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0 Introduction

Let G be a finite group. The main objective of this paper is to study ramified
covering G-maps and to construct a transfer for them in Bredon-Illman equiv-
ariant homology with coefficients in a homological Mackey functor M . We show
that this transfer has many of the properties of other known transfers. Notice
that in order to have the property that the composite of the transfer with the
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projection is multiplication by the multiplicity of the ramified covering map, M
must be a homological Mackey functor. The transfer for any ramified covering
G-map will be given by a homomorphism between certain topological abelian
groups. It cannot be given by a stable transfer map (see Remark 5.3).

To construct the transfer, we shall use the homotopical definition of Bredon-
Illman homology HG

∗ (−;L) given in [4], when L is a G-module, and of HG
∗ (X;M)

given in [5] when M is a homological Mackey functor. Namely, to each pointed
G-space X , a G-module L and a homological Mackey functor M for G,
we associate topological abelian groups FG(X,L) and FG(X,M) such that
πq(FG(X,L)) ∼= H̃G(X;L) and πq(FG(X,M)) ∼= H̃G(X;M). The topology in
FG(X,L) is a generalization of the usual topology of the infinite symmetric
product SP∞X . The topology in FG(X,M) is defined using the singular sim-
plicial set S(X) associated to X . With these topologies, the homomorphisms
induced by any pointed G-map f : X −→ Y turn out to be continuous. For
a ramified covering G-map p : E −→ X we define transfer homomorphisms
tGp : FG(X,L) −→ FG(E,L) and tGp : FG(X,M) −→ FG(E,M). The first one
is always continuous. When we take coefficients in a homological Mackey func-
tor, we prove that the transfer is continuous provided that the spaces involved
are strong ρ-spaces. The class of strong ρ-spaces contains all simplicial G-
complexes (Proposition 4.9), as well as the class of G-ENRs (Proposition 4.11)
and the class of G-CW-complexes, that are either locally compact, countable
and finite-dimensional (Proposition 4.12) or regular (Proposition 4.13).

This approach to the transfer was already used by the authors in [1] in the
nonequivariant case for singular homology.

The paper is organized as follows. In Section 1, we define a transfer tGp :
FG(C,M) −→ FG(A,M) for certain finite-to-one G-functions p : A −→ C
between G-sets, which we call n-fold G-functions with multiplicity (1.1). The
reader should think of them as discrete ramified covering G-maps. We show
that this transfer has all the usual properties, namely the pullback property
(2.15), normalization (2.17), additivity (2.20), and that its composite with pG∗
is multiplication by n (2.24). In Section 3, we define the concept of a ramified
covering G-map p : E −→ X . This is an n-fold G-function with multiplicity
and some topological properties. This generalizes to the equivariant case the
definition in [11]. For any G-module L, using the topology on FG(X,L) de-
scribed in [4], we prove that the transfer constructed in the previous section is
continuous for any p (3.6). In Section 4, using the continuity of the transfer in
the case of coefficients in a G-module L, we prove the continuity of the transfer
with coefficients in a homological Mackey functor M , provided that E and X
are strong ρ-spaces (4.7).
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Finally, in Section 5, we pass to Bredon-Illman homology (applying the ho-
motopy-group functors) and give the transfer and its properties in homology.

1 The transfer in the category of G-sets

In this section we shall define the transfer for a certain family of G-functions.

Definition 1.1 By an n-fold G-function with multiplicity we understand a
G-function p : A −→ C between G-sets with finite fibers, together with a G-
invariant function µ : A −→ N, called multiplicity function, such that for each
x ∈ C , ∑

a∈p−1(x)

µ(a) = n .

We say that the n-fold G-function with multiplicity p : A −→ C is pointed if
the sets A and C have base points, which are fixed under the G-action, and p
is a pointed function.

Definition 1.2 Given a G-function p : A −→ C with multiplicity µ : A −→
N, one may define the the G-function

ϕp : C −→ SPnA

by
ϕp(x) = 〈a1, . . . , a1︸ ︷︷ ︸

µ(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µ(ar)

〉 .

This function will play an important role in Section 3.

Example 1.3 Let C be a G-set and consider the G-function π : Cn×Σnn −→
SPnC given by π〈x1, . . . , xn; i〉 = 〈x1, . . . , xn〉, where G acts diagonally on Cn

and on SPnC , and trivially on the set n = {1, 2, . . . , n}. Define µ : Cn×Σnn −→
N by

µ〈x; i〉 = #x−1(x(i)) ,

where one regards x as a function n −→ C . Then p is an n-fold G-function with
multiplicity, since the sets x−1x(i) form a partition of the set n. Furthermore,
µ is clearly G-invariant. The function ϕπ : SPnC −→ SPn(Cn ×Σn n) is given
in this case by

ϕπ〈x1, . . . , xn〉 = 〈〈x1, . . . , xn; 1〉, . . . , 〈x1, . . . , xn;n〉〉 .
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Remark 1.4 We can always assume that an n-fold G-function with multiplic-
ity is pointed by adding isolated points ∗ to A and to C which remain fixed
under the G-action and by defining µ(∗) = n. Therefore we shall always con-
sider pointed n-fold G-functions with multiplicity without saying it explicitly.

We now recall the definition of the groups F (D,M) and FG(D,M) for a
pointed G-set D and a Mackey functor M for the group G. First recall that a
Mackey functor consists of two functors, one covariant and one contravariant,
both with the same object function M : G-Setfin −→ Ab. If α : S −→ T is a
G-function between finite G-sets, we denote the covariant part in morphisms
by M∗(α) : M(S) −→M(T ) and the contravariant part by M∗(α) : M(T ) −→
M(S). The functor has to be additive in the sense that the two embeddings
S ↪→ S t T ←↩ T into the disjoint union of G-sets define an isomorphism
M(S t T ) ∼= M(S)⊕M(T ) and if one has a pullback diagram of G-sets

(1.5) U
β̃ //

α̃
��

S

α

��
T

β
// V ,

then

(1.6) M∗(β̃) ◦M∗(α̃) = M∗(α) ◦M∗(β) .

By the additivity property, the Mackey functor M is determined by its restric-
tion M : O(G) −→ Ab, where O(G) is the full subcategory of G-orbits G/H ,
H ⊂ G. A particular role will be played by the G-function Rg−1 : G/H −→
G/gHg−1 , given by right translation by g−1 ∈ G, namely

Rg−1(g′H) = g′Hg−1 = g′g−1(gHg−1) .

We shall often denote the coset gH by [g]H or simply by [g], if there is no
danger of confusion. Observe that if C is a G-set and x ∈ C , then the canonical
bijection G/Gx −→ G/Ggx is precisely Rg−1 , where as usual Gx denotes the
isotropy subgroup of x, namely the maximal subgroup of G that leaves x fixed.

Consider the set M̂ = ∪H⊂GM(G/H). Then F (D,M) consists of functions
u : D −→ M̂ such that u(y) ∈ M(G/Gy), u(∗) = 0, and u(y) = 0 for all but
a finite number of elements y ∈ D . The canonical generators of this group are
functions denoted by ly given by

(ly)(y′) =

{
l if y′ = y ,

0 otherwise,
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where l ∈M(G/Gy) and y ∈ D−{∗}. The group F (D,M) has a natural (left)
action of G given by (gu)(y) = M∗(Rg−1)(u(g−1y)). Define FG(D,M) as the
subgroup of the fixed points of F (C,M) under this G-action. The canonical
generators of FG(D,M) are functions denoted by γGy (l) given by

γGy (l) =
m∑
j=1

M∗(Rg−1
j

)(l)(gjy) ,

where l ∈ M(G/Gy), y ∈ D − {∗}, and G/Gy = {[gj ] | j = 1, . . . ,m}. Given
a pointed G-function f : C −→ D , the homomorphism fG∗ : FG(C,M) −→
FG(D,M) is given on the generators by

fG∗ (γGx (l)) = γGf(x)M∗(f̂x)(l) ,

where f̂x : G/Gx −→ G/Gf(x) is the canonical quotient function (see [3, 5] for
details).

