there is no risk of confusion we drop the inner parentheses and simply
write (γ−1 × id)γ−1(v) = (xv, yv, zv) and (id × γ−1)γ−1(w) = (xw, yw, zw). In
the same way, if for example v ∈ S(f⊗(g⊗h))⊗i = γ(γ(Sf × γ(Sg × Sh)) × Si),
then we write

(id× γ−1 × id)(γ−1 × id)γ−1(v) = ((xv, (yv, zv)), tv) ∈ Sf × Sg × Sh × Si,

or (id× γ−1 × id)(γ−1 × id)γ−1(v) = (xv, yv, zv, tv), etc.
With this notation, we have

((F ⊗G)⊗H)(v, w) = (F ⊗G)((x, y)v, (x, y)w)⊗H(zv, zw)
= F (xv, xw)⊗G(yv, yw)⊗H(zv, zw).

(8)

Let us define Af,g,h : (f ⊗ g)⊗ h −→ f ⊗ (g ⊗ h) by

Af,g,h(v, w) = δv,w
x;y;zidf(xv)⊗g(yv)⊗h(zv) : ((f ⊗ g)⊗ h)(v) // (f ⊗ (g ⊗ h))(w) ,

(9)
where again, in order to shorten the notation, δv,w

x;y;z stands for δxv,xwδyv,ywδzv,zw .
It is easy to see that the inverse of Af,g,h is given by

A−1
f,g,h(w, v) = δw,v

x;y;zidf(xw)⊗g(yw)⊗h(zw) : (f ⊗ (g ⊗ h))(w) // ((f ⊗ g)⊗ h)(v) .

(10)
Now we define the right unit Rf : f ⊗ I −→ f . For any object f , the object

f ⊗ I is expressed by the composite

f ⊗ I : γ(Sf × {∗})
γ−1| // Sf × {∗} f×I // Obj(C)×Obj(C) ⊗ // Obj(C) .

(11)
For z ∈ γ(Sf × {∗}), we write γ−1(z) = (xz, ∗) ∈ Sf × ∗ and define Rf :

f ⊗ I −→ f by

Rf (z, x) = δxz,xidf(xz) : (f ⊗ I)(z) = f(xz) −→ f(x) (12)

for (z, x) ∈ γ(Sf × {∗})× Sf . It is easy to see that Rf is an isomorphism with
inverse R−1

f : f −→ f ⊗ I given by the function

R−1
f (x, z) = δx,xz idf(x) : f(x) −→ (f ⊗ I)(z) = f(xz) . (13)

In the same way we define the left unit Lf : I⊗f −→ f , that is, if z ∈ γ(∗×Sf ),
then we write γ−1(z) = (∗, xz) and define

Lf (z, x) = δxz,xidf(xz) : (I⊗ f)(z) = f(xz) −→ f(x) (14)

The inverse of Lf is given by

L−1
f (x, z) = δx,xz idf(x) : f(x) −→ (id⊗ f)(z) = f(xz) . (15)
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Theorem 1.3. The category CS0 is a monoidal category with tensor product
of objects and morphisms, associative constraint, and right and left units as we
have just defined.

We divide the proof into four lemmas.

Lemma 1.4. If F : f −→ f ′, F ′ : f ′ −→ f ′′, G : g −→ g′, and G′ : g′ −→ g′′

are morphisms in CC0 , then

(i) (F ′ ⊗G′) ◦ (F ⊗G) = (F ′ ◦ F )⊗ (G′ ◦G) and

(ii) Idf ⊗ Idg = Idf⊗g.

Proof. (i) For z ∈ γ(Sf × Sg) and z′′ ∈ γ(Sf ′′ × Sg′′) we have

((F ′ ⊗G′) ◦ (F ⊗G))(z, z′′) =
∑

z′∈γ(Sf′×Sg′ )

(F ′ ⊗G′)(z′, z′′) ◦ (F ⊗G)(z, z′)

=
∑

z′∈γ(Sf′×Sg′ )

(F ′(x′z′ , x
′′
z′′) ◦ F (xz, x

′
z′))

⊗ (G′(y′z′ , y
′′
z′′) ◦G(yz, y

′
z′))

= (
∑

x′∈Sf′

F ′(x′, x′′z′′) ◦ F (xz, x
′))

⊗ (
∑

y′∈Sg′

G′(y′, y′′z′′) ◦G(yz, y
′))

= (F ′ ◦ F )(xz, x
′′
z′′)⊗ (G′ ◦G)(yz, y

′′
z′′)

= ((F ′ ◦ F )⊗ (G′ ◦G))(z, z′′)

(16)

The third equality follows from the fact that γ establishes a bijection between
Sf ′ × Sg′ and γ(Sf ′ × Sg′).

