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Abstract

Let M be a Mackey functor for a finite group G. In this paper, generalizing the Dold–Thom construction, we construct an
ordinary equivariant homotopical homology theory HG∗ (−;M) with coefficients in M , whose values on the category of finite
G-sets realize the bifunctor M , both covariantly and contravariantly. Furthermore, we extend the contravariant functor to define a
transfer in the theory HG∗ (−;M) for G-equivariant covering maps. This transfer is given by a continuous homomorphism between
topological abelian groups.

We prove a formula for the composite of the transfer and the projection of a G-equivariant covering map and characterize those
Mackey functors M for which that formula has an expression analogous to the classical one.
© 2007 Elsevier B.V. All rights reserved.
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0. Introduction

Let M be a Mackey functor for a finite group G. By forgetting the contravariant part of M , we obtain a covari-
ant coefficient system M∗ defined on the category O(G) of canonical orbits. In [6], Illman constructed an ordinary
G-equivariant homology theory HG(−;M∗), whose coefficients are isomorphic to M∗. If X is a G-space, then
HG(X;M∗) is obtained by taking the homology of a chain complex associated to X and M∗. In this paper we shall
consider both the covariant functor M∗ and the contravariant functor M∗ associated to M . For each (pointed) G-space
X we construct a topological abelian group FG(X,M) and we define an ordinary G-equivariant homology theory by
taking the homotopy groups of FG(X,M). More precisely, we define

HG
q (X;M) = πq

(
FG(X+,M)

)
,
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where X+ = X � {∗}. If S is a finite G-set, then we have a natural equivalence of bifunctors HG
0 (S;M) ∼= M(S). This

approach to equivariant homology has had many applications in algebraic geometry. See for instance [14,15].
When G is the trivial group, HG∗ (−;M) is singular homology with coefficients in the group M , and our statement

is the classical Dold–Thom theorem [5], which was extended to the equivariant case when the coefficient group is a
G-module L by Lima-Filho [8] (when L = Z with trivial G-action) and by dos Santos [14] (when L is any G-module).
Both the original result and these equivariant generalizations were proved by showing that the homotopical definition
satisfies the axioms of an ordinary or an equivariant homology theory, and then using a uniqueness theorem for
homology theories.

In this paper, we prove the equivariant Dold–Thom theorem when the coefficient group is an arbitrary Mackey
functor M , by giving an explicit isomorphism HG

q (X;M∗) → πq(FG(X+,M)) for all q and any X of the homotopy
type of a G-CW-complex. Our approach provides a new proof even for the classical Dold–Thom theorem.

Let α :S → T be a G-function between finite G-sets. Then we have, on the one hand, as expected, an induced
homomorphism α∗ : HG(S,M) → HG(T ,M), which corresponds to M∗(α) :M(S) → M(T ) under the isomorphism
mentioned above. Moreover, on the other hand, we have a transfer homomorphism τα : HG(T ,M) → HG(S,M),
which corresponds to M∗(α) :M(T ) → M(S) under the isomorphism. Furthermore, this transfer has a topological
counterpart, namely, let p :E → X be a G-equivariant covering map with finite fibers, then there is a continuous homo-
morphism tGp :FG(X+,M) → FG(E+,M) which induces a transfer homomorphism τG

p : HG
q (X;M) → HG

q (E;M).
When G is the trivial group and M is just an abelian group A, the group FG(X,M) coincides with McCord’s

group B(A,X) [12], but their topologies are different (see Example 4.11).
The theory HG

q (−;M) can also be described as the homology of a certain chain complex, as shown in Section 2.
The results in this paper generalize what we did in [1], where we studied the case of the Mackey functor M = ML,

where L is a G-module and ML(G/H) = LH .
A different construction of ordinary equivariant homology theory with coefficients in a Mackey functor using

equivariant stable homotopy theory was given by Lewis, May, and McClure in [7].
The paper is organized in five sections. In Section 1 we establish the properties of our group functors FG(−,M)

in the category of pointed G-sets.
In Section 2 we generalize the construction of the function groups to simplicial G-sets, namely we associate to

each simplicial pointed G-set K a simplicial abelian group FG(K,M) and study its properties.
In Section 3 we topologize the abelian groups FG(X,M), when X is a topological space. In order to make these

groups into homotopy functors, we defined a topology which is not the obvious generalization of the topology on
FG(X,L), where L is a G-module (as in [1,8,12,14]). When we take coefficients in an arbitrary Mackey functor M ,
certain discontinuities of maps appear with the obvious topology. The correct topology is defined using the simplicial
abelian groups introduced in the previous section. In the case of L, we get two different topological groups FG(X,L)

and FG(X;ML), which are equal as groups, but only homotopy equivalent as topological spaces (see Example 4.11).
We also construct the transfer for G-equivariant covering maps and prove the first main Theorem 3.16.

Section 4 is devoted to the proof of the second main Theorem 4.1. Then we give an explicit isomorphism
HG

q (X;M∗) → HG
q (X,M) for all q and any space X of the homotopy type of a G-CW-complex, where M∗ is the

covariant part of the Mackey functor M . This result is equivalent to the second main theorem. The isomorphism is
constructed in two steps as follows. Let S∗(X) be the singular simplicial set of X. Since X has a G-action, so does
S∗(X), i.e., it is a simplicial G-set. Then we have a simplicial abelian group FG(S∗(X),M), which determines an
associated chain complex. Using the theory of simplicial sets, we give an isomorphism between the homology of this
chain complex H∗(FG(S∗(X),M)) and π∗(FG(X,M)). Then we show that both the chain complex FG(S∗(X),M)

and Illman’s chain complex, which defines HG∗ (X;M∗), have the same universal property (Propositions 1.6 and 4.6)
so that they are canonically isomorphic.

Finally, in Section 5 we extend the results of the previous section to Mackey functors with values in R-modules and
prove a formula for the composite of the transfer and the projection of a G-equivariant covering map. Furthermore,
we characterize those theories HG(−;M), for which that formula has an expression analogous to the classical one.

1. Equivariant function groups with coefficients in a Mackey functor

Recall that a Mackey functor (see [4] or [16], for instance) consists of two functors, one covariant and one con-
travariant, both with the same object function M :G-Setfin → Ab. If α :S → T is a G-function between G-sets, we
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denote the covariant part in morphisms by M∗(α) :M(S) → M(T ) and the contravariant part by M∗(α) :M(T ) →
M(S). The functor has to be additive in the sense that the two embeddings S ↪→ S � T ←↩ T into the disjoint union of
G-sets define an isomorphism M(S � T ) ∼= M(S) ⊕ M(T ) and if one has a pullback diagram of G-sets

U
β̃

α̃

S

α

T
β

V,

(1.1)

then M∗(β̃) ◦ M∗(α̃) = M∗(α) ◦ M∗(β) (see [4] for details).
By the additivity property, the Mackey functor M is determined by its restriction M :O(G) → Ab, where O(G)

is the full subcategory of G-orbits G/H , H ⊂ G. A particular role will be played by the G-function Rg−1 :G/H →
G/gHg−1, given by right translation by g−1 ∈ G, namely

Rg−1(aH) = aHg−1 = ag−1(gHg−1).
We shall often denote aH by [a]H . Observe that if S is a G-set and x ∈ S, then the canonical bijection G/Gx →
G/Ggx is precisely Rg−1 . Here Gx denotes the isotropy subgroup of x, namely, the maximal subgroup of G that
leaves x fixed.

Definition 1.2. Let M be a Mackey functor and let X be any pointed G-set (where the base point x0 remains fixed
under the action of G). Define M̂ = ⋃

H⊂G M(G/H) and consider the set

F(X,M) = {
u :X → M̂ | u(x) ∈ M(G/Gx),u(x0) = 0, and u(x) = 0 for almost all x ∈ X

}
.

One can write the elements u ∈ F(X,M) as u = ∑
x∈X lxx, where lx = u(x) ∈ M(G/Gx) (the sum is obviously

finite). F(X,M) is again a G-set with the left action of G on F(X,M) given by

(g · u)(x) = M∗(Rg−1)
(
u
(
g−1x

))
.

The G-set F(X,M) is indeed an abelian group with the sum u + v for u,v ∈ F(X,M) given by (u + v)(x) =
u(x) + v(x) ∈ M(G/Gx). We shall denote by FG(X,M) the subgroup of fixed points of F(X,M) under the action
of G.

Definition 1.3. For each x ∈ X, there is a homomorphism γx :M(G/Gx) → F(X,M) given by γx(l) = lx.

The group F(X,M) is characterized by the following universal property.

Proposition 1.4. Let A be an abelian group and for each x ∈ X let ϕx :M(G/Gx) → A be a homomorphism, such
that ϕx0 = 0, where x0 ∈ X is the base point. Then there exists a unique homomorphism ϕ :F(X,M) → A such that
ϕ ◦ γx = ϕx . In a diagram

M(G/Gx)
γx

ϕx

F (X,M)

ϕ

A.

Proof. Take an element u = ∑
x∈X lxx ∈ F(X,M), where lx ∈ M(G/Gx). Define ϕ(u) = ∑

x∈X ϕx(lx). Clearly,
since the sum is finite, this is well defined and is unique. �
Definition 1.5. For each x ∈ X, let γ G

x :M(G/Gx) → FG(X,M) be given by γ G
x (l) = ∑k

i=1 M∗(Rg−1
i

)(l)gix, where

{[g1], . . . [gk]} = G/Gx . Clearly γ G
x0

= 0 and γ G
gx = γ G

x ◦ M∗(Rg).

