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Abstract In this paper we define the concept of a ramified covering map
in the category of simplicial sets and we show that it has properties analo-
gous to those of the topological ramified covering maps. We show that the
geometric realization of a simplicial ramified covering map is a topologi-
cal ramified covering map, and we also consider the relation with ramified
covering maps in the category of simplicial complexes.
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0 Introduction

In [9], L. Smith defined an n-fold ramified covering map in the category of topo-
logical spaces as a finite-to-one map p : E −→ X together with a multiplicity
function µ : E −→ N which have the following two properties:

1. For each x ∈ X ,
∑

a∈p−1(x) µ(a) = n.

2. The map ϕp : X −→ SPnE given by

ϕp(x) = 〈a1, . . . , a1︸ ︷︷ ︸
µ(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µ(ar)

〉 ,

is continuous, where p−1(x) = {a1, . . . , ar}, and SPnE denotes the nth
symmetric product defined as the quotient of the product En by the
action of the symmetric group in n letters.

Examples of ramified covering maps include branched coverings ([1]) and orbit
maps of the action of a finite group on spaces.

∗Corresponding author, Phone: ++5255-56224489, Fax ++5255-56160348. This au-
thor was partially supported by PAPIIT grant IN105106-3 and by CONACYT grant
58049.
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In this paper the word simplicial will have two meanings. In the first four
sections it will refer to simplicial sets, and in Section 5 it will refer to simplicial
complexes.

In Section 1, we introduce the concept of an n-fold ramified covering map in
the category of simplicial sets and we show that it has properties analogous to
those proved by Smith in the topological case. In Section 2 we give an alterna-
tive characterization of an ordinary covering map in the category of simplicial
sets Simpset (see Corollary 2.4). In Section 3 we show that the simplicial ram-
ified covering maps have properties analogous to those proved by Dold [2] for
topological ramified covering maps. In Section 4 we show that the geometric re-
alization of a simplicial ramified covering map is a topological ramified covering
map.

The geometric realization functor | · | : Simpset −→ Top has a right adjoint
functor S : Top −→ Simpset given by the singular simplicial set associated to
a space. The simplicial map S(p) : S(E) −→ S(X) associated to a topological
ramified covering map p : E −→ X is not in general a simplicial ramified
covering map, because it is not always finite-to-one (see Example 5.1). However,
if we work in the category of simplicial complexes, then there is another functor
K from this category to Simpset. In Section 5 we define the concept of an n-
fold ramified covering map p : C −→ D in the category of simplicial complexes
and we show that the associated map of simplicial sets p̂ : K(C) −→ K(D) is
a ramified covering map. Furthermore, we show that the map of triangulated
spaces |p| : |C| −→ |D| is a topological ramified covering map.

1 Simplicial ramified covering maps

We refer the reader to [7], [4], or [5] for the theory of simplicial sets. Given a
simplicial set S , we shall denote by di : Sm −→ Sm−1 the face operators, and
by si : Sm −→ Sm+1 the degeneracy operators.

Definition 1.1 Let p : K −→ Q be a map of simplicial sets. We say that p is
a simplicial n-fold ramified covering map, if the following hold:

1. For each m, pm : Km −→ Qm has finite fibers.

2. The restricted function di|p−1
m (x) : p−1

m (x) −→ p−1
m−1(di(x)) is surjective

for all i.

3. There is a family of multiplicity functions µm : Km −→ N, such that:

(a) For all x ∈ Qm , one has
∑

a∈p−1
m (x) µm(a) = n.
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(b) µm+1 ◦ si = µm : Km −→ N.
(c) For all x and a ∈ p−1

m (x) one has µm−1(di(a)) =
∑l

α=1 µm(aα),
where {a1, . . . , al} = (di)−1(di(a)) ∩ p−1

m (x).

Remark 1.2 Properties 3 (a) and (b) imply that the restrictions si| : p−1
m (x) −→

p−1
m+1(si(x)) are bijective.

Remark 1.3 Definition 1.1 is based on the concept of weighted map given in
[3].

The proof of the following result is straightforward.

Proposition 1.4 Let p : K −→ Q be a simplicial n-fold ramified covering
map, and let f : Q′ −→ Q be a map of simplicial sets. Then the pullback of
p over f , p′ : K ′ = Q′ ×Q K −→ Q′ , is a simplicial n-fold ramified covering
map.

We shall need the following result, which we state for an action of a finite group
G on a set X on the left.

Lemma 1.5 Consider a left action G × X −→ X , and let H ⊂ G be a
subgroup. If q : H\X −→ G\X is the canonical surjection of the orbit sets,
then there is a bijection

δ : H\G/Gx0 −→ q−1([x0]G) ,

where x0 ∈ X , given by δ(H [g]Gx0
) = [gx0]H .

Proof: The function δ is induced by the surjection δ : G −→ q−1([x0]G) given
by δ(g) = [gx0]H . One easily checks that δ factors through the set of double
cosets and that δ is injective.