(ii) For z, z′ ∈ γ(Sf × Sg) we have

(Idf ⊗ Idg)(z, z′) = Idf (xz, xz′)⊗ Idg(yz, yz′)
= δxz,xz′ idf(xz) ⊗ δyz,yz′ idg(yz)

= δz,z′ idf(xz) ⊗ idg(yz)

= δz,z′ idf(xz)⊗g(yz)

= δz,z′ id(f⊗g)(z)

= Idf⊗g(z, z′)

(17)

Lemma 1.5. The associative constraint A defined above is a natural isomor-
phism that satisfies the Pentagonal Axiom.
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Proof. We already saw that A is an isomorphism. To show that it is natural, we
have, on the one hand,

((F ⊗ (G⊗H)) ◦Af,g,h)(v, w′) =
∑

w∈γ(Sf×γ(Sg×Sh))

(F ⊗ (G⊗H))(w, w′)◦

◦Af,g,h(v, w)

=
∑

w∈γ(Sf×γ(Sg×Sh))

(F (xw, xw′)⊗G(yw, yw′)⊗

⊗H(zw, zw′)) ◦ δv,w
x;y;zidf(xv)⊗g(yv)⊗h(zv)

= F (xv, xw′)⊗G(yv, yw′)⊗H(zv, zw′) .

(18)

On the other hand, we have

(Af ′,g′,h′ ◦ ((F ⊗G)⊗H))(v, w′) =
∑

v′∈γ(γ(Sf′×Sg′ )×Sh′ )

Af ′,g′,h′(v′, w′) ◦ ((F ⊗G)⊗

H)(v, v′)

=
∑

v′∈γ(γ(Sf′×Sg′ )×Sh′ )

δv′,w′

x′;y′;z′ idf ′(x′
v′ )⊗g′(y′

v′ )⊗h′(z′
v′ )
◦

◦ (F (xv, x′v′)⊗G(yv, y′v′)⊗H(zv, z′v′))
= F (xv, xw′)⊗G(yv, yw′)⊗H(zv, zw′).

(19)

Therefore, Af ′,g′,h′ ◦ ((F ⊗G)⊗H) = (F ⊗ (G⊗H)) ◦Af,g,h, so A is natural.

Let us prove now that A satisfies the Pentagonal Axiom. Set M(s, w) =
((idf ⊗Ag,h,i)◦Af,g⊗h,i ◦(Af,g,h⊗ idi))(s, w). For s ∈ γ(γ(γ(Sf ×Sg)×Sh)×Si)
and w ∈ γ(Sf × γ(Sg × γ(Sh × Si))), we have

M(s, w) =
∑

u∈Sf⊗((g⊗h)⊗i)
v∈Sf⊗((g⊗h)⊗i)

(idf ⊗Ag,h,i)(v, w) ◦Af,g⊗h,i(u, v) ◦ (Af,g,h ⊗ idi)(s, u)

=
∑

u∈Sf⊗((g⊗h)⊗i)
v∈Sf⊗((g⊗h)⊗i)

(δxv,xw idf(xv) ⊗ δv,w
y;z;tidg(yv)⊗h(zv)⊗i(tv)) ◦ δu,v

x;y;z;t

idf(xu)⊗g(yu)⊗h(zu)⊗i(tu) ◦ (δs,u
x;y;zidf(xs)⊗g(ys)⊗h(zs) ⊗ δts,tu idi(ts))

= δs,w
x;y;z;tidf(xs)⊗g(ys)⊗h(zs)⊗i(ts).

(20)
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Set N(s, w) = (Af,g,h⊗i ◦Af⊗g,h,i)(s, w). Then,

N(s, w) =
∑

r∈S(f⊗g)⊗(h⊗i)

(Af,g,h⊗i)(r, w) ◦ (Af⊗g,h,i)(s, r)

=
∑

r∈S(f⊗g)⊗(h⊗i)

δr,w
x;y;z;tidf(xr)⊗g(yr)⊗h(zr)⊗i(tr) ◦ δs,r

x;y;z;tidf(xs)⊗g(ys)⊗h(zs)⊗i(ts)

= δs,w
x;y;z;tidf(xs)⊗g(ys)⊗h(zs)⊗i(ts).

(21)

Thus M(s, w) = N(s, w) and so, A satisfies the Pentagonal Axiom.

Lemma 1.6. The right unit R and the left unit L are natural isomorphisms.

Proof. We already saw that Rf is an isomorphism. For z ∈ γ(Sf × ∗) and
x′ ∈ Sf ′ we have

(F ◦Rf )(z, x′) =
∑

x∈Sf

F (x, x′) ◦Rf (z, x)

= F (x, x′) ◦ δxz,x′ idf(xz)

= F (xz, x
′).

(22)

On the other hand

(Rf ′ ◦ (F ⊗ IdI))(z, x′) =
∑

z′∈γ(Sf′×∗)
Rf ′(z′, x′) ◦ (F ⊗ IdI)(z, z′)

= δx′
z′ ,x

′ idf(x′
z′ )
◦ (F (xz, x

′
z′)⊗ IdI(∗, ∗))

= δx′
z′ ,x

′ idf(x′
z′ )
◦ F (xz, x

′
z′)

= F (xz, x
′) .

(23)

The proof for L is analogous.

Lemma 1.7. The morphisms A, R and L satisfy the Triangular Axiom.

Proof. Set P (v, w) = ((Idf ⊗ Lg) ◦Af,I,g)(v, w). Then

P (v, w) =
∑

u∈Sf⊗(I⊗g)

(Idf ⊗ Lg)(u,w) ◦Af,I,g(v, u)

= (δxu,xw idf(xu) ⊗ δyu,yw idg(yu)) ◦ δv,u
x;y idf(xv)⊗I(∗)⊗g(yv)

= δxv,xw idf(xv) ⊗ δyv,yw idg(yv)

= (Rf ⊗ Idg)(v, w).