We have the following universal property of FG(X,M) with respect to the G-set X.
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Proposition 1.6. If A is an abelian group and there is a family of homomorphisms ϕx :M(G/Gx) → A, one for each
x ∈ X, satisfying ϕx0 = 0 and ϕgx = ϕx ◦ M∗(Rg), then there is a unique homomorphism ϕ :FG(X,M) → A such
that ϕ ◦ γ G

x = ϕx . Thus we have

M(G/Gx)
γ G
x

ϕx

FG(X,M)

ϕ

A.

Proof. Let X/G = {[xα] | α ∈ Λ} be the set of orbits of X, and take u ∈ FG(X,M). Define ϕ by

ϕ(u) =
∑
α∈Λ

ϕxα

(
u(xα)

)
.

Using the property of the homomorphisms ϕx , one can easily check that ϕ is well defined.
Clearly, any element u ∈ FG(X,M) can be written as u = ∑

α∈Λ γ G
xα

(u(xα)). Using this fact, one can show that ϕ

is unique. The commutativity of the triangles follows easily from the definition of ϕ. �
Definition 1.7. Let f :X → Y be a pointed G-function between pointed G-sets. For each x ∈ X, we denote by
f̂x :G/Gx → G/Gf (x) the induced quotient function. We define a family of homomorphisms fx :M(G/Gx) →
FG(Y,M) by fx = γ G

f (x) ◦ M∗(f̂x) so that

fx(l) =
m∑

i=1

M∗
(
R

g−1
i

◦ f̂x

)
(l)gif (x),

where G/Gf (x) = {[g1], . . . , [gm]}. Since f (x0) = y0 and γ G
y0

= 0, then fx0 = 0. Since γ G
gf (x) = γ G

f (x) ◦ M∗(Rg) and

clearly Rg ◦ f̂gx = f̂x ◦ Rg , then fgx = fx ◦ M∗(Rg). Therefore, by the universal property 1.6, this family determines
a homomorphism

f G∗ :FG(X,M) −→ FG(Y,M).

Therefore, X �→ FG(X,M) is a covariant functor from the category G-Set∗ of pointed G-sets to the category Ab of
abelian groups.

Remark 1.8. Note that the previous definition of the functor FG(X,M) can be equally given for any covariant
coefficient system M .

Proposition 1.9. Given a Mackey functor M , the restriction of the functor X �→ FG(X+,M) to the category O(G) is
naturally isomorphic to the covariant part M∗ of the Mackey functor M .

Proof. First observe that the mapping FG(G/H+,M) → M(G/H) given by u �→ u([e]H ), where [e]H is the coset
eH = H ∈ G/H , e ∈ G the neutral element, is an isomorphism. Take H ⊂ K ⊂ G and let α :G/H → G/K be the
quotient function and Rg−1 :G/H → G/gHg−1 be the right translation. We now need to show that the following
diagrams commute:

FG(G/H+,M)

αG∗

∼= M(G/H)

M∗(α)

FG(G/K+,M)
∼= M(G/K).

FG(G/H+,M)

(R
g−1 )G∗

∼= M(G/H)

M∗(Rg−1 )

FG(G/gHg−1+
,M)

∼=
M(G/gHg−1).

To see that the diagram on the left commutes, just observe that the inverse of the isomorphism on the top is given
precisely by γ G :M(G/H) → FG(G/H+,M), as defined in 1.5, where H ∈ G/H+ denotes the coset of the identity
H
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element in G, while the inverse of the isomorphism on the bottom is given correspondingly by γ G
K . By definition

of αG∗ , the diagram

M(G/H)
γ G
H

M∗(α̂H )

FG(G/H+,M)

αG∗

M(G/K)
γ G
K

FG(G/K+,M)

commutes, and clearly α̂H = α.
To see that the diagram on the right commutes, notice that since M∗(R̂g−1 [e]H ) = Id, then by 1.7 (Rg−1)G∗ ◦ γ G[e]H =

γ G
[g−1]

gHg−1
. Now by 1.6, γ G

[g−1]
gHg−1

= γ G[e]
gHg−1

◦M∗(Rg−1). Therefore, (Rg−1)G∗ ◦ γ G[e]H = γ G[e]
gHg−1

◦M∗(Rg−1), thus

the diagram commutes. �
Definition 1.10. Let M be a Mackey functor and p :E → X a G-function between G-sets with finite fibers. We define
the transfer of p,

tp :F(X+,M) → F(E+,M) by tp(u)(σ ) = M∗(p̂σ )
(
u
(
p(σ)

))
(and tp(u)(∗) = 0). One can easily check that tp(u) ∈ F(E+,M). This transfer, in the generators γx(l) = lx ∈
F(X,M) is given by

tp
(
γx(l)

) =
n∑

i=1

γai
M∗(p̂ai

)(l),

where p−1(x) = {a1, . . . , an}.
To see that this function is G-equivariant with respect to the action defined in 1.2, we have on the one hand

tp(g · u)(a) = M∗(p̂a)
(
g · u(

p(a)
)) = M∗(p̂a)M∗(Rg−1)

(
u
(
g−1p(a)

))
,

while on the other hand we have(
g · tp(u)

)
(a) = M∗(Rg−1)

(
tp(u)(g−1a)

) = M∗(Rg−1)M
∗(p̂g−1a)

(
u
(
p(g−1a)

))
.

Both terms are equal, since M∗(p̂a) ◦ M∗(Rg−1) = M∗(Rg−1) ◦ M∗(p̂g−1a), and this follows from the fact that the
square

G/Gg−1a

p̂
g−1a

R
g−1

∼= G/Ga

p̂a

G/Gg−1p(a)
∼=

R
g−1

G/Gp(a)

is clearly a pullback diagram. Thus, by restriction, tp induces also a transfer

tGp :FG(X+,M) → FG(E+,M).

The isotropy group Gx acts on p−1(x) = {a1, . . . , an}, and the inclusion j :p−1(x) ↪→ p−1(Gx) clearly induces a
bijection j :p−1(x)/Gx → p−1(Gx)/G. Let {aι | ι ∈ I} ⊂ p−1(x) be a set of representatives one for each Gx -orbit
of p−1(x). Let γ G

x (l) be a generator of FG(X+,M). Since its value on points which do not belong to Gx is zero, and
γ G
x (l)(x) = l, we have that

tGp
(
γ G
x (l)

) =
∑
ι∈I

γ G
aι

M∗(p̂aι )(l) ∈ FG(E+,M). (1.11)
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Remark 1.11. For any G-set S, let βS :F(S,M) → FG(S,M) be given on generators by βγx(l) = γ G
x (l). This is a

surjective homomorphism. There is another transfer tGp :FG(X+,M) → FG(E+,M), which is studied in [2], given
by the commutativity of the diagram

F(X+,M)
tp

βX+

F(E+,M)

βE+

FG(X+,M)
tGp

FG(E+,M).

Equivalently,

tGp
(
γ G
x (l)

) =
n∑

i=1

γ G
ai

M∗(p̂ai
)(l).

It is clear that this transfer differs from the one given by (1.11).

Remark 1.12. Assume that p :E → X and q :X → Y are G-functions with finite fibers. Then one has that (̂q ◦ p)σ =
q̂p(σ ) ◦ p̂σ . Using this, one easily verifies that the transfer is functorial in the sense that tGq◦p = tGp ◦ tGq .

Theorem 1.13. Let M be a Mackey functor for G and S be a finite G-set. Then there is a canonical isomorphism
ΓS :M(S) → FG(S+,M).

Proof. First observe that the functor FG(−+,M) sends finite disjoint unions to direct sums. Namely, consider S � T

and take the inclusions S+ i
↪→ (S � T )+

j←↩ T + and the retractions S+ r
� (S � T )+

s
� T +, where r|S , s|T are the

inclusions, and r(T ) = s(S) = ∗. Then

FG
(
(S � T )+,M

) ∼= FG(S+,M) ⊕ FG(T +,M),

where the isomorphism is given by w �→ (w ◦ i,w ◦ j) = (ti(w), tj (w)) with inverse (u, v) �→ u ◦ r + v ◦ s = iG∗ (u)+
jG∗ (v).

Let now S/G = {[σi]}, where i belongs to some finite set of indexes. Then S = ⊔
i Gσi and there is a canonical

G-bijection ρi :G/Gσi
→ Gσi given by ρi[g] = gσi , and let βi :Gσi ↪→ S be the inclusion. The isomorphism is given

by the following diagram of isomorphisms:⊕
i M(G/Gσi

)

⊕γ G
Gσi

⊕M∗(ρi )

∼=
⊕

i M(Gσi)
(M∗(βi ))

∼= M(S)

ΓS⊕
i F

G(G/G+
σi

,M) ⊕(ρi )
G∗

∼= ⊕
i F

G(Gσ+
i ,M)

((βi )
G∗ )

∼=
FG(S+,M).

We only need to remark that the vertical arrow on the left is an isomorphism by Proposition 1.9.
The isomorphism ΓS does not depend on the choice of representatives in S/G. Namely, let Gσ ′

i = Gσi , then
σ ′

i = giσi , and ρσ ′
i
◦ R

g−1
i

= ρi :G/Gσi
→ Gσi . The assertion follows using this and 1.9. �

By 1.9 and the previous result, we have the following.