Definition 1.7 Let p : A −→ C be a n-fold G-function with multiplicity µ,
and let M be a Mackey functor. Define a homomorphism

tp : F (C,M) −→ F (A,M) ,

by
tp(u)(a) = µ(a)M∗(p̂a)u(p(a)) ,

where u ∈ F (C,M) and a ∈ A. If we assume that u ∈ FG(C,M), i.e., that
u(gx) = M∗(Rg−1)(u(x)), then

tp(u)(ga) = µ(ga)M∗(p̂ga)(u(p(ga)))
= µ(a)M∗(p̂ga)M∗(Rg−1)(u(p(a)))
= µ(a)M∗(Rg−1)M∗(p̂a)(u(p(a)))
= M∗(Rg−1)(tp(u)(a)) ,

where the next to the last equality follows from the pullback property of the
Mackey functor. Thus tp(u) ∈ FG(A,M). Therefore, the homomorphism tp
restricts to a transfer homomorphism

tGp : FG(C,M) −→ FG(A,M) .

Remark 1.8 Let p : A −→ C be a n-fold G-function with multiplicity µ. The
isotropy group Gx acts on p−1(x) and the inclusion p−1(x) ↪→ p−1(Gx) clearly
induces a bijection p−1(x)/Gx −→ p−1(Gx)/G. Let {aι} ⊂ p−1(x) be a set of
representatives one for each Gx -orbit. Let γGx (l) be a generator of FG(C,M).
Since the value of this function is zero on points which do not belong to the
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orbit Gx, and γGx (l)(x) = l . One can give the transfer tGp on the generators
γGx (l) by the formula

(1.9) tGp (γGx (l)) =
∑

[aι]∈p−1(x)/Gx

µ(aι)γGaι
(M∗(p̂aι)(l)) .

2 Properties of the transfer

In this section we shall give some properties of the transfer that do not depend
on the topology. We start with a definition.

Definition 2.1 Let p : A −→ C and p′ : A′ −→ C ′ be n-fold G-functions
with multiplicity functions µ and µ′ , respectively. A morphism from p to p′ is
a pair of G-functions (f̃ , f) such that

(a) the following diagram commutes:

A
f̃ //

p

��

A′

p′

��
C

f
// C ′ ,

(b) for each x ∈ C , the restriction f̃ |p−1(x) : p−1(x) −→ p′−1(f(x)) is surjec-
tive,

(c) for each x ∈ C and a′ ∈ p′−1(f(x)), one has the equality

(2.2) µ′(a′) =
∑

p(a)=x , f̃(a)=a′

µ(a) , and

(d) for each a ∈ A one has the formula

(2.3) Ga = Gp(a) ∩Gf̃(a)
.

We have the next useful characterization of a morphism of ramified covering
G-maps.

Proposition 2.4 Let p : A −→ C and p′ : A′ −→ C ′ be n-fold G-functions
with multiplicity, and let f : C −→ C ′ and f̃ : A −→ A′ be G-functions such
that p′◦ f̃ = f ◦p and for a ∈ A, Ga = Gp(a)∩Gf̃(a)

. Then (f̃ , f) is a morphism

from p to p′ if and only if

ϕp′ ◦ f = SPnf̃ ◦ ϕp : C −→ SPnA′ ,

where ϕp and ϕp′ are as defined in 1.2.
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Proof: Assume that ϕp′ ◦ f = SPnf̃ ◦ ϕp . This clearly implies that f̃ is
surjective on fibers. Take x ∈ C and let {a′1, . . . , a′k′} = p′−1(f(x)). More-
over, let {a1 1, . . . , a1 r1} = f̃−1(a′1),...,{ak′ 1, . . . , ak′ rk′} = f̃−1(a′k′). Hence
p−1(x) = {a1 1, . . . , a1 r1 , . . . , ak′ 1, . . . , ak′ rk′}. Writing down SPnf̃(ϕp(x)) us-
ing this description of p−1(x), which is equal to ϕp′(f(x)), one easily obtains
the equality (2.2).

Assuming now (b) and (c) in the definition and using the same labels for the
elements of the fibers as in the first part, one obtains the desired equality.

Examples 2.5 There are two interesting examples of morphisms between G-
functions with multiplicity:

(a) Let p : A −→ C be a n-fold G-function with multiplicity µ, and let
f : D −→ C be a G-function. Consider the pullback diagram

(2.6) f∗A
f̃ //

q

��

A

p

��
D

f
// C ,

where f∗A = D ×C A = {(y, a) | f(y) = p(a)}. Clearly, q is also an
n-fold G-function with multiplicity µ′ given by µ′(y, a) = µ(a), since
µ′(g(y, a)) = µ′(gy, ga) = µ(ga) = µ(a) = µ′(y, a). Consider the restric-
tion of f̃ from the fiber q−1(y) to the fiber p−1(f(y)). This function
induces a surjective function

q−1(y)/Gy −→ p−1(f(y))/Gf(y) .

Clearly, conditions (a), (b), and (c) in the previous definition hold. Fur-
thermore G(y,a) = Gy ∩Ga , thus condition (d) also holds. Hence (f̃ , f) is
a morphism from q to p.

(b) Let C and D be G-sets and let f : C −→ D be G-equivariant. We say
that f is n-permutable if the equality

(2.7) G〈x1,...,xn;i〉 = G〈x1,...,xn〉 ∩G〈f(x1),...,f(xn);i〉

holds in terms of isotropy groups, where 〈x1, . . . , xn; i〉 ∈ Cn ×Σn n,
〈x1, . . . , xn〉 ∈ SPnC , and 〈f(x1), . . . , f(xn); i〉 ∈ Dn×Σn n. If π : Cn×Σn

n −→ SPnC and π′ : Dn ×Σn n −→ SPnD are as in 1.3, then the pair of
G-functions (fn×Σn idn,SPnf) is a morphism from π to π′ . To see this,
we use Proposition 2.4 above. Namely, we have to show that

ϕπ′ ◦ SPnf = SPn(fn ×Σn idn) ◦ ϕπ : SPnC −→ SPn(Dn ×Σn n) .
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For any 〈y1, . . . , yn〉 ∈ SPnD , we have,

ϕπ′〈y1, . . . , yn〉 = 〈〈y1, . . . , yn; 1〉, . . . , 〈y1, . . . , yn;n〉〉 ,

thus, if we take 〈x1, . . . , xn〉 ∈ SPnC , we have

ϕπ′(SPnf〈x1, . . . , xn〉) = 〈〈f(x1), . . . , f(xn); 1〉, . . . , 〈f(x1), . . . , f(xn);n〉〉 .

On the other hand, we have

ϕπ〈x1, . . . , xn〉 = 〈〈x1, . . . , xn; 1〉, . . . , 〈x1, . . . , xn;n〉〉

and so

SPn(fn×Σn idn)(ϕπ〈x1, . . . , xn〉) = 〈〈f(x1), . . . , f(xn); 1〉, . . . , 〈f(x1), . . . , f(xn);n〉〉 .