(24)

So (Idf ⊗ Lg) ◦Af,I,g = Rf ⊗ Idg.

These four lemmas finish the proof of 1.3
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Proposition 1.8. The category CS0 has a full subcategory, which is tensor equiv-
alent to C.

Proof. Recall that a tensor functor is a triple (F, ϕ0, ϕ2), where F is a functor,
ϕ0 is an isomorphism from I to F (I), and ϕ2(U, V ) : F (U)⊗F (V ) −→ F (U⊗V )
is a family of natural isomorphisms compatible with the associative constraint
and the left and right units (see [1, p.287]). Define a functor J : C −→ CS0 , by
choosing for any object V in C any point xV ∈ S0 and a function fV : {xV } −→
Obj(C), given by fV (xV ) = V . Then we define J(V ) = fV . To any morphism
α : V −→ W we assign the function Fα(xV , xW ) = α : fV (xV ) = V −→
fW (xW ) = W and then define J(α) = Fα. For the unit object I of C we choose
the fixed point ∗ as before, so that J(I) = I ∈ Obj(CS0). For U, V objects of C,
define ϕ2(U, V ) : J(U)⊗ J(V ) = fU ⊗ fV −→ J(U ⊗ V ) = fU⊗V , as follows. If
γ−1({xU}×{xV }) = {x′U,V }, then (fU⊗fV )(x′U,V ) = U⊗V and fU⊗V (xU⊗V ) =
U ⊗ V , then take ϕ2(U, V )(x′U,V , (xU⊗V )) = idU⊗V . The morphisms ϕ0 and ϕ2

are identities, so that the functor J is strict, and it is straightforward to prove
that they satisfy the required compatibility conditions.

1.1 Extending the braiding and the twist

Let us now assume that the category C is braided with braiding c. For v ∈
γ(Sf × Sg) and w ∈ γ(Sg × Sf ), define Cf,g(v, w) by

Cf,g(v, w) = δv,w
x;y cf(xv),g(yv) : (f ⊗ g)(v) = f(xv)⊗ g(yv) −→ g(yw)⊗ f(xw)

= (g ⊗ f)(w) .

(25)

It is clear that Cf,g is invertible with inverse given by C−1
f,g(w, v) = δw,v

x;y c−1
f(xw),g(yw).

Proposition 1.9. The family C of isomorphisms Cf,g is a braiding in the
category CS0 .

Proof. We have to prove that C is natural and satisfies the Hexagonal Axiom.
For F : f −→ f ′ and G : g −→ g′ we have, on the one hand

((G⊗ F ) ◦ Cf,g)(v, w′) =
∑

w∈γ(Sg⊗Sf )

(G⊗ F )(w, w′) ◦ Cf,g(v, w)

=
∑

w∈γ(Sg⊗Sf )

(G(yw, yw′)⊗ F (xw, xw′)) ◦ δv,w
x;y cf(xv),g(yv)

= (G(yv, yw′)⊗ F (xv, xw′)) ◦ cf(xv),g(yv).

(26)
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On the other hand,

Cf ′,g′ ◦ (F ⊗G)(v, w′) =
∑

v′∈γ(Sf′×Sg′ )

Cf ′,g′(v′, w′) ◦ (F ⊗G)(v, v′)

=
∑

v′∈γ(Sf′×Sg′ )

δv′,w′
x;y cf ′(x′

v′ ),g
′(y′

v′ )
◦ F (xv, x′v′)⊗G(yv, yv′)

= cf ′(x′
w′ ),g

′(y′
w′ )

◦ (F (xv, x′w′)⊗G(yv, yw′)).
(27)

Both sums are equal since c is a braiding in C and therefore it is natural. Thus
C is natural. We now show the commutativity of one of the diagrams of the
Hexagonal Axiom. Put M(w, w′) = (Ag,h,f ◦ Cf,g⊗h ◦Af,g,h)(w, w′). Then

M(w,w′) =
∑

u∈S(f⊗g)⊗h

v∈Sf⊗(g⊗h)

Af,g,h(u,w′) ◦ Cf,g⊗h(v, u) ◦Af,g,h(w, v)

=
∑

u∈S(f⊗g)⊗h

v∈Sf⊗(g⊗h)

δu,w′
x;y;zidf(xu)⊗g(yu)⊗h(zu) ◦ δv,u

x;y;zcf(xv),g(yv)⊗h(zv)

◦ δw,v
x;y;zidf(xw)⊗g(yw)⊗h(zw)

= δw,w′
x;y;zcf(xw),g(yw)⊗h(zw).