Proposition 1.14. The isomorphism ΓS :M(S) → FG(S+,M) is natural with respect to the covariant structure,
namely, if α :S → T is a G-function, then the following diagram commutes:

M(S)
ΓS

M∗(α)

FG(S+,M)

αG∗

M(T )
ΓT

FG(T +,M).
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Lemma 1.15. Given a Mackey functor M and a G-function α :G/H → G/K , then the following diagram commutes:

FG(G/K+,M)

tGα

∼= M(G/K)

M∗(α)

FG(G/H+,M)
∼= M(G/H),

where the isomorphisms are given in 1.9.

Proof. It is enough to check it for the cases α :G/H → G/K , the quotient function, and for α = Rg−1 :G/H →
G/gHg−1. The first case follows readily, since α̂[e]H = α, therefore we only have to prove the second case. Put
K = gHg−1. Take v ∈ FG(G/K+,M), so that v([e]K) ∈ M(G/K). Chasing v along the top and then down vertically
in the diagram, we arrive to the element M∗(Rg−1)(v([e]K)) ∈ M(G/H). On the other hand, observe that if α = Rg−1

and σ = [e]H , then α̂σ = id. Hence, chasing v down the vertical arrow on the left and then along the bottom of the
diagram we obtain

tGR
g−1

(v)
([e]H ) = M∗(α̂σ )

(
v
(
Rg−1

([e]H )))
= v

(
g−1[e]K

)
= M∗(Rg)

(
v
([e]K))

.

The commutativity follows since M∗(Rg)(v([e]K)) = M∗(Rg−1)(v([e]K)). To see this, just observe that the following
commutative diagram of bijections is obviously a pullback diagram.

G/H id

R
g−1

G/H

id

G/K
Rg

G/H.

Hence M∗(Rg) = M∗(Rg−1). �
Proposition 1.16. The isomorphism ΓS :M(S) → FG(S+,M) is natural with respect to the contravariant structure,
namely, if α :S → T is a G-function, then the following diagram commutes:

M(T )
ΓT

M∗(α)

FG(T +,M)

tGα

M(S)
ΓS

FG(S+,M).

Proof. First observe that the inverse of ΓS is given by the transfers of the morphisms which define ΓS and the product
of the inverses of the isomorphisms γ G

Gσi
. Therefore the result follows from the functoriality of M∗ and of the transfer

(see 1.12), and from Proposition 1.15. �
2. Function groups of simplicial G-sets

We denote by Δ the category whose objects are the sets n̄ = {0,1,2, . . . , n} and whose morphisms f ∈ Δ(m̄, n̄)

are monotonic functions f : m̄ → n̄. Recall that a simplicial set is a contravariant functor K :Δ → Set; we denote
the set K(n̄) simply by Kn. The function induced by f is denoted by f K :Kn → Km. Let Δ[q] be the simplicial set
Δ(−, q̄). We write |K| for the geometrical realization given by

|K| =
⊔

(Kn × Δn)/∼,
n
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where Δn = {(t0, t1, . . . , tn) ∈ Rn+1 | ti � 0, i = 0,1,2, . . . , n, t0 + t1 +· · ·+ tn = 1} is the standard n-simplex, and the
equivalence relation is given by (f K(σ ), t) ∼ (σ,f#(t)), σ ∈ Kn, t ∈ Δm. Here f# denotes the map affinely induced
by f in the standard simplices. Denote the elements of |K| by [σ, t], σ ∈ Kn and t ∈ Δn.

Observe that fixing σ ∈ Kn, the map Δn → |K| given by t �→ [σ, t] is continuous.
We say that a simplicial set K is pointed, if it is provided with a morphism (natural transformation) Δ[0] → K .

This means that each set Kn has a base point and that for each monotonic function f : m̄ → n̄, the induced function
f K :Kn → Km is base-point preserving.

Definition 2.1. Let G be a finite group. A (pointed) simplicial G-set is a (pointed) simplicial set K such that G

acts on each Kn and the action of every g ∈ G determines a (pointed) isomorphism of K . In other words, it is a
functor K :Δ → G-Set∗. This means that for every monotonic function f : m̄ → n̄ the functions f K :Kn → Kn are
G-functions.

Definition 2.2. Given a pointed simplicial G-set K and a Mackey functor M , we define the simplicial abelian
group F(K,M) by F(K,M)n = F(Kn,M), where F(Kn,M) is as defined in 1.2. The homomorphism induced
by f : m̄ → n̄ is f K∗ :F(Kn,M) → F(Km,M). Thus, in particular, F(K,M) is again a pointed simplicial G-set.

Note that if K is a (pointed) simplicial G-set, then the geometric realization |K| is a (pointed) G-space (in fact, a
G-CW-complex). Thus, in particular, if K is a pointed simplicial G-set, then |F(K,M)| is a pointed G-space. On the
other hand, since |K| is a pointed G-space, F(|K|,M) is also a pointed G-space.

The proof of the following uses results of Milnor (see [9]).

Lemma 2.3. Let K be a simplicial G-set. Then the geometric realization |F(K,M)| is an abelian topological group
such that [v, t] + [v′, t] = [v + v′, t].

Proof. Consider the projections pi :F(K,M) × F(K,M) → F(K,M), i = 1,2, and the induced maps |pi | :
|F(K,M) × F(K,M)| → |F(K,M)|, and define η : |F(K,M) × F(K,M)| → |F(K,M)| × |F(K,M)| (here the
topology of the product is the k-topology; see next section) by

η
[
(v, v′), t

] = (|p1|
[(

v, v′), t], |p2|
[
(v, v′), t

])
= ([

p1(v, v′), t
]
,
[
p2(v, v′), t

])
= ([v, t], [v′, t]).

By [9, 14.3], η is a homeomorphism. The group structure + in |F(K,M)| is then given by the diagram∣∣F(K,M)
∣∣ × ∣∣F(K,M)

∣∣ η−1

+

∣∣F(K,M) × F(K,M)
∣∣

|μ|∣∣F(K,M)
∣∣,

where μ :F(K,M) × F(K,M) → F(K,M) is the simplicial group structure. �
Let K be a simplicial set. An element σ ∈ Kn is said to be nondegenerate if there is no τ ∈ Kn−1 and no i =

1, . . . , n − 1 such that σ = sK
i (τ ), where sK

i is the ith degeneracy operator of K . Moreover, the representative (σ, t)

of an element in |K| is said to be nondegenerate if σ ∈ Kn is nondegenerate and t ∈ ◦
Δ

n
. If K is a simplicial G-set, then

these definitions extend to the simplicial set (group) F(K,M). It is a result of Milnor (see [9]) that for every element
σ ∈ Kn there is a unique nondegenerate element σ ′ ∈ Km and a unique function f : n̄ → m̄ such that f K(σ ′) = σ .
Moreover, every element [σ, t] ∈ |K| has a unique nondegenerate representative (σ ′, t ′).

We have the following results on nondegeneracy.

Proposition 2.4. Let K be a simplicial G-set. If (σ, t) is a nondegenerate representative, then Gσ = G[σ,t].
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Proof. Clearly Gσ ⊂ G[σ,t] for all σ ∈ Kn and t ∈ Δn. To show that G[σ,t] ⊂ Gσ , recall (see [9]) that |K| is a
CW-complex, whose open cells are given by

|K| =
⊔

σ∈K ′
n,n�0

ϕσ

( ◦
Δ

n)
, (2.5)

where ϕσ (t) = [σ, t] and K ′
n is the subset of Kn of nondegenerate elements. Since the degeneracy operators are

G-functions, if σ ∈ Kn is nondegenarate, then gσ is also nondegenerate.
Assume that (σ, t) is a nondegenerate representative and that g[σ, t] = [gσ, t] = [σ, t]. Then by the above (gσ, t)

is also nondegenerate. Therefore, ϕσ (t) = ϕgσ (t) and so, by (2.5), gσ = σ . �
Definition 2.5. Given a pointed simplicial G-set K and a Mackey functor M , we define the simplicial abelian group
FG(K,M) by FG(K,M)n = FG(Kn,M), where FG(Kn,M) is as defined in 1.2. The homomorphism induced by
f : m̄ → n̄ is given by the homomorphism (f K)G∗ :FG(Kn,M) → FG(Km,M) defined in 1.7.

Let K be a simplicial G-set. Then, for each t ∈ Δn, the function Kn → |K| given by σ �→ [σ, t] is a G-function.
Thus we have for the isotropy groups that Gσ ⊂ G[σ,t]. Call q̂σ,t :G/Gσ → G/G[σ,t] the quotient function.

Proposition 2.6. Let K be a simplicial pointed G-set. Then

(a) the groups F(|K|,M) and |F(K,M)| are naturally G-isomorphic, and
(b) the groups FG(|K|,M) and |FG(K,M)| are naturally isomorphic.

Proof. We prove (b). Define ϕ′ :FG(|K|,M) → |FG(K,M)| as follows. For each [σ, t] ∈ |K| ((σ, t) a nondegenerate
representative), let

ϕ′[σ,t] :M(G/G[σ,t]) → ∣∣FG(K,M)
∣∣ be given by l �−→ [

γ G
σ (l), t

]
.