Thus both are equal.

The following is the naturality property of the transfer.

Proposition 2.8 Let (f̃ , f) be a morphism from p : A −→ C to p′ : A′ −→ C ′ .
Then the following diagram commutes:

FG(C,M)
fG
∗ //

tGp
��

FG(C ′,M)

tG
p′

��
FG(A,M)

f̃G
∗

// FG(A′,M) .

Proof: First note that the function f̃ induces a surjection

p−1(x)/Gx � q−1(f(x))/Gf(x) ,

This surjection can be written as the composite

p−1(x)/Gx
[f̃ ]
� p′−1(f(x))/Gx

q
� p′−1(f(x))/Gf(x) .

This allows us to write the elements of these quotient sets as follows. Let

p′−1(f(x))/Gf(x) = {[a′j ] | j = 1, . . . s} .

By [5, Lemma (6.6)], one can write

p′−1(f(x))/Gx ∼= tsj=1Gx\Gf(x)/Ga′j ,

where Gx\Gf(x)/Ga′j = {[gνj ] | ν = 1, . . . , sj} and

p′−1(f(x))/Gx = {[gνj a′j ] | ν = 1, . . . , sj , j = 1, . . . s} .
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Therefore,

p−1(x)/Gx = {[aνjα ] | α = 1, . . . , rνj , ν = 1, . . . , sj , j = 1, . . . s} ,

where the elements aνjα ∈ p−1(x) ∩ f̃−1(gνj a
′
j) are such that

{[aνjα ] | α = 1, . . . , rνj } = [f̃ ]−1([gνj a
′
j ]) .

Hence we have

(2.9) f̃G∗ t
G
p (γGx (l)) =

s,sj ,r
ν
j∑

j,ν,α=1,1,1

µ(aνjα )γGgν
j a

′
j
M∗(

̂̃
f
aνj

α
)M∗(p̂

aνj
α

)(l) .

Since γGgν
j a

′
j

= γGa′j
◦M∗(Rgν

j
), we can rewrite (2.9) as

(2.10) f̃G∗ t
G
p (γGx (l)) =

s,sj ,r
ν
j∑

j,ν,α=1,1,1

µ(aνjα )γGa′jM∗(Rgν
j
)M∗(

̂̃
f
aνj

α
)M∗(p̂

aνj
α

)(l) .

On the other hand, we have

(2.11) tGp′f
G
∗ (γGx (l)) =

s∑
j=1

µ′(a′j)γ
G
a′j
M∗(p̂′a′j )M∗(f̂x)(l) .

In order to compare these two sums, consider the pullback diagram

G/Gx ×G/Gf(x)
G/Ga′j

τ //

π

��

G/Ga′j

p̂′a′
j

��
G/Gx

f̂x

// G/Gf(x) .

By [5, Lemma (6.1)], there is a bijection

ϕ :
sj

t
ν=1

G/Gx ∩ gνjGa′j (g
ν
j )

−1 ≈−→ G/Gx ×G/Gf(x)
G/Ga′j ,

where the elements gνj are as above. Set ϕνj = ϕ|G/Gx∩gν
jGa′

j
(gν

j )−1 .

By [5, Lemma (6.3)], any element w ∈M(G/Gx×G/Gf(x)
G/Gbj ) can be written

as

w =
sj∑
ν=1

M∗(ϕνj )M
∗(ϕνj )(w) .

Set πνj = π ◦ ϕνj and τνj = τ ◦ ϕνj . Consequently,

M∗(p̂′a′j )M∗(f̂x)(l) = M∗(τ)M∗(π)(l) =
sj∑
ν=1

M∗(τνj )M∗(πνj )(l) .
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Replacing this in (2.11), we obtain

(2.12) tGp′f
G
∗ (γGx (l)) =

s,sj∑
j,ν=1,1

µ′(a′j)γ
G
a′j
M∗(τνj )M∗(πνj )(l) .

Let ρνj : G/Gx∩gνjGa′j (g
ν
j )

−1 � G/gνjGa′j (g
ν
j )

−1 be the quotient function. Since
τνj = Rgν

j
◦ ρνj , we can rewrite (2.12) as

(2.13) tGp′f
G
∗ (γGx (l)) =

s,sj∑
j,ν=1,1

µ′(a′j)γ
G
a′j
M∗(Rgν

j
)M∗(ρνj )M

∗(πνj )(l) .

By (2.3), we have that Gx ∩ gνjGa′j (g
ν
j )

−1 = G
aνj

α
, and therefore, πνj = p̂

aνj
α

and

ρνj = ̂̃
f
aνj

α
. Hence (2.13) becomes

(2.14) tGp′f
G
∗ (γGx (l)) =

s,sj∑
j,ν=1,1

µ′(a′j)γ
G
a′j
M∗(Rgν

j
)M∗(

̂̃
f
aνj

α
)M∗(p̂

aνj
α

)(l) .

By Definition 2.1 (c) and the G-invariance of µ′ we have that

µ′(a′j) = µ′(gνj a
′
j) =

rν
j∑

α=1

µ(aνjα ) .

Replacing this in (2.14), we obtain (2.10). Therefore,

f̃G∗ ◦ tGp = tGp′ ◦ fG∗ : FG(C,M) −→ FG(A′,M) .

By Example 2.5(a), the pullback property is now a consequence of the nat-
urality property.

Proposition 2.15 Let p : A −→ C be a n-fold G-function with multiplicity
µ and let f : D −→ C be a G-function. Then

tGp ◦ fG∗ = f̃G∗ ◦ tGq : FG(D,M) −→ FG(A,M) ,

where f̃ and q are as in the pullback diagram (2.6).

From Example 2.5(b), we obtain another consequence of the naturality property
as follows.

Proposition 2.16 Let f : C −→ D be an n-permutable G-function. Then

(fn ×Σn idn)G∗ ◦ tGπ = tGπ′ ◦ (SPnf)G∗ : FG(SPnC,M) −→ FG(Dn ×Σn n,M) .
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The normalization property is elementary and it is as follows.

Proposition 2.17 If p : A = C −→ C is the identity function with multiplic-
ity function µ constant equal to 1, then tGp : FG(C,M) −→ FG(C,M) is the
identity too.

The additivity property is based on the following.

Proposition 2.18 Let Cα , α ∈ A, be a family of pointed G-sets. Then there
is an isomorphism of abelian groups

FG(
∨
α∈A

Cα,M) ∼=
⊕
α∈A

FG(Cα,M) .

Proof: Let iα : Cα −→
∨
Cα be the inclusion into the wedge of the pointed

sets Cα . By the universal property of the direct sum, the homomorphisms iGα∗
induce a homomorphism ϕ :

⊕
FG(Cα,M) −→ FG(

∨
Cα,M).

Take now x ∈
∨
Cα and let xα ∈ Cα be such that iα(xα) = x. Consider the fam-

ily of homomorphisms ια ◦ γGxα
: M(G/Gx) = M(G/Gxα) −→

⊕
FG(Cα,M),

where ια is the canonical monomorphism into the direct sum. Then by the
universal property of FG(

∨
Cα,M) (see [3]), there is a unique homomorphism

ψ : FG(
∨
Cα,M) −→

⊕
FG(Cα,M), such that ψ ◦ γGx = ια ◦ γGxα

. Check-
ing on generators of the form γGx (l) and ιαγ

G
xα

(l), one easily verifies that the
composites ϕ ◦ ψ and ψ ◦ ϕ are the identity.