(28)

Set N(w, w′) = ((Idg ⊗ Cf,h) ◦Ag,f,h ◦ (Cf,g ⊗ Idh))(w,w′). Then

N(w,w′) =
∑

u∈Sg⊗(f⊗h)
v∈S(g⊗f)⊗h

(Idg ⊗ Cf,h)(u,w′) ◦Ag,f,h(v, u) ◦ (Cf,g ⊗ Idh)(w, v)

=
∑

u∈Sg⊗(f⊗h)
v∈S(g⊗f)⊗h

(δyu,yw′ idg(yu) ⊗ δu,w′
x;z cf(xu),h(zu)) ◦ δv,u

x;y;zidg(yv)⊗f(xv)⊗h(zv)

◦ (δw,v
x;y cf(xw),g(yw) ⊗ δzw,zv idh(zw))

= δw,w′
x;y;z(idg(yw) ⊗ cf(xw),h(zw)) ◦ (cf(xw),g(yw) ⊗ idh(zw)).

(29)

Again, since c is a strict braiding in C, we have the equality M(w,w′) =
N(w,w′). The commutativity of the other hexagon is proved analogously.

In the same way, if the category C has a twist, then we can easily prove the
following assertion.

Proposition 1.10. Let θ be a twist for the the category C. Then the category
CS0 has a twist Θf : f −→ f given by

Θf (x, y) = δx,yθf(x) : f(x) −→ f(y) (30)

for any object f in CS0 . ¤
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However, it is not possible to extend a duality from C to CS0 . Although we
have for any f : Sf −→ Obj(C) a canonical candidate for f∗ : Sf −→ Obj(C),
namely the function f∗ defined by f∗(x) = (f(x))∗ as well as a canonical can-
didate for the evaluation Df : f∗⊗ f −→ I, given by Df (v, {∗}) = δx∗v,xv

df(xv) :
f∗(x∗v) ⊗ f(xv) −→ I(∗) = I, where γ−1(v) = (x∗v, xv) ∈ Sf × Sf , this is not
the case for the coevaluation. Indeed, the canonical extension Bf : I −→ f ⊗ f∗

given by Bf (∗, v) = δx∗v,xv
bf(xv) : I −→ f(xv) ⊗ f∗(x∗v) is not a morphism in

CS0 if Sf is infinite, since condition (ii) of page 2 does not hold.
Nevertheless, if we consider the full subcategory CS0

] which as objects has
functions f with finite domain Sf , then it is possible to extend the duality
according to the given formulas. It is easy to see that the inclusion functor
J : C −→ CS0 factors through CS0

] , i.e.,

J : C Â Ä // CS0
]

Â Ä // CS0 (31)

The following assertion is also easy to prove.

Proposition 1.11. If the category C is a ribbon category, then the extended
structure in CS0

] is pivotal braided (but nonstrict in general, so it is not ribbon).
¤

Remark 1.12. In order to simplify the next computations, we shall adopt the
following notation. Let A be the set of isomorphisms of CS0 generated by the set
(Idχ, A±1

κ,λ,µ, Rζ , Lς) under tensor products and compositions, where χ, κ, λ, µ,
ζ, and ς are any objects in CS0 . In other words, A is the set of isomorphisms that
relate different objects by associativity and units. If F and G are morphisms in
CS0 , we shall write F

.= G if G = X ◦F ◦ Y , where X and Y are elements of A.
For example, F

.= G if the following diagram commutes.

(((f1 ⊗ f2)⊗ f3)⊗ f4)⊗ f5
F //

Af1⊗f2,f3,f4⊗idf5

²²

(g1 ⊗ g2)⊗ g3

Ag1,g2,g3

²²

((f1 ⊗ f2)⊗ (f3 ⊗ f4))⊗ f5

Af1⊗f2,f3⊗f4,f5

²²
(f1 ⊗ f2)⊗ ((f3 ⊗ f4)⊗ f5)

Idf1⊗f2⊗A−1
f3,f4,f5

²²
(f1 ⊗ f2)⊗ (f3 ⊗ (f4 ⊗ f5))

G // g1 ⊗ (g2 ⊗ g3)

The relation .= is an equivalence relation in the set of morphisms of CS0 which
is compatible with composition and tensor product in the sense that if F

.=
G and F ′ .= G′ then F ′ ◦ F

.= G′ ◦ G, if the compositions are defined, and
F ⊗ F ′ .= G ⊗ G′. Indeed, for the composition, suppose A ◦ F ◦ B = G and
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that C ◦ F ′ ◦ D = G′, for elements A, B, C, and D in A. Then G′ ◦ G =
C ◦F ′ ◦D ◦A ◦F ◦B. The morphism D ◦A is an endomorphism of the domain
s(F ′) of F ′ which is equal to the codomain t(F ) of F and is an element of A.
Mac Lane’s coherence theorem states that this element has to be the identity
morphism Ids(F ′). Hence G′ ◦G = C ◦ F ′ ◦ F ◦B. The tensor part follows from
the identity (A ◦F ◦B)⊗ (C ◦F ′ ◦D) = (A⊗C) ◦ (F ⊗F ′) ◦ (B ⊗D). In what
follows we shall use this notation without further comments.