Since by Proposition 2.4, Gσ = G[σ,t], this is well defined, and the universal property 1.6 allows us to define ϕ′.
On the other hand, define ψ ′ : |FG(K,M)| → FG(|K|,M) as follows. First recall from the proof of 1.6 that an

element u ∈ FG(Kn,M) can be written as u = ∑
α∈Λ γ G

σα
(u(σα)), where Kn/G = {[σα] | α ∈ Λ} is the set of orbits

of Kn. Consider the mapping FG(Kn,M) × Δn → FG(|K|,M) given by

(u, t) �−→
∑
α∈Λ

γ G[σα,t]
(
M∗(q̂σα,t )

(
u(σα)

))
.

This mapping depends only on the class of [u, t] ∈ |FG(K,M)|; namely, if f : n̄ → m̄ is a morphism in Δ,
then it induces f K :Km → Kn, and with it also (f K)G∗ :FG(Km,M) → FG(Kn,M), whose value on v =∑

β∈Λ′ γ G
σβ

(v(σβ)) ∈ F(Km,M) is given by(
f K

)G

∗ (v) =
∑
β∈Λ′

γ G
f K(σβ)

(
M∗

(
f̂ K

σβ

)(
v(σβ)

))
.

The elements((
f K

)G

∗ (v), t
) =

( ∑
β∈Λ′

γ G
f K(σβ)

(
M∗

(
f̂ K

σβ

)(
v
(
σβ

)))
, t

)
and

(
v,f#(t)

)
represent the same element in |FG(K,M)|, and each maps to∑

β∈Λ′
γ G
[f K(σβ),t]

(
M∗(q̂f K(σβ),t )M∗

(
f̂ K

σβ

)(
v(σβ)

)) =
∑
β∈Λ′

γ G
[f K(σβ),t]

(
M∗(q̂f K(σβ),t ) ◦ f̂ K

σβ

)(
v(σβ)

)
and ∑

′
γ G
[σβ,f#(t)]

(
M∗(q̂σβ ,f#(t))

(
v(σβ)

)) =
∑

′
γ G
[f K(σβ),t]

(
M∗(q̂σβ ,f#(t))

(
v(σβ)

))
,

β∈Λ β∈Λ
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respectively. These last two are equal by the commutativity of the following triangle:

G/Gσβ

f̂ K
σβ

q̂σβ ,f#(t)

G/G[f K(σβ),t].

G/Gf K(σβ)

q̂
f K (σβ ),t

Therefore, for u = ∑
α∈Λ γ G

σα
(u(σα)), we define

ψ ′([u, t]) =
∑
α∈Λ

γ G[σα,t]
(
M∗(q̂σα,t )

(
u(σα)

))
.

Since the mapping FG(Kn,M) → |FG(K,M)| given by u �→ [u, t] is clearly additive, ψ ′ is also determined by its
value on the generators u = γ G

σ (l), namely by ψ ′([γ G
σ (l), t]) = γ G[σ,t](M∗(q̂σ,t )(l)).

We now show that the maps ϕ′ and ψ ′ are inverse to each other. Take a generator γ G[σ,t](l) ∈ FG(|K|,M), where

l 
= 0 and [σ, t] is nondegenerate. Then ψ ′ϕ′(γ G[σ,t](l)) = ψ ′[γ G
σ (l), t] = γ G[σ,t](l), the last equality follows since [σ, t]

is nondegenerate. Hence

ψ ′ ◦ ϕ′ = 1.

On the other hand, take an element [∑α∈Λ γ G
σα

(lσα ), t] ∈ |FG(K,M)|. We may assume that the representative of

this element is nondegenerate, so that t ∈ ◦
Δ

n
.

For each σα , there exists a unique nondegenerate σ ′
α such that σα = sK(σ ′

α), where sK is a composite of degeneracy
operators. Therefore, [σα, t] = [σ ′

α, s#(t)] where the right-hand side is given by a nondegenerate representative. Now
consider

ϕ′ψ ′
([ ∑

α∈Λ

γ G
σα

(lσα ), t

])
=

∑
α∈Λ

ϕ′γ G[σα,t]
(
M∗(q̂σα,t )(lσα )

)
=

∑
α∈Λ

[
γ G
σ ′

α

(
M∗(q̂σα,t )(lσα )

)
, s#(t)

]
=

∑
α∈Λ

[(
sK

)G

∗ γ G
σ ′

α

(
M∗(q̂σα,t )(lσα )

)
, t

]
=

∑
α∈Λ

[
γ G
sK(σ ′

α)

(
M∗

(
ŝK
σ ′

α

)
M∗(q̂σα,t )(lσα )

)
, t

]
=

∑
α∈Λ

[
γ G
σα

(lσα ), t
] =

[ ∑
α∈Λ

γ G
σα

(lσα ), t

]
,

where the next to the last equality follows from the fact that ŝK
σ ′

α
◦ q̂σα,t = idG/Gσα

. Thus

ϕ′ ◦ ψ ′ = 1.

The proof of (a) is similar, defining ϕ :F(|K|,M) → |F(K,M)| and ψ : |F(K,M)| → F(|K|,M) using the homo-
morphisms γ and the universal property 1.4. �
3. Topology for the function groups

We shall work in the category of k-spaces. We understand by a k-space a topological space X with the property
that a set C ⊂ X is closed if and only if f −1C ⊂ K is closed for any map f :K → X, where K is any compact
Hausdorff space (see [17]). There is a functor that associates to every topological space X a k-space k(X) with the
same underlying set and a finer topology defined as before. Thus the identity k(X) → X is continuous and a weak
homotopy equivalence. Instead of the usual topological product, we shall take its image under the functor k; we shall
use the same notation × for it. This category has the following two useful properties [17]:
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1. If X is a k-space and p :X → X′ is an identification, then X′ is a k-space; and
2. if p :X → X′ and q :Y → Y ′ are identifications between k-spaces, then p × q :X × Y → X′ × Y ′ is an identifi-

cation.

Observe that this category includes Steenrod’s category of compactly generated Hausdorff spaces, as well as the
category of weak Hausdorff k-spaces [10]. Thus, in what follows, space will always mean k-space.

Let now X be a pointed G-space and M a Mackey functor. In this section, we shall define the topology of the
function groups F(X,M) and FG(X,M) and prove that induced homomorphisms and transfers are continuous. We
start by considering the special case, where the G-space is the geometric realization |K| of a simplicial G-set K .

In order to define a topology on F(|K|,M), consider

Fn

(|K|,M) = {
u ∈ F

(|K|,M) | u(x) 
= 0 for at most n values of x ∈ |K|}.
Take

P
(|K|,M) = {

(l, x) | l ∈ M(G/Gx)
} ⊂ M̂ × |K|

with the relative topology (M̂ is discrete), and the nth power P(|K|,M)n. There is a surjection μn :P(|K|,M)n →
Fn(|K|,M) given by

μn

(
(l1, x1), . . . , (ln, xn)

) = γx1(l1) + · · · + γxn(ln) = l1x1 + · · · + lnxn.

Give Fn(|K|,M) the identification topology. By Property 1 of the category of k-spaces this is a k-space.

Definition 3.1. Let K be a simplicial pointed G-set. As a topological space,

F
(|K|,M) =

⋃
n

Fn

(|K|,M)
will be provided with the weak (union) topology, so it is clearly a k-space. Moreover, by Property 2 of the category of
k-spaces, the continuous map

P
(|K|,M)m × P

(|K|,M)n s→ P
(|K|,M)m+n μm+n−−−→ Fm+n

(|K|,M) ⊂ F
(|K|,M)

given by

s
((

(l1, x1), . . . , (lm, xm)
)
,
(
(l′1, x′

1), . . . , (l
′
n, x

′
n)

)) = (
(l1, x1), . . . , (lm, xm), (l′1, x′

1), . . . , (l
′
n, x

′
n)

)
induces in the identification space a continuous map

Fm

(|K|,M) × Fn

(|K|,M) → F
(|K|,M)

,

which defines in the union the sum. Hence

+ :F
(|K|,M) × F

(|K|,M) −→ F
(|K|,M)

is a continuous map and so F(|K|,M) is a topological abelian group.

In short, for the geometric realization |K| of a simplicial G-set K , we can give F(|K|,M) the identification
topology of the map

μ :
⊔
n

(
P

(|K|,M))n � F
(|K|,M)

.

Similarly, we may define on FG(|K|,M) the identification topology of the map

μ′ :
⊔
n

(
P

(|K|,M))n � FG
(|K|,M)

,

where μ′(l1, x1, . . . , ln, xn) = ∑n
i=1 γ G

xi
(li), and γ G

x :M(G/Gx) → FG(|K|,M) is as in Definition 1.5. Thus
FG(|K|,M) is also a k-space, and we can also show in the same way as above that it is a topological abelian group.

We have the following.
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Proposition 3.2. Let K be a simplicial G-set and let β|K| :F(|K|,M) → FG(|K|,M) be given on generators by
β|K|(lx) = γ G

x (l). Then FG(|K|,M) has the identification topology given by the surjective map β|K|.

Proof. This follows from the commutativity of the diagram⊔
n

(
P

(|K|,M))n

μ
μ′

F
(|K|,M)

β|K|
FG

(|K|,M)
. �

The following result is the topological counterpart of 2.6.