Definition 2.19 Let pα : Aα −→ C , α = 1, . . . , r , be a family of nα -
fold G-functions with multiplicity functions µα : Aα −→ N. Define p : A =∨r
α=1Aα −→ C by p|Cα = pα . If n =

∑r
α=1 nα , then clearly p is an n-fold

G-function with multiplicity function µ : A −→ N given by

µ(a) =

{
µα(a) if a ∈ Aα − {∗α} ,∑r

α=1 µα(∗α) if a = ∗ ,

where ∗ ∈ A and ∗α ∈ Aα denote the corresponding base points. We call p the
sum of the pα s, and we denote it by

∑r
α=1 pα .

The transfer has the following additivity property.

11



Proposition 2.20 If p =
∑r

α=1 pα : A =
∨r
α=1Aα −→ C , then tGΣpα

=
∑
tGpα

.
More precisely, the following diagram commutes:

FG(C,M)
tGp //

(tGpα
) ((QQQQQQQQQQQQQ

FG(A,M)
OO

(iGα∗)
∼=⊕r

α=1 F
G(Aα,M)

,

where the isomorphism is as given in 2.18.

Proof: Notice first that for any x ∈ C different from the base point, p−1(x) =
trα=1p

−1
α (x). Since each p−1

α (x) is Gx -invariant, then p−1(x)/Gx = trα=1p
−1
α (x)/Gx .

Let γGx (l) ∈ FG(C,M) be a generator. Then

tGp (γGx (l)) =
∑

[a]∈p−1(x)/Gx

γGa M
∗(p̂a)(l)

=
r∑

α=1

iGα∗

 ∑
[a]∈p−1

α (x)/Gx

γGa M
∗(p̂αa)(l)


=

r∑
α=1

iGα∗t
G
pα

(γGx (l))

An immediate consequence of the normalization property 2.17 and the additiv-
ity property 2.20 is the quasiadditivity property, namely the following.

Proposition 2.21 Let p : A −→ C be a G-function with multiplicity, and let
q : A ∨ C −→ C be given by q|A = p and q|C = idC with the corresponding
multiplicity function µ′ . Then the next is a commutative diagram:

FG(C,M)
tGq //

(tGp ,1) ))SSSSSSSSSSSSSS
FG(A ∨ C,M)

OO
∼=

FG(A,M)⊕ FG(C,M) ,

where the isomorphism is as given in 2.18.

To show that the transfer has a functoriality property, we need the following.

12



Proposition 2.22 Let q : A′ −→ A be an n′ -fold G-function with multiplicity
function µ′ , and let p : A −→ C be an n-fold G-function with multiplicity
function µ. If one defines ν : A′ −→ N by

ν(a′) = µ′(a′)µ(q(a)) ,

then the composite p◦q : A′ −→ C is an (nn′)-fold G-function with multiplicity
function ν .

Proof: We only have to compute the sum∑
a′∈p◦q−1(x)

ν(a′) =
∑

a∈p−1(x)

∑
a′∈q−1(a)

µ′(a′)µ(a)

=
∑

a∈p−1(x)

µ(a)
∑

a′∈q−1(a)

µ′(a′)

= nn′ .

The functoriality property is the following.

Proposition 2.23 Let q : A′ −→ A be an n′ -fold G-function with multiplicity
function µ′ , and let p : A −→ C be an n-fold G-function with multiplicity
function µ. Then

tGp◦q = tGq ◦ tGp : FG(C,M) −→ FG(A′,M) .

Proof: Take u ∈ FG(C,M). By definition of the transfer, we have

tGq (tGp (u))(a′) = µ′(a′)M∗(q̂a′)(tGp (u)(q(a′)))

= µ′(a′)M∗(q̂a′)
(
µ(q(a′))M∗(p̂q(a′))

(
u(p(q(a′)))

))
= ν(a′)M∗(p̂ ◦ qa′)(u((p ◦ q)(a′)))
= tGp◦q(u)(a) .

Recall that a Mackey functor M for G is said to be homological if whenever
H ⊂ K ⊂ G and q : G/H −→ G/K is the quotient function, then

M∗(q)M∗(q) = [K :H] ,

that is, this composite is multiplication by the index of H in K in the group
M(G/K). We have the following result.
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Proposition 2.24 Let p : A −→ C be a n-fold G-function with multiplicity
µ and let M be a homological Mackey functor for G. Then the composite

pG∗ ◦ tGp : FG(C,M) −→ FG(C,M)

is multiplication by n.

Proof: Let γx(l) ∈ FG(C,M) be a generator, and let {[aι] | ι ∈ I} =
p−1(x)/Gx . Since M is homological, M∗(p̂aι)M∗(p̂aι) is multiplication by the
index [Gx :Gaι ]. Moreover, the orbit of aι ∈ p−1(x) under the action Gx has
exactly [Gx :Gaι ] elements. Since the multiplicity function µ is G-invariant, we
have that

∑
ι∈I µ(aι)[Gx :Gaι ] = n. Hence

pG∗ t
G
p (γGx (l)) = pG∗

(∑
ι∈I

µ(aι)γGaι
M∗(p̂aι)(l)

)
=
∑
ι∈I

µ(aι)γGxM∗(p̂aι)M
∗(p̂aι)(l)

=

(∑
ι∈I

µ(aι)[Gx :Gaι ]

)
γGx (l) = nγGx (l) .

3 The transfer for coefficients in a G-module

In this section we shall define the concept of a ramified covering G-map and
study its transfer in the topological abelian groups FG(X,L) with coefficients in
a G-module L. We shall work here in the category of k -spaces. We understand
by a k -space a topological space X with the property that a set C ⊂ X is closed
if and only if f−1C ⊂ K is closed for any continuous map f : K −→ X , where
K is any compact Hausdorff space (see [13]). There is a functor that associates
to every topological space X a k -space k(X) with the same underlying set and
a finer topology defined as before. Thus the identity k(X) −→ X is continuous
and a weak homotopy equivalence. Instead of the usual topological product, we
shall take its image under the functor k ; we shall use the same notation × for
it. This category has two useful properties([13]):

1. If X is a k -space and p : X −→ X ′ is an identification, then X ′ is a
k -space; and

2. if p : X −→ X ′ and q : Y −→ Y ′ are identifications between k -spaces,
then p× q : X × Y −→ X ′ × Y ′ is an identification.
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The next definition, puts in the the topological setting the concept of an n-fold
G-function with multiplicity.

Definition 3.1 Let E and X be G-spaces. An n-fold ramified covering G-
map is a continuous G-map p : E −→ X together with a multiplicity function
µ : E −→ N , such that the following hold:

(i) The fibers p−1(x) are finite for each x ∈ X .

(ii) For each x ∈ X ,
∑

a∈p−1(x) µ(a) = n.

(ii) The map ϕp : X −→ SPnE = En/Σn , given by

ϕp(x) = 〈a1, . . . , a1︸ ︷︷ ︸
µ(a1)

, . . . , am, . . . , am︸ ︷︷ ︸
µ(am)

〉 ,

where p−1(x) = {a1, . . . , am}, is continuous.

(iv) µ is G-invariant.

Notice that by (iv), the map ϕp is G-equivariant. We can always assume that
the ramified covering G-map is pointed (see Remark 1.4). This definition in the
nonequivariant case was given by Smith [11] and it includes ordinary covering
maps with finitely many leaves.