2 Bialgebras in CS0

Let V be a monoidal category. We say that an object A of V is an algebra in
V, if there exist morphisms µ : A⊗A −→ A and η : I −→ A such that

µ(µ⊗ idA) .= µ(idA ⊗ µ) , (32)
µ(η ⊗ idA) .= idA

.= µ(idA ⊗ η). (33)

Dually, we say that C is a coalgebra in V, if there exist morphisms ∆ : C −→
C ⊗ C and ε : C −→ I such that

(∆⊗ idC)∆ .= (idC ⊗∆)∆ , (34)
(ε⊗ idC)∆ .= idC

.= (idC ⊗ ε)∆. (35)

If H is an algebra, then the product in H ⊗ H is defined by the following
composite

µ̂ : (H ⊗H)⊗ (H ⊗H)
A−1

H⊗H,H,H // ((H ⊗H)⊗H)⊗H
AH,H,H⊗idH//

(H ⊗ (H ⊗H))⊗H
idH⊗cH,H⊗idH// (H ⊗ (H ⊗H))⊗H

A−1
H,H,H⊗idH//

((H ⊗H)⊗H)⊗H
A(H⊗H),H,H // (H ⊗H)⊗ (H ⊗H)

µ⊗µ //

// H ⊗H .

(36)

We say that H is a bialgebra in V, if µ̂(∆⊗∆) .= ∆µ and εµ = ε⊗ ε.
If A is an algebra, an object V is an A-module, if there exists a morphism
T : A⊗ V −→ V , such that T (µ⊗ idV ) .= T (idA ⊗ T ) and T (η ⊗ idV ) .= idV .
Note that if the category is strict monoidal, the latter are the concepts of algebra,
coalgebra, bialgebra and module in strict braided monoidal categories.

We are going to find bialgebras in CS0 , when C is a braided strict monoidal
category with left duality.

Let h : Sh −→ Obj(C) be an injective function such that h(Sh) ⊂ Obj(C)
is closed under ⊗, that is, for any pair (x, y) ∈ Sh × Sh, there exists a unique
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z ∈ Sh such that h(x) ⊗ h(y) = h(z) and suppose I ∈ h(Sh). For example, we
can take a set S0 with the same cardinality as Obj(C) and h : S0 −→ Obj(C) to
be any bijection, if Obj(C) is an infinite set.

Set ∆h = {(x, x) | x ∈ Sh} ⊂ Sh×Sh and let h be the object defined by the
composite

h : γ(∆h)
γ−1

//∆h
h∗×h //Obj(C)×Obj(C) ⊗ //Obj(C) (37)

where h∗(x) := (h(x))∗. That is, h is defined by the relation h(γ(x, x)) = h∗(x)⊗
h(x), for γ(x, x) ∈ Sh = γ(∆h).

The main theorem in this section is the following.

Theorem 2.1. The object h is a bialgebra in CS0 and the objects of C, considered
as a subcategory of CS0 , are h-modules.

To prove it, we shall establish two previous lemmas. Let χ : Sh × Sh −→ Sh

be the function defined by the relation h(χ(x, y)) = h(x)⊗ h(y).

Lemma 2.2. The function χ satisfies χ(χ(x, y), z) = χ(x, χ(y, z)).

Proof.

h(χ(χ(x, y), z)) = h(χ(x, y))⊗ h(z) = h(x)⊗ h(y)⊗ h(z) =

= h(x)⊗ h(χ(y, z)) = h(χ(x, χ(y, z))) .

Thus χ(χ(x, y), z) = χ(x, χ(y, z)).

In the following lemma we use letters ..., x, y, z to denote objects of V. Let
x, y be objects of V. Recall that there exists an isomorphism γx,y : y∗ ⊗ x∗ −→
(x⊗ y)∗ given by

γx,y = (dy ⊗ id(x⊗y)∗)(idy∗ ⊗ dx ⊗ idy⊗(x⊗y)∗)(idy∗⊗x∗ ⊗ bx⊗y) . (38)

Now define the isomorphism Γx,y : y∗⊗ y⊗x∗⊗x −→ (x⊗ y)∗⊗ (x⊗ y) by the
composite

Γx,y : y∗ ⊗ y ⊗ x∗ ⊗ x
idy∗⊗cy,x∗⊗idx// y∗ ⊗ x∗ ⊗ y ⊗ x

γx,y⊗cy,x // (x⊗ y)∗ ⊗ (x⊗ y) .

Lemma 2.3. The isomorphisms Γx,y satisfy the relation

Γx,y⊗z(Γy,z ⊗ idx∗⊗x) = Γx⊗y,z(idz∗⊗z ⊗ Γx,y).

That is, if x, y and z are objects of V then the following diagram commutes

z∗ ⊗ z ⊗ y∗ ⊗ y ⊗ x∗ ⊗ x
Γy,z⊗idx∗⊗x //

idz∗⊗z⊗Γx,y

²²

(y ⊗ x)∗ ⊗ (y ⊗ x)⊗ x∗ ⊗ x

Γx,y⊗z

²²
z∗ ⊗ z ⊗ (x⊗ y)∗ ⊗ (x⊗ y)

Γx⊗y,z // (x⊗ y ⊗ z)∗ ⊗ (x⊗ y ⊗ z) .
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Figure 1: The morphism Γx,y
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Figure 2: Γx,y⊗z(Γy,z ⊗ idx∗⊗x) = Γx⊗y,z(idz∗⊗z ⊗ Γx,y)

Proof. We prove it by using graphical calculus. In Figure 1 the morphism Γx,y is
represented. Figure 2 proves the Lemma. The left and right diagrams represent
the morphisms Γx,y⊗z(Γy,z ⊗ idx∗⊗x) and Γx⊗y,z(idz∗⊗z ⊗ Γx,y), respectively.