Proposition 3.3. Let K be a simplicial pointed G-set. Then

(a) the group isomorphisms

ϕ :F
(|K|,M) → ∣∣F(K,M)

∣∣ and ψ :
∣∣F(K,M)

∣∣ → F
(|K|,M)

are continuous, and
(b) the group isomorphisms

ϕ′ :FG
(|K|,M) → ∣∣FG(K,M)

∣∣ and ψ ′ :
∣∣FG(K,M)

∣∣ → FG
(|K|,M)

are continuous.

Proof. To prove that ϕ is continuous, it suffices to consider the diagram(
P

(⊔
n Kn × Δn,M

))k (⊔
n P

(
Kn × Δn,M

))k (⊔
n F (Kn,M) × Δn

)k

(
P

(|K|,M))k
Fk

(|K|,M)
ϕ|

∣∣F(K,M)
∣∣,

where the top arrow maps((
l1, (σ1, t1)

)
, . . . ,

(
lk, (σk, tk)

))
to

((
γσ1(l1), t1

)
, . . . ,

(
γσk

(lk), tk
))

,

li ∈ M(G/Gσi
), which is clearly continuous, while the bottom composite maps((

l1, [σ1, t1]
)
, . . . ,

(
lk, [σk, tk]

))
to

[
γσ1(l1), t1

] + · · · + [
γσk

(lk), tk
]
,

the vertical arrow on the left maps((
l1, (σ1, t1)

)
, . . . ,

(
lk, (σk, tk)

))
to((

M∗(q̂σ1,t1)(l1), [σ1, t1]
)
, . . . ,

(
M∗(q̂σk,tk )(lk), [σk, tk]

))
,

and the vertical arrow on the right maps(
(l1σ1, t1), . . . , (lkσk, tk)

)
to

[
γσ1(l1), t1

] + · · · + [
γσk

(lk), tk
]
.

In order to verify the commutativity of the diagram it is enough to check that

ϕ
(
M(q̂σ1,t1)(l1)[σ1, t1] + · · · + M(q̂σk,tk )(lk)[σk, tk]

) = [
γσ1(l1), t1

] + · · · + [
γσk

(lk), tk
]
.

To do this, write each [σi, ti] as the class of a nondegenerate representative [σ ′
i , t

′
i ] and for simplicity, l′i =

M∗(q̂σi ,ti )(li ). Therefore, for each i there are d : r̄ → n̄, s : r̄ → m̄, r � n, m � r , such that ti = d#(t
′′
i ), dK(σi) =

sK(σ ′), and t ′ = s#(t
′′), t ′′ ∈ ◦

Δ
r

(dK is a composite of some face operators, and sK is a composite of some degener-
i i i i
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acy operators). Thus ϕ(l′1[σ1, t1]+ · · ·+ l′k[σk, tk]) = ϕ(l′1[σ ′
1, t

′
1]+ · · ·+ l′k[σ ′

k, t
′
k]) = [γσ ′

1
(l′1), t ′1]+ · · ·+ [γσ ′

k
(l′k), t ′k].

We will show that for each i, that [γσ ′
i
(l′i ), t ′i ] = [γσi

(li), ti]. We have[
γσ ′

i
(l′i ), t ′i

] = [
γσ ′

i
(l′i ), s#(t

′′
i )

]
= [(

sF
)
∗
(
γσ ′

i
(l′i )

)
, t ′′i

]
= [

γdK(σi)

(
M∗

(
ŝK
σ ′

i

)
M∗(q̂σi ,ti )(li )

)
, t ′′i

]
= [

γdK(σi)

(
M∗

(
ŝK
σ ′

i
◦ q̂σi ,ti

)
(l)

)
, t ′′i

]
.

On the other hand[
γσi

(li), ti
] = [

γσi
(li), d#(t

′′
i )

]
= [(

dF
)
∗
(
γσi

(li)
)
, t ′′i

]
= [

γdK(σi )

(
M∗

(
d̂K
σi

)
(li)

)
, t ′′i

]
.

But d̂K
σi

= ŝK
σ ′

i

◦ qσi,ti :G/Gσi
→ G/GsK(σ ′

i )
= G/Gσ ′

i
, since both are quotient functions and GsK(σ ′

i )
= Gσ ′

i
because

sK is injective.
In order to check the continuity of ψ , it is enough to consider the diagram

P(Kn,M)m × Δn P (|K|,M)m⊔
n

(
FG(Kn,M) × Δn

)
∣∣FG(K,M)

∣∣
ψ

FG
(|K|,M)

,

where the top arrow is given by(
(l1, σ1, . . . , lm, σm), t

) �−→ (
l1, [σ1, t], . . . , lm, [σm, t]),

which is continuous.
To see that ϕ′ and ψ ′ are continuous it is enough to consider the commutative diagrams

F
(|K|,M) ϕ

β|K|

∣∣F(K,M)
∣∣

|βK |

FG
(|K|,M)

ϕ′
∣∣FG(K,M)

∣∣
and

∣∣F(K,M)
∣∣ ψ

|βK |

F
(|K|,M)

β|K|∣∣FG(K,M)
∣∣

ψ ′ FG
(|K|,M)

,

where the vertical arrows are identifications. �
In order to define the topology of F(X,M) and FG(X,M) for an arbitrary G-space X, we shall need the following.

Definition 3.4. Let G be a finite group and X a pointed G-space and let S(X) denote the singular simplicial set of X

given for each q by

Sq(X) = {
σ : Δq → X | σ is a map

}
.

Then, in fact, S(X) is a simplicial pointed G-set with the usual simplicial structure. There is a natural G-map
ρX : |S(X)| → X given by ρX[σ, t] = σ(t). We may consider the group F(|S(X)|,M) and the group FG(|S(X)|,M).
The homomorphisms

ρX∗ :F
(∣∣S(X)

∣∣,M) → F(X,M) and (ρX)G∗ :FG
(∣∣S(X)

∣∣,M) → FG(X,M)

are clearly surjective. Then give both F(X,M) and FG(X,M) the respective identification topology.
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We have to verify that this topology reduces to the one defined previously, in the case of X = |K|. We need the
following.

Lemma 3.5. Let K be a simplicial G-set. Then the canonical map ρ|K| : |S(|K|)| → |K| is an identification.

Proof. Consider the map i : |K| → |S(|K|)| given by i[α, t] = [σα, t], where σα :Δn → |K| is defined by σα(s) =
[α, s]. One can easily check that this map is well defined and continuous. The composite ρ|K| ◦ i : |K| → |K| is the
identity, since ρ|K|i[α, t] = ρ|K|[σα, t] = σα(t) = [α, t]. Therefore, ρ|K| is a retraction and so it is also an identifica-
tion. �
Proposition 3.6. Let K be a simplicial pointed G-set and assume that F(|K|,M) and FG(|K|,M), as well as
F(|S(|K|)|,M) and FG(|S(|K|)|,M), have the topology given in 3.1. Then the maps

ρ|K|∗ :F
(∣∣S(|K|)∣∣,M)

� F
(|K|,M)

,

ρG
|K|∗ :FG

(∣∣S(|K|)∣∣,M)
� FG

(|K|,M)
are identifications.

Proof. We just prove the first case, since the second is similar. Consider the map ρ|K| : |S(|K|)| → |K|, which by 3.5
is an identification. We have a commutative diagram

⊔
k P

(∣∣S(|K|)∣∣,M)k ⊔
k P

(|K|,M)k

F
(∣∣S(|K|)∣∣,M)

ρ|K|∗ F
(|K|,M)

,

where the top arrow is defined by the identification ρ|K| and, therefore, it is also an identification (since we are working
in the category of k-spaces). Hence, the bottom arrow is an identification. �

Therefore, we have two different ways to describe the topology on F(|K|,M); namely, as in Definition 3.1 or as
in Definition 3.4. Thus the topology of F(|K|,M) for the geometric realization |K| of a simplicial G-set K is well
defined.

Once again, as in 3.2, for the general case we have the following.

Proposition 3.7. Let X be any G-space and let βX :F(X,M) → FG(X,M) be given on generators by βX(lx) =
γ G
x (l). Then FG(X,M) has the identification topology given by the surjective map βX .

Proof. Just consider the following commutative diagram

F
(∣∣S(X)

∣∣,M) β|S(X)|

ρX∗

FG
(∣∣S(X)

∣∣,M)
ρG

X∗

F(X,M)
βX

FG(X,M),

where the top arrow is an identification by 3.2, the right arrow is also an identification by definition. Therefore the
bottom arrow is also an identification. �
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Remark 3.8. The groups F(X,M) and FG(X,M) are topological groups. This follows from the commutativity of
the next diagram.

F
(∣∣S(X)

∣∣,M) × F
(∣∣S(X)

∣∣,M) +

ρX∗×ρX∗

F
(∣∣S(X)

∣∣,M)
ρX∗

F(X,M) × F(X,M)
+

βX×βX

F (X,M)

βX

FG(X,M) × FG(X,M)
+

FG(X,M).

In order to show now that the topological groups F(X,M) and FG(X,M) are indeed functors of X we have the
following.

Proposition 3.9. Let f :X → Y be a continuous G-map of pointed G-spaces. Then

f∗ :F(X,M) → F(Y,M) and f G∗ :FG(X,M) → FG(Y,M)

are continuous homomorphisms.

Proof. Let S(f ) :S(X) → S(Y ) be the map of simplicial G-sets induced by f . We have the following commutative
diagram.∣∣F (

S(X),M
)∣∣ |S(f )∗|

ψ ∼=

∣∣F (
S(Y ),M

)∣∣
ψ∼=

F
(∣∣S(X)

∣∣,M) |S(f )|∗

ρX∗

F
(∣∣S(Y )

∣∣,M)
ρY∗

F(X,M)
f∗

βX

F (Y,M)

βY

FG(X,M)
f G∗

FG(Y,M).