Proposition 3.2 The family of ramified covering G-maps has the following
properties:

(a) If pα : Eα −→ X , α = 1, . . . , k , are ramified covering G-maps with
multiplicity functions µα , then

p :
k∨

α=1

Eα −→ X

given by p|Eα = pα is an
∑k

α=1 nα -fold ramified covering G-map with
multiplicity function µ given by µ|Eα = µα .

(b) If q : E′ −→ E is an n′ -fold ramified covering G-map with multiplicity
function µ′ , and p : E −→ X is an n-fold ramified covering G-map
with multiplicity function µ, then p ◦ q : E′ −→ X is an (nn′)-fold
ramified covering G-map with multiplicity function ν , where ν(a′) =
µ′(a′)µ(q(a′)).

(c) If X is a G-space, then the projection π : Xn ×Σn n −→ SPnX is an
n-fold ramified covering G-map.
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Proof: By 2.19, p is a (
∑k

α=1 nα)-fold G-function with multiplicity. Thus we
only have to prove that ϕp : X −→ SPΣk

α=1nα(
∨k
α=1Eα) is continuous. This

follows from the commutativity of the next diagram:

X
(ϕpα ) //

ϕp
&&L

L
L

L
L

L
∏k
α=1 SPnαEα

���
�
�

∏k
α=1E

nα
α

qoooo
� _

ρ

��

SPΣnα(
∨k
α=1Eα) (

∐k
α=1Eα)Σnα ,oooo

where ρ is the inclusion in the corresponding summand, and q is an identifica-
tion.

By [2, 4.20], the composite p ◦ q in an (nn′)-fold ramified covering map. Thus
(b) follows from this and 2.22.

By [11], π : Xn ×Σn n −→ SPnX is an n-fold ramified covering map. Thus (c)
follows from 1.3.

Remark 3.3 Note that in [11], the setting is the category of topological spaces.
By [1, Prop. 3.4], its definitions are equivalent to the ones herein, which are given
in the setting of k -spaces.

Given a G-module L, one defines a Mackey functor ML as follows:

ML(G/H) = LH .

If H ⊂ K and q : G/H −→ G/K is the quotient map, then

ML∗(q) : LH −→ LK is given by ML∗(q)(l) =
r∑
i=1

kil ,

where K/H = {[ki] | i = 1, . . . , r}. Furthermore,

M∗
L(q) : LK −→ LH is the inclusion.

On the other hand, let Rg−1 : G/H −→ G/gHg−1 by right translation by g−1 .
Then

ML∗(Rg−1) : LH −→ LgHg
−1

is given by ML∗(Rg−1)(l) = gl .

Moreover,

M∗
L(Rg−1) : LgHg

−1 −→ LH is given by M∗
L(Rg−1)(l) = g−1l .

We now recall the definition given in [4] of the functor FG(−, L) : G-Set∗ −→
Ab.
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Definition 3.4 Let L be a G-module. If C is a pointed G-set, then FG(C,L)
consists of G-equivariant functions u : C −→ L such that u(∗) = 0 and u(x) =
0 for all but a finite number of elements x ∈ C . Furthermore, if f : C −→ D
is a pointed G-function, then the induced homomorphism fG• : FG(C,L) −→
FG(D,L) is given by fG• (

∑
x∈C lxx) =

∑
x∈C lxf(x).

Proposition 3.5 The functors FG(−, L) and FG(−,ML) are equal.

Proof: Notice that M̂L = L. Thus FG(C,ML) ⊂ FG(C,L). Since an element
u ∈ FG(C,L) is a G-function, then u(x) ∈ LGx = ML(G/Gx). Hence the
abelian groups FG(C,L) and FG(C,ML) are equal.

Let f : C −→ D be a pointed G-function. To show that fG• = fG∗ , let
G/Gf(x) = {[g1], . . . , [gm]} and Gf(x)/Gx = {[h1], . . . , [hr]}. Hence G/Gx =
{[gihj ] | i = 1, . . . ,m; j = 1, . . . , r}. By definition, ML∗(G/H) = LH for all H
and ML∗(Rg−1)(l) = gl . Since hj ∈ Gf(x) , we have

fG• (γGx (l)) = fG•

∑
i,j

ML∗(R(gihj)−1)(l)(gihjx)


= fG•

∑
i,j

(gihjl)(gihjx)


=
∑
i,j

((gihj)l)(gif(x)) .

On the other hand,

fG∗ (γGx (l)) = γGf(x)ML∗(f̂x)(l)

= γGf(x)

 r∑
j=1

hjl


=

r∑
j=1

(
m∑
i=1

ML∗(Rg−1
i

)(hjl)(gif(x))

)
=
∑
i,j

(gi(hjl))(gif(x)) .

Thus the result follows.

Let Y be a pointed G-space. As already remarked, the group FG(Y, L) has a
natural topology that was studied in [4]. This topology is defined as follows.
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Consider the group F (Y, L) of functions u : Y −→ L such that u(∗) = 0 and
u(y) = 0 for all but a finite number of elements y ∈ Y . This is filtered by subsets
Fr(Y, L) of those functions which are nonzero in at most r points of Y . We give
to these sets the quotient topology induced by the map (L × Y )r � Fr(Y, L)
given by (l1, y1, . . . , lr, yr) 7→ l1y1 + · · ·+ lryr , where the product (L× Y )r has
the k -topology. Then F (Y, L) has the union topology and FG(Y, L) ⊂ F (Y, L)
has the subspace topology. From now on the notation FG(Y, L) will mean the
group with this topology.

We have the following.

Proposition 3.6 Let p : E −→ X be an n-fold ramified covering G-map
with multiplicity function µ : E −→ N. Then the transfer tGp : FG(X,L) −→
FG(E,L), is continuous.

Proof: First notice that if l ∈ML(G/Ga) = LGa ⊂ L, a ∈ E , then M∗
L(p̂a)(l) =

l . Hence we have the homomorphism tp : F (X,L) −→ F (E,L) given by

tp(lx) =
m∑
ι=1

µ(aι)laι ,

where p−1(x) = {aι | ι = 1, . . . ,m}. The transfer is, as before, the restriction

tGp = tp|FG(X,L) : FG(X,L) −→ FG(E,L) .

Consider the map δ : L × X −→ Fn(E,L) given by δ(l, x) = tp(lx) and α :
L×X −→ (L× En)/Σn given by

α(l, x) = 〈(l, a1), . . . , (l, a1)︸ ︷︷ ︸
µ(a1)

, . . . , (l, am), . . . , (l, am)︸ ︷︷ ︸
µ(am)

〉 ,

where p−1(x) = {a1, . . . , am}. Let jl : En/Σn −→ (L × E)n/Σn be given by
jl〈a1, . . . , an〉 = 〈(l, a1), . . . , (l, an)〉. If il : X −→ L×X is the inclusion at level
l , then α ◦ il = jl ◦ ϕp . Hence α is continuous. Notice that the identification
(L× E)n −→ Fn(E,L) factors as the composite

(L× E)n � (L× E)n/Σn

ρn
� Fn(E,L) ,

where ρn〈(l1, a1), . . . , (ln, an)〉 =
∑n

i=1 liai . Therefore, ρn is continuous.

Since ρn ◦ α = δ , δ is continuous. In order to see that tp|Fr(X,L) is continuous,
consider the diagram

(L×X)r δr
//

����

(Fn(E,L))r

sum

��
Fr(X,L)

tp|Fr(X,L)

// F (E,L) ,
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where sum is given by the operation on F (E,L), which is continuous. Hence tp
is continuous, and since FG(X,L) has the subspace topology, then tGp is also
continuous, as desired.