Proof of Theorem 2.1. Define µ : h⊗ h −→ h by

µ(v, γ(z, z)) : (h⊗ h)(v) = h∗(xv)⊗ h(xv)⊗ h∗(yv)⊗ h(yv)
δz,χ(yv,xv)Γh(yv),h(xv) // h(γ(z, z)) = h∗(z)⊗ h(z)

(39)

Since there is a unique x0 ∈ Sh such that h(x0) = I ∈ Obj(C), we can define
η : I −→ h by

η(∗, γ(y, y)) = δx0,yidI : I = h∗(x0)⊗ h(x0) −→ h∗(y)⊗ h(y) .

We have to prove now that µ(µ ⊗ Idh) .= µ(Idh ⊗ µ) and µ(η ⊗ Idh) = Idh =
µ(Idh ⊗ η).
Set S = µ(µ ⊗ Idh)(w, γ(t, t)) and R = µ(Idh ⊗ µ)(w′, γ(t, t)). We have on the
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one hand

S =
∑

v∈Sh⊗h

µ(v, γ(t, t)) ◦ (µ⊗ Idh)(w, v)

=
∑

v∈Sh⊗h

δt,χ(yv,xv)Γh(yv),h(xv) ◦ (δxv,χ(yw,xw)Γh(yw),h(xw) ⊗ δzw,yv
idh∗(zw)⊗h(zw))

= δt,χ(zw,χ(yw,xw))Γh(zw),h(χ(yw,xw)) ◦ (Γh(yw),h(xw) ⊗ idh∗(zw)⊗h(zw))
= δt,χ(zw,χ(yw,xw))Γh(zw),h(yw)⊗h(xw) ◦ (Γh(yw),h(xw) ⊗ idh∗(zw)⊗h(zw))

(40)

On the other hand we have

R =
∑

v∈Sh⊗h

µ(v, γ(t, t)) ◦ (Idh ⊗ µ)(w′, v)

=
∑

v∈Sh⊗h

δt,χ(yv,xv)Γh(yv),h(xv) ◦ (δxw′ ,xv
idh∗(xw′ )⊗h(xw′ ) ⊗ δyv,χ(zw′ ,yw′ )Γh(zw′ ),h(yw′ ))

= δt,χ(χ(zw′ ,yw′ ),xw′ )Γh(χ(zw′ ,yw′ )),h(xv) ◦ (idh∗(xw′ )⊗h(xw′ ) ⊗ Γh(zw′ ),h(yw′ )))

= δt,χ(χ(zw′ ,yw′ ),xw′ )Γh(zw′ )⊗h(yw′ ),h(xv) ◦ (idh∗(xw′ )⊗h(xw′ ) ⊗ Γh(zw′ ),h(yw′ )))
(41)

According to Lemma 2.2, we have χ(χ(zw′ , yw′), xw′) = χ(zw′ , χ(yw′ , xw′)).
From this and Lemma 2.3, it is easy to see that R ◦Ah,h,h = S so R

.= S.
We shall prove now that µ(η⊗Idh) .= Idh. Set J = µ(η⊗Idh)(u, γ(z, z)). From

h(χ(xu, x0)) = h(xu)⊗h(x0) = h(xu)⊗I = h(xu) we deduce that χ(xu, x0) = xu

and since Γa,I = idh∗(a)⊗h(a) for any object a of C, we have

J =
∑

v∈Sh⊗h

µ(v, γ(z, z)) ◦ (η ⊗ Idh)(u, v)

=
∑

v∈Sh⊗h

δz,χ(yv,xv)Γh(yv),h(xv) ◦ (η(∗, γ(xv, xv))⊗ Idh(γ(xu, xu), γ(yv, yv)))

=
∑

v∈Sh⊗h

δz,χ(yv,xv)Γh(yv),h(xv) ◦ (δx0,xv idI ⊗ δxu,yv idh∗(xu)⊗h(xu))

= δz,χ(xu,x0)Γh(xu),h(x0)

= δz,xuΓh(xu),I

= δz,xu idh∗(xu)⊗h(xu)

= Idh(u, γ(z, z))
(42)

The relation µ(Idh ⊗ η) .= Idh is proved in a similar way.
We have thus shown that (h, µ, η) is an algebra in CS0 . Define now ∆ : h −→

h⊗ h to be the function

∆(γ(x, x), v) : h∗(x)⊗ h(x) −→ h∗(yv)⊗ h(yv)⊗ h∗(zv)⊗ h(zv)
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given by the following composite

δx,yvδx,zv idh∗(x) ⊗ bh(x) ⊗ idh(x) : h∗(x)⊗ h(x) //
//h∗(yv)⊗ h(yv)⊗ h∗(zv)⊗ h(zv)

and define ε : h −→ I as the function given by

ε(γ(x, x), ∗) = dh(x) : h∗(x)⊗ h(x) −→ I .