Since the top map is continuous and the maps ψ are homeomorphisms by 3.3(a), the map |S(f )|∗ is also continuous.
Moreover, by 3.4, the maps ρX∗ and ρY∗ are identifications. Hence f∗ is continuous. By 3.7, the maps βX and βY are
identifications, therefore, f G∗ is also continuous. �

Recall the definition of the transfers

tp :F(X+,M) −→ F(E+,M) and tGp :FG(X+,M) −→ FG(E+,M)

given for finite-to-one maps p :E → X in 1.10. We now study its topological counterpart.
In what follows, we shall prove that if p :E → X is an n-fold G-equivariant covering map, namely an ordinary

covering map, such that E and X are G-spaces and p is G-equivariant, then tp is continuous on F(X,M) and tGp is
continuous on FG(X,M). To that end we shall need the simplicial map

S(p) :S(E) → S(X).

For every n, the G-function Sn(p) :Sn(E) → Sn(X) is n-to-one, since every k-simplex σ :Δk → X has exactly n

liftings σ̃i :Δk → E, i = 1, . . . , n. Hence Sn(p) has transfers (see 1.10)

tSn(p) :F
(
Sn(X)+,M

) −→ F
(
Sn(E)+,M

)
,

tGSn(p) :FG
(
Sn(X)+,M

) −→ FG
(
Sn(E)+,M

)
.
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Proposition 3.10. The homomorphisms tSn(p) and tGSn(p)
define maps of simplicial sets

tS(p) :F
(
S(X)+,M

) −→ F
(
S(E)+,M

)
,

tGS(p) :FG
(
S(X)+,M

) −→ FG
(
S(E)+,M

)
.

Proof. We prove the second part. Let f : m̄ → n̄ be a morphism in the category Δ. Consider the diagram

FG
(
Sn(X),M

)(fS(X))G∗

tGSn(p)

FG
(
Sm(X),M

)
tGSm(p)

FG
(
Sn(E),M

)
(fS(E))G∗

FG
(
Sm(E),M

)
.

To see that it commutes, take a generator γ G
σ (l) ∈ FG(Sn(X),M). Using the formula (1.11), we have(

f S(E)
)G

∗ tGSn(p)

(
γ G
σ (l)

) =
∑
ι∈I

γ G
fS(E)(σ̃ι)

M∗
(
f̂ S(E)

σ̃ι

)
M∗(Ŝn(p)σ̃ι

)
(l),

where Sn(p)−1(σ )/Gσ = {[σ̃ι] | ι ∈ I}. On the other hand,

tGSm(p)

(
f S(X)

)G

∗
(
γ G
σ (l)

) =
∑
ι′∈I ′

γ G
fS(E)(σ̃ι′ )

M∗(Ŝm(p)fS(E)(σ̃ι′ )
)
M∗

(
f̂ S(X)

σ

)
(l),

where Sm(p)−1(f S(X)(σ ))/GfS(X)(σ ) = {[σ̃ι′ ] | ι′ ∈ I ′}.
We show that both composites coincide. On the one hand,

M∗
(
f̂ S(E)

σ̃ι

)
M∗(Ŝn(p)σ̃ι

) = M∗(Ŝm(p)fS(E)(σ̃ι′ )
)
M∗

(
f̂ S(X)

σ

)
by the pullback property of the Mackey functor. On the other hand, there is a bijection between(

Sn(p)
)−1

(σ )/Gσ and Sm(p)−1(f S(X)(σ )
)
/GfS(X)(σ )

induced by σ̃ι �→ σ̃ι ◦ f# = f Sn(E)(σ̃ι). This follows from the fact that the orbits Gσ σ̃ ∼= Gσ /Gσ̃ and GfSn(X)(σ )(σ̃ι ◦
f#) ∼= GfSn(X)(σ )/Gσ̃ι◦f# are isomorphic, since Gσ ∩ Gσ̃ι◦f# = Gσ̃ι

, which follows easily, since p :E → X is a G-
equivariant covering map.

The proof of the first part is similar but much simpler. �
Remark 3.11. The transfers tGSn(p)

:FG(Sn(X),M) → FG(Sn(E),M) determine also a map of simplicial sets

tGS(p)
:FG(S(X),M) → FG(S(E),M), as follows easily from the first part of the previous result.

Proposition 3.12. Let p :E → X be an n-fold G-equivariant covering map. Then

(a) tp :F(X+,M) → F(E+,M) is continuous, and
(b) tGp :FG(X+,M) → FG(E+,M) is continuous.

Proof. We prove (b). It follows from the fact that the following diagram commutes:∣∣FG
(
S(X+),M

)∣∣ |tGS(p)
|

∼=ψ

∣∣FG
(
S(E+),M

)∣∣
∼= ψ

FG
(∣∣S(X+)

∣∣,M)
(ρX+ )G∗

FG
(∣∣S(E+)

∣∣,M)
(ρE+ )G∗

FG(X+,M)
tG

FG(E+,M).

p
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Since the vertical arrows are identifications and the top arrow is continuous by Proposition 3.10, so the bottom arrow
is continuous too.

The proof of (a) is similar. �
Remark 3.13. Since tGp ◦ βX+ = βE+ ◦ tp :F(X+,M) → FG(E+,M) and βX+ and βE+ are identifications, the

transfer tGp :FG(X+,M) → FG(E+,M) is also continuous.

The functors F(X,M) and FG(X,M) are homotopy invariant. Namely, we have the following.

Proposition 3.14. If f0, f1 :X → Y are G-homotopic pointed maps, then

(a) f0∗, f1∗ :F(X,M) → F(Y,M) are homotopic homomorphisms, and
(b) f G

0∗, f
G
1∗ :FG(X,M) → FG(Y,M) are homotopic homomorphisms.

Proof. We prove (b); (a) is similar. Let H :X × I → Y be a pointed G-homotopy from f0 to f1. Define a homotopy
H by the commutative diagram

FG(X,M) × I
H

α

FG(Y,M)

FG(X × I,M),

HG∗

where α(γ G
x (l), t) = γ G

(x,t)(l). The function α is continuous since it is induced by the continuous map α : |S(X)|×I →
|S(X× I )| given by α([σ, s], t) = [σt , s], where σ ∈ Sn(X), s ∈ Δn, t ∈ I , and σt (s) = (σ (s), t). Hereby we are using
the description of the topology of FG(X,M) given in 3.4. Then H is a pointed homotopy from f G

0∗ to f G
1∗. �

Definition 3.15. Let G be a finite group, X a G-space and M a Mackey functor for G. Define

HG
q (X;M) = πq

(
FG(X+,M)

)
.

These are homotopy invariant groups.

Propositions 3.9 and 3.12 show that X �→ FG(X+,M) is a bifunctor on G-T op in the sense that continuous G-
maps f :X → Y define continuous homomorphisms (f +)G∗ :FG(X+,M) → F(Y+,M), and n-fold G-equivariant
covering maps p :E → B define continuous homomorphisms tGp :FG(X+,M) → FG(E+,M). By using Proposi-
tions 1.14 and 1.16, we have the first main theorem of this paper.

Theorem 3.16. The bifunctor FG(−+,M) on G-T op restricted to the category G-Setfin is naturally isomorphic to
the Mackey functor M . Therefore, the group functors HG

q (X;M) restricted to the category G-Setfin are naturally
isomorphic to the Mackey functor M , when q = 0, and 0 otherwise.

4. The second main theorem

The second main theorem of this paper is the following result.

Theorem 4.1. Let M be a Mackey functor and X a pointed G-space of the same homotopy type of a G-CW-complex.
Then the homotopy groups

H̃G
q (X;M) = πq

(
FG(X,M)

)
are naturally isomorphic to the (reduced) Bredon–Illman G-equivariant homology groups H̃G

q (X;M∗) with coeffi-
cients in the covariant part of M .
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In what follows we shall prove this theorem.
Let A be a simplicial abelian group. Recall that the q-homotopy group of A is defined by

πq(A) = Hq

(
N(A), ∂̃

)
,

where N(A)q = Aq ∩ kerd0 ∩ · · · ∩ kerdq−1 and ∂̃q = (−1)qdq ; here di is the ith face operator of A. On the other
hand, A can be seen as a chain complex, with ∂ :Aq → Aq−1 given by

∑q

i=0(−1)idi .
We have the following result (cf. [9, 22.1]).

Proposition 4.2. The canonical inclusion of chain complexes N(A) ↪→A induces an isomorphism in homology.

Proof. The chain complex A is filtered by chain complexes Ap , where

Ap
q = {

u ∈Aq | di(u) = 0, 0 � i < min{q,p}}.
The canonical inclusion ip :Ap+1 ↪→ Ap is a chain homotopy equivalence with inverse rp :Ap → Ap+1 given by
rp(u) = u − spdp(u), where sp is the pth degeneracy operator of A. Obviously, rp ◦ ip = 1Ap+1 ; conversely, ip ◦ rp

is chain homotopic to 1Ap via the chain homotopy hp :Ap
q → Ap

q+1 given by

hp(u) =
{

0 if q < p,

(−1)psp(u) if q � p.
�

Definition 4.3. For a pointed G-space X, let T G
q (X) be the set G-maps T :Δq × G/H → X, where G acts only on

G/H , and let T0 :Δq × G/G → X be the constant map with value the base point of X. Now let M be a Mackey
functor. Define

F̂
(
T G

q (X),M
) = {

v: T G
q (X) → M̂ | if T :Δq × G/H → X

then v(T ) ∈ M(G/H), v(T0) = 0, v(T ) = 0 for almost all T ∈ T G
q (X)

}
.