Proposition 1.6 Let T be a simplicial set. Then the map of simplicial sets
π : Tn×Σn n −→ Tn/Σn , where n = {1, 2, . . . , n}, is a simplicial n-fold ramified
covering map.

Proof: T is a contravariant functor ∆ −→ Set. Consider the functors

En : Set −→ Set and Bn : Set −→ Set

given by S 7−→ Sn ×Σn n and S 7−→ Sn/Σn , respectively. Then Tn ×Σn n =
En◦T and Tn/Σn = Bn◦T . The natural transformation En −→ Bn that maps
〈s1, . . . , sn; j〉 to 〈s1, . . . , sn〉 determines the map of simplicial sets

π : Tn ×Σn n −→ Tn/Σn .
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Since π−1
m 〈t1, . . . , tn〉 = {〈t1, . . . , tn; j〉 | j ∈ n} for all m and the face functions

are the identity on the j -coordinate, conditions 1 and 2 are clearly satisfied.

In what follows, we shall write t = (t1, . . . , tn) and di(t) = (di(t1), . . . , di(tn)).

To verify conditions 3 on µ, we define

µm : Tn
m ×Σn n −→ N by µm〈t; j〉 = #t−1t(j) ,

where t is seen as a function t : n −→ Tm . The different sets t−1t(j) form a
partition of the set n; therefore, we have condition 3 (a).

Condition 3 (b) follows from the fact that the degeneracy functions si are always
injective.

To see condition 3 (c), take 〈t〉 ∈ Tn
m/Σn and any 〈t; j〉 ∈ Tn

m ×Σn n, with
t = (t1, . . . , tn) a specific representative. We have to prove

µm−1〈di ◦ t; j〉 =
l∑

r=1

µm〈t; σr(j)〉 .

For this purpose, observe first that one has bijections

π−1
m 〈t〉 ∼= {(t1, . . . , tn; j) | j = 1, . . . , n}/(Σn)(t1,...,tn)

∼= (Σn)(t1,...,tn)\n
and analogously

π−1
m−1〈di ◦ t〉 ∼= {(di(t1), . . . , di(tn); j) | j = 1, . . . , n}/(Σn)(di(t1),...,di(tn))

∼= (Σn)(di(t1),...,di(tn))\n
where (Σn)(t1,...,tn) and (Σn)(di(t1),...,di(tn)) denote the corresponding isotropy
groups. The restriction of di to the fiber π−1

m 〈t〉 corresponds to the quotient
function (Σn)(t1,...,tn)\n ³ (Σn)(di(t1),...,di(tn))\n, whose fiber over a class [j] is,
by Lemma 1.5,

(Σn)j ∩ (Σn)(di(t1),...,di(tn))\(Σn)(di(t1),...,di(tn))/(Σn)(t1,...,tn) .

Let the elements of this set be the double cosets [σr], r = 1, . . . , l . Therefore,

(di|π−1
m 〈t〉)

−1〈di ◦ t; j〉 = {〈t;σr(j)〉 | r = 1, . . . , l} .

Since

(di ◦ t)−1(di(tj)) = t−1(di)−1(di(tj)) = t−1{tσr(j) | r = 1, . . . , l} ,

we have

µm−1〈di ◦ t; j〉 = #(di ◦ t)−1(di(tj)) =
l∑

r=1

#t−1(tσr(j)) =
l∑

r=1

µm〈t; σr(j)〉 .
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Definition 1.7 Let p : K −→ Q be a simplicial ramified covering map with
multiplicity functions µm . For each m define ϕpm : Qm −→ SPnKm by

ϕpm(x) = 〈a1, . . . , a1︸ ︷︷ ︸
µm(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µm(ar)

〉 ,

where p−1
m (x) = {a1, . . . , ar}.

The proof of the following result is straightforward.

Proposition 1.8 The functions ϕpm : Qm −→ SPnKm determine a map of
simplicial sets ϕp : Q −→ SPnK .

Theorem 1.9 Let p : K −→ Q be a simplicial ramified covering map, and
take ϕp : Q −→ SPnK . Then p is the pullback over ϕp of the simplicial ramified
covering map π : Kn ×Σn n −→ SPnK .

Proof: Since for each m, pm : Km −→ Qm together with µm is a (discrete)
ramified covering map pm is the pullback of πm : Kn

m ×Σn n −→ SPnKm over
ϕpm , as shown in [9]. Thus, for each m, consider the pullback diagram

Km
ϕ̃pm //

pm

²²

Kn
m ×Σn n

πm

²²
Qm ϕpm

// SPnKm .

We shall see that the functions ϕ̃pm : Qm −→ Kn
m ×Σn n determine a function

of simplicial sets. These functions are explicitly given as follows. Take a ∈ Km .
Write p−1

m (pm(a)) = {a = a1, a2, . . . , ar}. Then

ϕ̃pm(a) = 〈a1, . . . , a1︸ ︷︷ ︸
µm(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µm(ar)

; 1〉 .