We are going to prove that (Idh ⊗∆)∆ .= (∆⊗ Idh∆) and (ε⊗ Idh)∆ = Idh =
(Idh ⊗ ε). Set L = (Idh ⊗∆)∆(γ(t, t), w). Then

L =
∑

v∈Sh⊗h

(Idh ⊗∆)(v, w′) ◦∆(γ(t, t), v)

=
∑

v∈Sh⊗h

(δxv,xw idh∗(xv)⊗h(xv) ⊗ δyv,yw′ δyv,zw′ idh∗(yv) ⊗ bh(yv) ⊗ idh(yv))◦

(δt,xvδt,yv idh∗(t) ⊗ bh(t) ⊗ idh(t))
= δt,xvδt,yvδt,zv (idh∗(t)⊗h(t) ⊗ idh∗(t) ⊗ bh(t) ⊗ idh(t)) ◦ (idh∗(t) ⊗ bh(t) ⊗ idh(t))

(43)

Set R = (∆⊗ Idh∆)(γ(t, t), w). Then

R =
∑

v∈Sh⊗Sh

(∆⊗ Idh)(v, w) ◦∆(γ(t, t), v)

=
∑

v∈Sh⊗Sh

δxv,xwδxv,yw(idh∗(xv) ⊗ bh(xv) ⊗ idh(xv) ⊗ δyv,zw idh∗(yv)⊗h(yv))◦

(δt,xvδt,yv idh∗(t) ⊗ bh(t) ⊗ idh(t))
= δt,xvδt,yvδt,zv (idh∗(t) ⊗ bh(t) ⊗ idh(t) ⊗ idh∗(t)⊗h(t)) ◦ (idh∗(t) ⊗ bh(t) ⊗ idh(t))

(44)

Taking x = h(t), Figure 3 shows that R and L are equal up to associativity,
that is Ah,h,h(w,w′) ◦R = L. Thus L

.= R.

x

x
x

x x x

x

x

Figure 3: (idh∗i ⊗ bhi ⊗ idhi ⊗ idh∗i⊗hi)(idh∗i ⊗ bhi ⊗ idhi) = (idh∗i⊗hi ⊗ idh∗i ⊗
bhi ⊗ idhi)(idh∗i ⊗ bhi ⊗ idhi)
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Next we prove (ε⊗ Idh)∆ = Idh. Set J = (ε⊗ Idh)∆(γ(x, x), γ(y, y)). Then

J =
∑

x∈Sh⊗Sh

(ε⊗ (Idh))(v, γ(y, y)) ◦∆(γ(x, x), v)

=
∑

x∈Sh⊗Sh

(ε(γ(xv, xv), ∗)⊗ Idh(γ(yv, yv), γ(y, y)))◦

(δx,xv
δx,yv

idh∗(x) ⊗ bh(x) ⊗ idh(x))
= (dh(xv) ⊗ δyv,yidh∗(yv)⊗h(yv)) ◦ (δx,xvδx,yv idh∗(x) ⊗ bh(x) ⊗ idh(x))
= δx,y(dh(x) ⊗ idh∗(x)⊗h(x)) ◦ (idh∗(x) ⊗ bh(x) ⊗ idh(x))

(45)

From the definition of left duality we get (dh(x) ⊗ idh∗(x))(idh∗(x) ⊗ bh(x)) =
idh∗(x), so J = δx,yidh∗(x)⊗h(x) = Idh(γ(x, x), γ(y, y)).

The relation Idh = (Idh ⊗ ε) is proved in a similar way, and with this we
have showed (h, ∆, ε) is a coalgebra in CS0 .

It is enough to prove now that ∆ and ε are algebra morphisms. For ∆ we
have to show that the diagram

h⊗ h
∆⊗∆ //

µ

²²

(h⊗ h)⊗ (h⊗ h)

µ̂

²²
h

∆ // h⊗ h

commutes up to the relation .=, where µ̂ is the product in h⊗h and it is defined,
as in (36), by the composite

µ̂ : (h⊗ h)⊗ (h⊗ h)
A−1

h⊗h,h,h // ((h⊗ h)⊗ h)⊗ h

(Idh⊗Ch,h⊗Idh)A−1
h,h,h

²²
(h⊗ (h⊗ h))⊗ h

(µ⊗µ)Ah⊗h,h,h(A−1
h,h,h

⊗idh)

²²
h⊗ h .

The morphism Idh⊗Ch,h⊗Idh(v, w) : (h⊗(h⊗h)⊗h)(v) −→ (h⊗(h⊗h)⊗h)(w)
is related to Fw(v, w) : (h⊗ (h⊗ h)⊗ h)(v) −→ (h⊗ h)⊗ (h⊗ h)(w), which is
represented by the following vertical arrow

h(xv)∗ ⊗ h(xv)⊗ h(yv)∗ ⊗ h(yv)⊗ h(zv)∗ ⊗ h(zv)⊗ h(tv)∗ ⊗ h(tv)

Fw(v,w)=δv,w
x idh(xv)∗⊗h(xv)⊗δv,w

y;z ch(yv)∗⊗h(yv),h(zv)∗⊗h(zv)⊗δv,w
t idh(tv)∗⊗h(tv)