One easily sees that the groups F̂ (T G
q (X),M) are exactly Illman’s groups ĈG

q (X;M∗) [6, Def. 3.3], where M∗ denotes
the covariant coefficient system associated to the Mackey functor M . As Illman does, we say that the generator lT is
related to l′T ′ if there exists a G-function α :G/H → G/H ′ such that the following diagram commutes

Δq × G/H

T

id×α
Δq × G/H ′

T ′
X

and l′ = M∗(α)(l) ∈ M(G/H ′). Divide the group F̂ (T G
q (X),M) by the subgroup generated by the differences lT −

l′T ′ where either lT is related to l′T ′ or l′T ′ is related to lT , as well as by all elements lT such that T :Δq ×G/H → X

is constant with value the base point ∗, to obtain the group F ′(T G
q (X),M).

Lemma 4.4. The simplicial group FG(S(X),M) and the graded group F ′(T G(X),M) are chain complexes.

Proof. Since FG(S(X),M) is a simplicial abelian group, then by [9] it can be regarded as a chain complex with the
differential

∂G
q :FG

(
Sq(X),M

) −→ FG
(
Sq−1(X),M

)
given by ∂G

q =
q∑

i=0

(−1)i
(
dSi

)G

∗ ,

where dSi :Sq(X) → Sq−1(X) is defined by dSi (σ ) = σ ◦ di#.
Now let δi :F ′(T G

q (X),M) → F ′(T G
q−1(X),M) be the homomorphism given by δi[lT ] = [lT i], where T :Δq ×

G/H → X, and T i :Δq−1 × G/H → X is given by T i = T ◦ (di# × idG/H ). Then we have the differential

∂q :F ′(T G
q (X),M

) −→ F ′(T G
q−1(X),M

)
given by ∂q =

q∑
(−1)iδi . �
i=0
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In fact, the chain complex F ′(T G(X),M) is identical to Illman’s chain complex SG(X,∗;M∗) (cf. [6, p. 15]).
Then we have the following.

Theorem 4.5. The chain complexes F ′(T G(X),M) and FG(S(X),M) are isomorphic.

The proof of this theorem requires some preparation.
Let X be a pointed G-space. We shall show that the groups F ′(T G

q (X),M) have the universal property of Proposi-
tion 1.6(a) with respect to the G-set Sq(X). Namely, take for each σ ∈ Sq(X) the homomorphisms νσ :M(G/Gσ ) →
F ′(T G

q (X),M) given by νσ (l) = [lTσ ], where Tσ :Δq × G/Gσ → X is defined by Tσ (t, [g]) = gσ(t). Then, for the
base point σ0 ∈ Sq(X), νσ0 = 0 and νgσ = νσ ◦ M∗(Rg). Thus the universal property of F ′(T G

q (X),M) is given by
the following.

Proposition 4.6. If A is an abelian group and there is a family of homomorphisms fσ :M(G/Gσ ) → A, σ ∈ Sq(X),
satisfying fσ0 = 0 and fgσ = fσ ◦ M∗(Rg), then there is a unique f :F ′(T G(X),M) → A such that f ◦ νσ = fσ .
Thus we have

M(G/Gσ )
νσ

fσ

F ′(T G
q (X),M

)
f

A.

Proof. Given a G-map T :Δq × G/H → X, define σT :Δq → X by σT (t) = T (t, [e]H ), where e ∈ G is the neutral
element.

Define f :F ′(T G(X),M) → A by f [lT ] = fσT
M∗(p)(l), where p :G/H → G/GσT

is the quotient function. To
show that this is well defined, suppose lT is related to l′T ′. We consider two cases.

We assume first that H ⊂ H ′ and that α :G/H → G/H ′ is the quotient function. Then T ′ ◦ (id×α) = T ,
thus T (t, [g]H ) = T ′(t, [g]H ′), and l′ = M∗(α)(l). Notice that σT ′ = σT , so that we have H ⊂ H ′ ⊂ GσT

, and so
p′ ◦ α = p. Therefore, f [l′T ] = fσT ′ M∗(p′)M∗(α)(l) = fσT

M∗(p)(l) = f [lT ].
Now assume that H ′ = gHg−1 and α = Rg−1 :G/H → G/H ′. Then σT ′ = gσT , p′ ◦ Rg−1 = Rg−1 ◦ p, and l′ =

M̃∗(Rg−1)(l). Hence f [l′T ′] = fσT ′ M∗(p′)M∗(Rg−1)(l) = fgσT
M∗(Rg−1)M∗(p)(l) = fσT

M∗(p)(l) = f [lT ].
Clearly, f is the unique homomorphism such that f ◦ νσ = fσ for all σ ∈ Sq(X). �

Proof of Theorem 4.5. The isomorphism β :F ′(T G
q (X),M) → FG(Sq(X),M) provided by the universal property

proved above, is given by

[lT ] �−→ γ G
σT

(
M∗(p)(l)

)
,

where T :Δq × G/H → X, p :G/H → G/GσT
is the quotient function, and l ∈ M(G/H). In order to show that β is

a chain map, consider the following diagram:

F ′(T G
q (X),M

) β

∼=
δi

FG
(
Sq(X),M

)
(dSi )G∗

F ′(T G
q−1(X),M

) β

∼= FG
(
Sq−1(X),M

)
.

(4.7)

By Definition 1.7, we have that (dSi )G∗ ◦ γ G
σT

= γ G

dSi (σT )
◦ M∗((̂dSi )

σT
). Now consider a map T :Δq × G/H →

X; since σT :Δq → X is given by σT (t) = T (t, [e]H ), then σ i
T = dSi (σT ). Furthermore, the following diagram is

commutative:

G/H

p

q

G/Gσi
T

G/GdSi (σT ).

G/Gσ
̂(dSi )

σ
T T
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Using this, we can write the value of (dSi )G∗ ◦ β on a generator [lT ] in F ′(T G
q (X),M) as follows:(

dSi
)G

∗ β[lT ] = (
dSi

)G

∗ γ G
σT

M∗(p)(l)

= γ G

dSi (σT )
M∗

((̂
dSi

)
σT

)
M∗(p)(l)

= γ G
σ

T i
M∗(q)(l).

Therefore, diagram (4.7) commutes. Since ∂G as well as ∂ are linear combinations of the operators (dSi )G∗ and δi ,
respectively, then β is a chain map. �
Proposition 4.7. Let X be a pointed G-space of the same homotopy type of a G-CW-complex. Then ρ : |S(X)| → X

given by ρ[σ, t] = σ(t) is a G-homotopy equivalence.

Proof. Let H ⊂ G be any subgroup. Note first, as already mentioned before, that the identity induces a homeo-
morphism |KH | ≈ |K|H for any simplicial G-set K . On the other hand, one also has a canonical isomorphism of
simplicial sets S(XH ) ∼= S(X)H . We have that the map ρ : |S(X)| → X, being natural, is a G-map. By the naturality
of the map ρ, it restricts to ρH : |S(XH )| → XH , which by a theorem of Milnor is a homotopy equivalence. Therefore,
the map ρH : |S(X)|H ≈ |S(XH )| → XH is a homotopy equivalence for every H ⊂ G. Then, by a result of Bredon
[3, II(5.5)], ρ is a G-homotopy equivalence. �

Note that a nice consequence of the previous result is the following.

Proposition 4.8. Let X be a pointed G-space of the same homotopy type of a G-CW-complex. Then FG(X,M) has
the same homotopy type of a CW-complex.

Proof. This follows from 3.3, 4.7, and the homotopy invariance 3.14. �
Proof of Theorem 4.1. We shall give an isomorphism

H̃G
q (X;M) ∼= Hq

(
FG

(
Sq(X),M

)) −→ πq

(
FG(X,M)

) = H̃G
q (X;M).

Here the left-hand side is the Bredon–Illman (reduced) homology of X, and the first isomorphism follows from the
natural isomorphism of Theorem 4.5.

To construct the arrow, we shall give several isomorphisms as depicted in the following diagram.

Hq

(
FG

(
S(X),M

)) i∗
∼= πq

(
FG

(
S(X),M

))
Ψ
∼= πq

(
S

(∣∣FG
(
S(X),M

)∣∣))
Φ∼=

πq

(
FG(X,M)

) ∼=
(ρG∗ )∗

πq

(
FG

(∣∣S(X)
∣∣,M)) ∼=

ψ∗ πq

(∣∣FG
(
S(X),M

)∣∣).
By Proposition 4.2, i∗ is an isomorphism. In particular, this shows that every cycle in H̃G(X;M) is represented by a
chain u, all of whose faces are zero. We call this a special chain.

The homomorphism Ψ , which is given by Ψ (u)[t] = [u, t], where u is a special q-chain and t ∈ Δq , is an isomor-
phism, as follows from [9, 16.6].