4 Change of coefficients and the transfer for homologi-
cal Mackey functors

Let K be a simplicial pointed G-set. Then the composite

∆
K // G-Set∗

FG(−,M) // Ab

is a simplicial abelian group, which will be denoted by FG(K,M). On the other
hand, for any simplicial set S , we denote by |S| its geometric realization (see
[10]).

Let X be a pointed G-space. Recall from [5] that for a homological Mackey
functor, we can give a topology to the abelian group FG(X,M). This topo-
logical group is denoted by FG(X,M) and its topology is the identification
topology given by the epimorphism

πGX : |FG(S(X),M)|
ψG

M−→ FG(|S(X)|,M)
ρG

X∗
� FG(X,M) .

Here S(X) is the singular simplicial set associated to X . The group isomorphism
ψGM is defined on a generator by

ψGM ([γGσ (l), t]) = γG[σ,t]M∗(q̂σ,t)(l) ,

as in [3, 2.6], where q̂σ,t : G/Gσ,t � G/G[σ,t] is the quotient function. The
surjection ρX : |S(X)| −→ X is given by ρX [σ, t] = σ(t). And σ ∈ Sk(X) and
t ∈ ∆k .

Recall [4] that one has an equivariant isomorphism of topological groups ψL :
|F (S(X), L)| −→ F (|S(X)|, L) given by ψL([lσ, t]) = l[σ, t], so that it restricts
to an isomorphism ψGL : |FG(S(X), L)| −→ FG(|S(X)|, L). We have the next.

Lemma 4.1 The following is a commutative diagram

|FG(S(X), L)|

ψG
L

��

id // |FG(S(X),ML)|

ψG
ML

��
FG(|S(X)|, L)

id
// FG(|S(X)|,ML)
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Proof: By Proposition 3.5, the functors FG(−, L) and FG(−,ML) are the
same. Therefore, the simplicial groups FG(S(X), L) and FG(S(X),ML) are
also the same. If we write G/G[σ,t] = {[gi] | i = 1, . . . , r} and G[σ,t]/Gσ =
{[hj ] | j = 1, . . . , s}, then G/Gσ = {[gihj ] | (i, j) = (1, 1), . . . , (r, s)}. Thus we
can write

γGσ (l) =
(r,s)∑

(i,j)=(1,1)

(gihjl)(gihjσ) ∈ FG(S(X), L) .

Using this description, one can check as in the proof of 3.5, that ψGL ([γGσ (l), t]) =
ψGML

([γGσ (l), t]).

In the rest of this section we show that a morphism of (homological) Mackey
functors ξ : M ′ −→ M induces a continuous homomorphism of topological
groups ξ� : FG(X;M ′) −→ FG(X;M) for any G-space X .

Definition 4.2 Recall that a morphism ξ : M −→ M ′ is a natural transfor-
mation of both the covariant and the contravariant parts of M and M ′ ; it is
an epimorphism if for each object it is a group epimorphism. Define

ξ� : FG(X;M) −→ FG(X;M ′)

by ξ�(u)(x) = ξG/Gx
(u(x)) ∈M ′(G/Gx). Note that since u is equivariant and ξ

is natural, then ξ�(u) is also equivariant, and therefore it is well defined. Notice
that by the naturality of ξ , ξ� is given on generators by

ξ�(γGx (l)) = γ′Gx (ξG/Gx
(l)) .

Lemma 4.3 The homomorphism ξ� : FG(X,M) −→ FG(X,M ′) is natural in
X .

Proof: Let f : X −→ Y be a pointed G-function. Then

fG∗ ξ�(γ
G
x (l)) = fG∗ γ

′G
x (ξG/Gx

(l)) = γ′Gf(x)M∗(f̂x)(ξG/Gx
(l)) = ξ�f

G
∗ (γGx (l)) .

The next follows immediately from the previous lemma.

Corollary 4.4 Let K be a simplicial G-set. Then ξ� : FG(K,M) −→ FG(K,M)
is a homomorphism of simplicial groups.

Proposition 4.5 The homomorphism ξ� is continuous.
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Proof: Consider the following commutative diagram

|FG(S(X),M)|
|ξ�| //

πG
X ����

|FG(S(X),M ′)|

πG
X����

FG(X,M)
ξ�

// FG(X,M ′) .

Since by 4.3, ξ� : FG(S(X),M) −→ FG(S(X),M ′) is a homomorphism of
simplicial groups, |ξ�| on the top is continuous. The vertical arrows are identi-
fications, thus ξ� on the bottom is also continuous.

Given a G-module L, in what follows, we shall compare the topologies of the
identical groups FG(X,L) and FG(X,ML), where ML is the Mackey functor
associated to L.

Proposition 4.6 The identity FG(X,ML) −→ FG(X,L) is continuous. Thus
the topology on the left-hand side is finer than that on the right.

Proof: Let X be any G-space and let S(X) be its associated singular simplicial
G-set and ρX : |S(X)| −→ X the canonical surjection introduced above. Notice
that by Proposition 3.5, the simplicial groups FG(S(X), L) and FG(S(X),ML)
are identical. Hence the realizations |FG(S(X), L)| and |FG(S(X),ML)| are
identical topological groups. In [4, Cor. 2.6] one proves that the topological
groups FG(|S(X)|, L) and |FG(S(X), L)| are (topologically) isomorphic, and
in [5, Prop. (5.17)] it is proved that the topological groups FG(|S(X)|,M) and
|FG(S(X),M)| are also (topologically) isomorphic, when M is homological, in
particular for M = ML . Consider the following diagram:

|FG(S(X),ML)|

πG
X����

|FG(S(X), L)|
ψG

L

∼=
//

π̃G
X

���
�
�

FG(|S(X)|, L)

ρG
X•vvvvmmmmmmmmmmmmm

FG(X,ML)
id

// FG(X,L) .

By definition, πGX = ρGX∗ ◦ ψGML
and π̃GX = ρGX• ◦ ψGL . By 3.5, ρGX∗ = ρGX• , and

by 4.1, ψGML
= ψGL . Therefore, the diagram commutes. Since by definition, πGX

is an identification, the result follows.

In the rest of this section, we analyze the continuity of the transfer for ramified
covering G-maps in a convenient category of topological spaces.

Definition 4.7 A G-space X is called a strong ρ-space if the map ρX :
|S(X)| −→ X is a G-retraction.
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We have the following.

Lemma 4.8 Let K be a simplicial G-set. Then |K| is a strong ρ-space.

Proof: Define δ : K −→ S(|K|) by δ(a)(t) = [a, t], where a ∈ Kn and t ∈ ∆n .
One can easily check that δ is a simplicial G-function. Now take |δ| : |K| −→
|S(|K|)|. Since δ is equivariant, |δ| is equivariant too. Clearly ρ|K| ◦ |δ| = id|K| .

Proposition 4.9 Every simplicial G-complex is a strong ρ-space.

Proof: Let C be a simplicial G-complex. We can always assume that it is
ordered and that the action of G preserves the order. This can be achieved
by passing to the barycentric subdivision. Now let us define a simplicial G-set
K(C), given by K(C)n = {(v0, . . . , vn) | v0 ≤ · · · ≤ vn and {v0, . . . , vn} ∈ C}
with the obvious face and degeneracy operators. Then |K(C)| ≈ |C|, and the
result follows by the previous lemma.