²²
h(xw)∗ ⊗ h(xw)⊗ h(zw)∗ ⊗ h(zw)⊗ h(yw)∗ ⊗ h(yw)⊗ h(tw)∗ ⊗ h(tw)

since their codomains are related by associativity.
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The morphism (µ⊗ µ)(w, u) : (h⊗ h)⊗ (h⊗ h) −→ h⊗ h, is represented by
the following vertical arrow

h(xw)∗ ⊗ h(xw)⊗ h(zw)∗ ⊗ h(zw)⊗ h(yw)∗ ⊗ h(yw)⊗ h(tw)∗ ⊗ h(tw)

δxu,χ(zw,xw)Γh(zw),h(xw)⊗δyu,χ(tw,yw)Γh(tw),h(yw)

²²
h(xu)∗ ⊗ h(xu)⊗ h(yu)∗ ⊗ h(yu)

It is not difficult to see that µ̂
.=

∑
w(µ⊗ µ) ◦ Fw and that this last morphism

turns out to be equal to

h(xv)∗ ⊗ h(xv)⊗ h(yv)∗ ⊗ h(yv)⊗ h(zv)∗ ⊗ h(zv)⊗ h(tv)∗ ⊗ h(tv)

δxu,χ(zv,xv)δyu,χ(tv,yv)(Γh(zv),h(xv)⊗Γh(tv),h(yv))(idh(xv)∗⊗h(xv)⊗ch(yv)∗⊗h(yv),h(zv)∗⊗h(zv)⊗idh(tv)∗⊗h(tv))

²²
h(xu)∗ ⊗ h(xu)⊗ h(yu)∗ ⊗ h(yu)

Hence µ̂(∆ ⊗∆) .=
∑

v Gv ◦ (∆ ⊗∆), where Gv is the last vertical arrow. But
(∆⊗∆)(p, v) : (h⊗ h)(p) −→ ((h⊗ h)⊗ (h⊗ h))(v) is given by

(∆⊗∆)(p, v) = δxp,xvδxp,yvδyp,zvδyp,tv (idh(xp)∗⊗bh(xp)⊗idh(xp))(idh(yp)∗⊗bh(yp)⊗idh(yp))

so the sum yields

M = δxu,χ(yp,xp)δyu,χ(yp,xp)(Γyp,xp ⊗ Γyp,xp)(idh(xp)∗⊗h(xp) ⊗ ch(xp)∗⊗h(xp),h(yp)∗⊗h(yp)

⊗ idh(yp)∗⊗h(yp))(idh(xp)∗ ⊗ bh(xp) ⊗ idh(xp))(idh(yp)∗ ⊗ bh(yp) ⊗ idh(yp))

On the other hand, (µ∆)(p, u) is the sum over v of the following composite

h(xp)∗ ⊗ h(xp)⊗ h(yp)∗ ⊗ h(yp)
δxv,χ(yp,xp)Γh(yp),h(xp) // h(xv)∗ ⊗ h(xv)

δxv,xu δxv,yu (idh(xv)∗⊗bh(xv)⊗idh(xv))

²²
h(xu)∗ ⊗ h(xu)⊗ h(yu)∗ ⊗ h(yu)

which is equal to

(µ∆)(p, u) = δxu,χ(yp,xp)δyu,χ(yp,xp)(id
∗
h(χ(yp,xp))⊗bh(χ(yp,xp))⊗idh(χ(yp,xp)))Γh(yp),h(xp)

In Figure 4, taking y = xp and x = yp, the picture on the left side represents
M , while that on the right side represents (µ∆)(p, u). Hence both are equal and
then µ∆ .= µ̂(∆⊗∆). Finally, we have to prove that ε is an algebra morphism,
that is, we have to prove that the diagram

h⊗ h

µ

²²

ε⊗ε

!!B
BB

BB
BB

BB

h
ε // I
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Figure 4: (µ̂(∆⊗∆))(p, u) .= (µ∆)(p, u)

commutes. We have

(εµ)(u, ∗) =
∑
w

ε(γ(xw, xw), ∗) ◦ µ(u,w)

=
∑
w

dh(xw) ◦ (δxw,χ(yu,xu)Γh(yu),h(xu))

= dh(χ(yu,xu))Γh(yu),h(xu)

= dh(yu)⊗h(xu)Γh(yu),h(xu)

On the other hand, (ε⊗ ε)(u, ∗) = dh(xu)⊗h(yu).
Figure 5, taking x = yu and y = xu as before, shows that these two mor-

phisms are equal. Therefore (h, µ, η, ∆, ε) is a bialgebra.

y

x y

x y

1

1 1

1

y y x x x x x xyyy

Figure 5: dh(yu)⊗h(xu)Γh(yu),h(xu) = dh(xu)⊗h(yu)

We shall now define the action of h on the objects of C. Take the point x0 of
Sh such that h(x0) = I and define jV (x0) = V , for each V object of C. Define
T : h⊗ jV −→ jV , by

T (γ(γ(x, x), x0), x0) = dh(x) ⊗ idV : h∗(x)⊗ h(x)⊗ V −→ V

19



where x ∈ Sh. It is not difficult to see that T is indeed an action as we defined it
before. The proof of that is similar (although easier and shorter) to the previous
proofs and we omitted it.
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