In order to define Φ , we must express Ψ (u) as a map γ : (Δ[q], Δ̇[q]) → (S|FH (S(X),M)|,∗). By the Yoneda
lemma, γ is the unique map such that γ (δq) = Ψ (u), where δq = id : q̄ → q̄ . The homomorphism Φ , defined by
Φ[γ ][f, s] = γ (f )(s), for f ∈ Δ[q]n and s ∈ Δn, is given by the adjunction between the realization functor and the
singular complex functor (see [9, 16.1]).

That ψ∗ is an isomorphism follows from Proposition 3.3. Finally, the homomorphism (ρG∗ )∗ is an isomorphism by
4.7 and 3.14. �

Chasing along the diagram and using the homeomorphism |Δ[q]| → Δq given by [f, t] �→ f#(t), one obtains the
following.
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Corollary 4.9. The isomorphism Hq(FG(S(X),M)) → πq(FG(X,M)) sends a homology class [u] represented by
a special chain u = ∑

α γ G
σα

(u(σα)) to the homotopy class [ū] given by ū(t) = ∑
α γ G

σα(t)(M∗(pα)(u(σα))), where
pα :G/Gσα → G/Gσα(t) is the quotient function and S(X)/G = {[σα]}.

In [11, IX.5.2] it is proved that whenever the coefficients of a Z-graded G-equivariant homology theory can be
extended to a Mackey functor, then the grading can be extended to an RO(G)-grading (see also [7]). Therefore we
have the following:

Theorem 4.10. The grading of the theory HG∗ (−;M) can be extended to an RO(G)-grading.

Example 4.11. We shall give here the example of the previous constructions for the Mackey functor ML, where
L is a G-module. We define ML(G/H) = LH . Let H ⊂ K and q :G/H → G/K be the quotient map. Then
(ML)∗(q) :LH → LK is given by (ML)∗(q)(l) = ∑r

i=1 ki l, where K/H = {[ki]}ri=1. Moreover, (ML)∗(q) :LK →
LH is the inclusion.

On the other hand, let Rg−1 :G/H → G/gHg−1 be right translation by g−1. Then (ML)∗(Rg−1) :LH → LgHg−1

is given by (ML)∗(Rg−1)(l) = gl. Moreover, (ML)∗(Rg−1) :LgHg−1 → LH is given by (ML)∗(Rg−1)(l) = g−1l.
Let X be a pointed G-space. The group FG(X,ML) consists of pointed almost-zero G-equivariant functions

u :X → M̂L = L. Hence, algebraically, this group is equal to the group FG(X,L) defined in [1]. However, as a
topological group FG(X,ML) need not be equal to FG(X,L), since their topologies are given in very different ways.
They only have the same homotopy groups, since they both yield they same equivariant homology theory. Therefore,
they are homotopy equivalent, because their Postnikov invariants are zero.

5. Mackey functors of R-modules and homological Mackey functors

We start this section by recalling what is a morphism between Mackey functors. Let M and N be Mackey functors
for the finite group G. A morphism from M to N is a transformation ϕ :M → N , that is natural with respect to both
the covariant and the contravariant structures. Namely, if f :S → T is a G-function between G-sets, then

ϕT ◦ M∗(f ) = N∗(f ) ◦ ϕS :M(S) −→ N(T ),

N∗(f ) ◦ ϕT = ϕS ◦ M∗(f ) :M(T ) −→ N(S).

Let X be a pointed G-space and ϕ :M → N a morphism of Mackey functors. We have the following.

Proposition 5.1. Let X be a pointed G-space. If ϕ :M → N is a morphism of Mackey functors, then ϕG∗ :FG(X,M) →
FG(X,N) is a continuous homomorphism of topological groups. This converts M �→ FG(X,M) into a covariant
functor from the category of Mackey functors for G to the category of topological abelian groups.

Proof. The naturality of ϕ guarantees that the induced function

ϕ̃n :FG
(
S(X),M

) −→ FG
(
S(X),N

)
,

given by ϕ̃n(γ
G
σ (l)) = γ G

σ (ϕG/Gσ (l)), determines a morphism ϕ̃ of simplicial groups. Therefore ϕ̃ determines a con-
tinuous homomorphism

|ϕ̃| :
∣∣FG

(
S(X),M

)∣∣ −→ ∣∣FG
(
S(X),N

)∣∣.
Using the isomorphisms of Proposition 3.3, one easily verifies that |ϕ̃| corresponds to the homomorphism

ϕG∗ :FG
(∣∣S(X)

∣∣,M) −→ FG
(∣∣S(X)

∣∣,N);
hence this is continuous. Since FG(X,M) and FG(X,N) have the identification topology induced by the maps (ρX)G∗ ,
the result follows. �

Let R be a commutative ring with one. We shall consider Mackey functors with values in the category R-Mod
of left R-modules. Thus, each r ∈ R behaves like morphism r :M → M between the underlying Mackey functors of
groups. By Proposition 5.1, we have the next.
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Corollary 5.2. Let X be a pointed G space and M be a Mackey functor with values in R-Mod. Then FG(X,M) is
a topological R-module. Thus X �→ FG(X,M) is a functor from the category of pointed G-spaces to the category of
topological R-modules.

Remark 5.3. It is not difficult to verify that all results in the previous sections hold as well for Mackey functors with
values in R-modules.

In what follows, we shall always assume that M is a Mackey functor for a finite group G with values in R-Mod.
Let now p :E → X be an n-fold G-equivariant covering map. We shall compute the composite pG∗ ◦ tGp :

FG(X+,M) → FG(X+,M), which will have a nice formula when M is a homological Mackey functor. To start,
recall that the transfer tGp is the restriction to FG(X+,M) of the transfer tp :F(X+,M) → F(E+,M), which for
monomials is given by

tp(lx) =
∑

a∈p−1(x)

M∗(p̂a)(l)a where l ∈ M(G/Gx). (5.4)

Let γ G
x (l) be a generator of FG(X+,M). Then

pG∗ tGp
(
γ G
x (l)

) = pG∗ tGp

(
m∑

i=1

M∗(Rg−1
i

)(l)gix

)

= pG∗

(
m∑

i=1

tGp
(
M∗(Rg−1

i
)(l)gix

))
.

Using (5.4), the last term is equal to

pG∗

(
m∑

i=1

∑
a∈p−1(gix)

M∗(p̂a)M∗(Rg−1
i

)(l)gix

)
.

By the definition of pG∗ , we get the following.

Proposition 5.4. Let M be a Mackey functor and let p :E → X be an n-fold G-equivariant covering map. Then

pG∗ tGp
(
γ G
x (l)

) =
∑
κ∈K

γ G
p(aκ )

(
M∗(p̂aκ )M

∗(p̂aκ )M∗
(
R

g−1
iκ

(l)
))

,

where p−1(Gx)/G = {[aκ ] | κ ∈ K} and p(aκ) = giκ x.

Definition 5.5. A Mackey functor M is said to be homological if whenever K ⊂ H ⊂ G and q :G/H → G/K is the
quotient function, one has M∗(q)M∗(q) = [H :K], that is, multiplication by the index of K in H .

Remark 5.6. Thévenaz and Webb [16] call such a Mackey functor a cohomological Mackey functor, since they
consider as the transfer the covariant part, contrary to what we do.

Coming back to the formula of Proposition 5.4, if M is a homological Mackey functor, then the composite
M∗(p̂aκ )M

∗(p̂aκ ) is multiplication by the index [Gp(aκ ):Gaκ ]. Since γ G
p(aκ )

(M∗(Rg−1
iκ

(l))) = γ G
x (l), by 3.16 we have

the next.

Theorem 5.7. Let M be a Mackey functor. Then the formula

pG∗ tGp
(
γ G
x (l)

) =
∑
κ∈K

[
Gp(aκ ):Gaκ

]
γ G
x (l),

where p−1(Gx)/G = {[aκ ] | κ ∈ K} and p(aκ) = giκ x, holds for every n-fold G-equivariant covering map p :E → X

(n � 0) if and only if M is homological.
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Assume now that our base ring R is a field k. Thévenaz and Webb [16] prove that a Mackey functor M for G with
values in k-vector spaces, such that the field k has characteristic zero or prime to |G|, is homological if and only if M

is the fixed point Mackey functor ML of some kG-module L. That is M(G/H) = LH . Using this and 5.7, we have
the following.

Theorem 5.8. Let M be a Mackey functor for G with values in k-vector spaces, such that the field k has characteristic
zero or prime to |G|. Then the formula

pG∗ tGp
(
γ G
x (l)

) =
∑
κ∈K

[Gp(aκ ):Gaκ ]γ G
x (l),

where p−1(Gx)/G = {[aκ ] | κ ∈ K} and p(aκ) = giκ x, holds for any n-fold G-equivariant covering map p :E → X

if and only if M is the fixed point Mackey functor ML of some kG-module L.

In this case, the theory HG(−;ML) = HG(−; L̄) was studied in [1].
To finish, we have the following immediate consequence of Theorem 5.7.

Corollary 5.9. Let p :E → X be n-fold G-equivariant covering map such that G acts freely on X, and let M be a
homological Mackey functor. Then the composites

pG∗ ◦ tGp :FG(X+,M) −→ FG(X+,M),

pG∗ ◦ τG
p : HG∗ (X,M) −→ HG∗ (X,M)

are multiplication by n.

Note added in proof

The referee brought to our attention the recent paper [13] of Z. Nie, where a result similar to Theorem 4.1 was
obtained using different methods.
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