Lemma 4.10 Let Y be a strong ρ-space and let Z be a G-retract of Y . Then
Z is a strong ρ-space.

Proof: Let r : Y −→ Z be a G-retraction with left G-inverse i : Z −→ Y . Let
ιY : Y −→ |S(Y )| be a left G-inverse of ρY , and consider |S(r)| : |S(Y )| −→
|S(Z)|. Then the G-map ιZ : Z −→ |S(Z)| given by ιZ = |S(r)|◦ ιY ◦ i is clearly
a left inverse of ρZ , since by the naturality of ρ, ρZ ◦ |S(r)| = r ◦ ρY .

Proposition 4.11 The class of strong ρ-spaces contains the class of G-ENRs.

Proof: By a result of Illman [8], any finite-dimensional smooth G-manifold
is G-triangulable, i.e. it is G-homeomorphic to the geometric realization of a
G-simplicial complex.

Since a G-ENR is a retract of an open G-invariant set in a finite-dimensional
G-representation, then the result follows from 4.9 and 4.10.

The following two results describe two classes of G-CW-complexes that belong
to the class of strong ρ-spaces.

Proposition 4.12 The class of strong ρ-spaces contains the class of locally
compact, countable, finite-dimensional G-CW-complexes.
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Proof: First of all, one has that a CW-complex is metrizable if and only if it is
locally compact [7]. On the other hand, a theorem of Jaworowski [9] guarantees
that a metrizable, separable, and finite-dimensional G-space X is a G-ENR
if and only if it is locally compact and its fixed-point sets XH are ANRs.
The fixed-point sets of any G-CW-complex X are subcomplexes, thus they are
ANRs. Since X is countable, it is separable, and thus it is a G-ENR. By the
previous proposition the result follows.

The next is the G-equivariant version of a result in [7].

Proposition 4.13 Let X be a regular G-CW-complex. Then X is G-homeo-
morphic to a G-simplicial complex. Therefore, the class of strong ρ-spaces
contains the class of regular G-CW-complexes.

Proof: Consider the simplicial complex T (X), whose vertices are the cells of
X , and whose q -simplexes are sequences of closed cells {e0  e1  · · ·  eq}.
T (X) is a G-simplicial complex, where the G-action on the vertices is given by
g ·e = g(e). There is a homeomorphism h : |T (X)| −→ X , which is constructed
inductively on the skeleta as follows (see [7, 3.4.1]).

The complex T (X0) is the set of vertices of X . Then h0 : |T (X0)| −→ X0 is
the identity, which is G-equivariant.

We assume inductively that we have a G-homeomorphism hn−1 : T (Xn−1) ≈−→
Xn−1 . We extend hn−1 to hn : |T (Xn)| ≈−→ Xn cell by cell as follows. Take a
characteristic map of an n-cell

ϕen : ∆n −→ Xn ,

whose image is the closed n-cell en . Take the restriction to the boundary ϕ̇ :
∆̇n −→ ėn , and let C be the subcomplex of T (Xn−1) that triangulates ėn .
Define ψ̃ : |Cone(C)| −→ ∆n by ψ̃(λen + (1 − λ)β) = λbn + (1 − λ)ψ(β),
where β ∈ |C| and bn ∈ ∆n is the barycenter. Then extend hn−1 to hn| :
|Cone(C)| −→ en by hn| = ϕen ◦ ψ̃ . Doing this for each n-cell of X , we obtain
hn : |T (Xn)| −→ Xn . In order to see that hn is G-equivariant, consider the
equalities

hn(g ·γ) = ϕg·enψ̃(λ(g · en)+ (1−λ)g ·β) = ϕg·en(λbn+(1−λ)ϕ−1
geng ·hn−1(β)) ,

g · hn(γ) = g · (ϕenψ̃(λen + (1− λ)β)) = g · (ϕen(λbn + (1− λ)ϕ−1
en hn−1(β)) ,

which are clearly the same, since g ·ϕen = ϕg·en . This completes the induction.

The relevance of the strong ρ-spaces is shown in the following two lemmas.
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Lemma 4.14 Let X be a pointed strong ρ-space and let L be a G-module.
Then id : FG(X,ML) −→ FG(X,L) is a homeomorphism.

Proof: Consider the following diagram

|FG(S(X),ML)|

πG
X����

|FG(S(X), L)|
ψG

L

∼=
//

π̃G
X

��

FG(|S(X)|, L)

ρG
X•vvvvmmmmmmmmmmmmm

FG(X,ML)
id

// FG(X,L) .

By definition, πGX = ρGX∗ ◦ ψGML
and π̃GX = ρGX• ◦ ψGL . By 3.5, ρGX∗ = ρGX• ,

and by 4.1, ψGML
= ψGL . Therefore, the diagram commutes. By [4], ψGL is a

homeomorphism, and since X is a strong ρ-space, ρGX• is an identification.
Since by definition, πGX is also an identification, the result follows.

Lemma 4.15 Let X be a strong ρ-space such that the action of G is free, and
let M be a Mackey functor. Then there is a natural isomorphism of topological
groups ηX : FG(X+,M) −→ FG(X+,M(G)), where M(G) = M(G/e) is a
G-module with the action given by g · l = M∗(Rg−1)(l).

Proof: We define ηX as follows:

ηX(u)(x) =

{
u(x) ∈M(G) if x 6= ∗
0 ∈M(G) if x = ∗ ,

where ∗ is the isolated base point. Its inverse is given by

η−1
X (v)(x) =

{
v(x) ∈M(G) if x 6= ∗
0 ∈M(G/G) if x = ∗ .

We now prove that ηX is natural assuming that X is G-set. Namely, let f :
X −→ Y be a G-function between G-sets with a free action. We shall see that
the following diagram commutes:

FG(X+,M)

fG
∗

��

ηX // FG(X+,M(G))

fG
•

��
FG(Y +,M) ηY

// FG(Y,M(G)) .

Take a generator γx(l) ∈ FG(X+,M). Then

fG∗ (γGx (l)) = γGf(x)(l) =
∑
g∈G

(g · l)(gf(x)) ,
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since f̂x : G/e � G/e is the identity. On the other hand

fG• (γGx (l)) = fG•

∑
g∈G

(g · l)(gx)

 =
∑
g∈G

(g · l)f(gx) .

Hence the diagram commutes. Therefore, η defines an isomorphism of simplicial
groups FG(K+,M) −→ FG(K+,M(G)) for any simplicial G-set K with a free
action.

We now show that η is a homeomorphism. Consider the singular simplicial set
S(X) and notice that Sn(X+) = Sn(X)+ for each n. Since X has a free G-
action, so does S(X) and, by the previous considerations, the map of topological
groups

|ηS(X)| : |FG(S(X)+,M)| −→ |FG(S(X)+,M(G))|

is a homeomorphism. Consider the diagram

|FG(S(X)+,M)|

πG
X+

((

ψG
M

��

|ηS(X)|// |FG(S(X)+,M(G))|
∼= ψG

M(G)

��
FG(|S(X)|+,M)

ρG
X+∗

��

η|S(X)|// FG(|S(X)|+,M(G))

ρG
X+•

��
FG(X+,M) ηX

// FG(X+,M(G)) .

The square at the top commutes because G(σ,t) = G[σ,t] = e and hence q̂σ,t =
idG , and the square at the bottom commutes by the naturality of η .

The map πGX+ is an identification by definition. The isomorphism ψGM(G) is a
homeomorphism as proved in [4]. Since ρX+ is a retraction, so is ρGX+• and
hence the vertical composite on the right is also an identification. Therefore,
ηX is a homeomorphism.

Lemma 4.16 Let X be a pointed G-space. If ξ : M ′ −→M is an epimorphism
of Mackey functors, then ξ� : FG(X,M) −→ FG(X,M ′) is an identification.

Proof: To show that ξ� : FG(C,M) −→ FG(C,M ′) is surjective for any
pointed G-set C , take a generator γ′Gx (l′) ∈ FG(C,M ′). Since ξG/Gx

is sur-
jective, we can take l ∈ M(G/Gx) such that ξG/Gx

(l) = l′ . Then ξ�(γGx (l)) =
γ′Gx (l′). Therefore, the simplicial map ξ� : FG(S(X),M) −→ FG(S(X),M ′) is
surjective, and by [7, 4.3.11], its geometric realization |ξ�| : |FG(S(X),M)| −→
|FG(S(X),M ′)| is an identification.
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Hence the commutativity of

|FG(S(X),M)|
|ξ�| // //

πG
X ����

|FG(S(X),M ′)|

πG
X����

FG(X,M)
ξ�

// FG(X,M ′)

implies that ξ� on the bottom is an identification too.

The main result in this section is the next.

Theorem 4.17 Let p : E −→ X be an n-fold ramified covering G-map such
that E and X are strong ρ-spaces, and let M be a homological Mackey functor.
Then tGp : FG(X,M) −→ FG(E,M) is continuous.

Proof: Since M is homological, by [12, Thm. (16.5)(i)], there exists a G-
module L and an epimorphism of Mackey functors ξ : ML −→M . By Lemma
4.16, the induced epimorphism ξ� : FG(Y,ML) −→ FG(Y,M) is an identification
for any G-space Y . Moreover, by Lemma 4.14, for any strong ρ-space Y , the
topological groups FG(Y,ML) and FG(Y, L) are equal. We have a commutative
diagram

FG(X,ML)

ξ� ''NNNNNNNNNNN
FG(X,L)

tGp //

����

FG(E,L)

����

FG(X,ML)

ξ�wwooooooooooo

FG(X,M)
tGp

//___ FG(E,M) .

Since the horizontal arrow on the top is continuous by Proposition 3.6, the
horizontal arrow on the bottom is also continuous.

The following is a homotopy invariance property, whose assumptions depend
on the kind of coefficients. Namely, if one has coefficients in a G-module L,
then X , Y , and E may be any k -spaces. And if M is an arbitrary homological
Mackey functor, then X , Y , and E must be strong ρ-spaces.

Proposition 4.18 Let p : E −→ X be a ramified covering G-map. If f0, f1 :
X −→ Y are G-homotopic pointed maps and one has the following two pullback
diagrams

f∗0 (E)
f̃0 //

p0
��

E

p

��
Y

f0
// X

f∗1 (E)
f̃1 //

p1

��

E

p

��
Y

f1
// X ,
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then
f̃G0∗ ◦ tGp0 ' f̃

G
1∗ ◦ tGp1 : FG(Y,M) −→ FG(E,M) .

Proof: By the pullback property one has that

f̃G0∗ ◦ tGp0 = tGp ◦ fG0∗ and tGp ◦ fG1∗ = f̃G1∗ ◦ tGp1 .

Moreover, from [5, Prop. (4.13)(c)], one has fG0∗ ' fG1∗ . Thus the assertion
follows.

Finally, we have the following invariance under change of coefficients.

Proposition 4.19 Let p : E −→ X be a ramified covering G-map, where E
and X are strong ρ-spaces. If ξ : M −→ M ′ is a morphism of homological
Mackey functors, then one has the following commutative diagram:

FG(X,M)

tGp
��

ξ� // FG(X,M ′)

tGp
��

FG(E,M)
ξ�

// FG(E,M ′) .

Proof: Take u ∈ FG(X,M), then by the naturality of ξ with respect to M∗ ,
we have

ξ�t
G
p (u)(a) = ξG/Ga

(
µ(a)M∗(p̂a)

(
u(p(a))

))
= µ(a)ξG/Ga

(
M∗(p̂a)

(
u(p(a))

))
= µ(a)M ′∗

(
(p̂a)ξG/Ga

(
u(p(a))

))
= tGp ξ�(u)(a)

5 Transfers in Bredon-Illman homology

In this section we shall define the transfer τp in Bredon-Illman homology with
coefficients in a homological Mackey functor. The transfer has the following
properties:

• Naturality (2.8),

• Pullback (2.15),

• Normalization (2.17),

• Additivity (2.20),
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• Quasiadditivity (2.21),

• Functoriality (2.23),

• Homotopy invariance (4.18),

• Invariance under change of coefficients (4.19), and

• If p : E −→ X is an n-fold ramified covering G-map, then the composite

p∗ ◦ τp : H̃G
∗ (X;M) −→ H̃G

∗ (X;M)

is multiplication by n (2.24).

Theorem 5.1 Let p : E −→ X be an n-fold ramified covering G-map such
that E and X are strong ρ-spaces of the homotopy type of G-CW-complexes,
and let M be a homological Mackey functor for G. Then there exists a transfer

τp : H̃G
∗ (X;M) −→ H̃G

∗ (E,M)

with all properties given above.

Proof: By [5], for all pointed G-spaces Y which have the homotopy type of
G-CW-complexes, there is a natural isomorphism

H̃G
q (Y ;M) −→ πq

(
FG(Y,M)

)
.

Therefore, by Theorem 4.17, there is a transfer homomorphism

τp : H̃G
∗ (X;M) −→ H̃G

∗ (E,M)

corresponding to the homomorphism induced by tGp in the homotopy groups.
The properties follow immediately from the corresponding results for tGp .

Corollary 5.2 Let p : E −→ X be an n-fold ramified covering G-map with
E and X strong ρ-spaces of the homotopy type of G-CW-complexes, such that
G acts freely on the total space E , and let M be a homological Mackey functor
for G such that multiplication by n is an isomorphism in each of the groups
M(G/Gx) for x ∈ X . Then the transfer

τp : HG
∗ (X;M) −→ HG

∗ (E;M(G))

is a split monomorphism and thus the homology group HG
∗ (X;M) is a direct

summand of HG
∗ (X;M(G)).

Proof: Since the action of G on E is free, by Lemma 4.15, FG(E+,M) ∼=
FG(E+,M(G)). On the other hand, by [4] there is a natural isomorphism

H̃G
q (E+;M(G)) ∼= πq(FG(E+,M(G))) .
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Therefore there is a natural isomorphism

H̃G
∗ (E+,M) ∼= H̃G

∗ (E+,M(G)) .

By 2.24, the composite

H̃G
∗ (X+,M)

τp //

((QQQQQQQQQQQQ
H̃G
∗ (E+,M)

p∗ //

∼=
��

H̃G
∗ (X+,M)

H̃G
∗ (E+,M(G))

66mmmmmmmmmmmm

is multiplication by n, and thus an isomorphism. Hence the result follows.

Remark 5.3 The transfer for any ramified covering G-map cannot be given
by a stable transfer map, which has the naturality, the normalization, and the
quasiadditivity (see 2.21) properties, because otherwise there would be a trans-
fer for ramified covering G-maps in any representable (cohomology) theory.
But by [2, Thm. 4.8], if there is such a transfer, then the theory must be given
by a product of Eilenberg-Mac Lane spaces. (One can construct such a stable
transfer for n-fold ramified covering maps in the nonequivariant case [6], but
provided that one inverts n!.)
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