Now we can proceed exactly as in the proof of 1.8.

We shall now see that

K
ϕ̃p //

p

²²

Kn ×Σn n

π

²²
Q ϕp

// SPnK

is a pullback diagram in the category of simplicial sets. For that purpose, let
α : S −→ Q and β : S −→ Kn ×Σn n be maps of simplicial sets such that

ϕp ◦ α = π ◦ β : S −→ SPnK .
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Since the diagram is a pullback diagram for each m, there exists a unique
γm : Sm −→ Km such that pm ◦ γm = αm and ϕ̃pm ◦ γm = βm . It is enough to
check that the functions γm determine a map of simplicial sets γ : S −→ K .
Given an order-preserving function f : k −→ m, in what follows we denote by
F the value of any of the functors S , K , or Q. Hence we have to prove that
F ◦ γm = γk ◦ F . Consider the diagram

Sm
γm //

F
²²

Km

F
²²

Sk γk

// Kk
ϕ̃pk

//

pk

²²

Kn
k ×Σn n

πk

²²
Qk ϕpk

// SPnKk .

Since the square at the bottom right is a pullback diagram, it is enough to show
that

ϕpk
◦ pk ◦ (F ◦ γm) = ϕpk

◦ pk ◦ (γk ◦ F ) .

For the left-hand side we have:

ϕpk
◦ pk ◦ (F ◦ γm) = ϕpk

◦ F ◦ pm ◦ γm = ϕpk
◦ F ◦ αm .

while for the right-hand side we have:

ϕpk
◦ pk ◦ (γk ◦ F ) = ϕpk

◦ αk ◦ F = ϕpk
◦ F ◦ αm ,

hence the assertion.

2 Ordinary covering maps of simplicial sets

Let S be a simplicial set and take σ ∈ Sm , then there is a unique map of
simplicial sets fσ : ∆[m] = mor∆(−,m) −→ S , such that fσ(id) = σ .

Definition 2.1 ([4]) Let p : K −→ Q be a map of simplicial sets. Then p
is called a simplicial n-fold (ordinary) covering map if for each m and any
x ∈ Qm , there is a pullback diagram in the category of simpicial sets

(2.2) ∆[m]× n //

π

²²

K

p

²²
∆[m]

fx
// Q ,

where fx is as above and π is the projection.
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Theorem 2.3 Let p : K −→ Q be a simplicial n-fold ramified covering map,
such that each µm : Km −→ N is constant with value 1. Then p is a simplicial
n-fold (ordinary) covering map.

Proof: First note that since µm is constant with value 1, all fibers p−1
m (x)

have exactly n elements. Define the simplicial set L(p) as follows. Set L(p)m =
{(a1, a2, . . . , an) ∈ p−1

m (x)n | i 6= j =⇒ ai 6= aj , x ∈ Qm} and define

si : L(p)m −→ L(p)m+1 and di : L(p)m −→ L(p)m−1

by
si(a1, . . . , an) = (si(a1), . . . , si(an))

and
di(a1, . . . , an) = (di(a1), . . . , di(an)) .

They are well defined. Namely, since p is a simplicial function, both si and
di send fibers into fibers. Moreover, since si is always injective and di , being
surjective in fibers, is also injective, the images of si and di lie indeed in L(p)m+1

and L(p)m−1 , respectively.

The symmetric group Σn acts freely on L(p)m for all m, therefore, if we look
at Σn as a simplicial group, we have a principal action of it on L(p). Hence, by
[7, Cor. 20.5], we have a simplicial fiber bundle

π(p) : L(p)×Σn n −→ L(p)/Σn .

Since its fibers are discrete (finite), it is thus a simplicial (ordinary) covering
map. It is easy to check that the simplicial mapping 〈a1, . . . , an; j〉 7→ aj , for
each m, determines a simplicial isomorphism

L(p)×Σn n

π(p)
²²

∼= // K

p

²²
L(p)/Σn ∼=

// Q ,

where the bottom map is given by 〈a1, . . . , an〉 7→ pm(aj), for any j . Since π(p)
is an ordinary covering map, so is p.

Corollary 2.4 Let p : K −→ Q be a map of simplicial sets, such that for
each m, pm is an n-to-1 function. Then p is a simplicial n-fold (ordinary)
covering map if and only if, for each x ∈ Qm (m ≥ 0), the restrictions of the
face operators

di| : p−1
m (x) −→ p−1

m−1(di(x))

are bijective for all i.

7



Proof: First note that since the restrictions si : p−1
m (x) −→ p−1

m+1(si(x)) are
always injective, under the assumptions, they are bijective.

By hypothesis, the restrictions of di to the fibers are also injective; thus, by
definition, p is a ramified covering map with multiplicity function µ constant
with value 1. Hence, by Theorem 2.3, p is a simplicial n-fold (ordinary) covering
map.

Conversely, let p be a simplicial n-fold (ordinary) covering map. Since the face
functions of ∆[m] × n map the fibers of π bijectively, then by diagram (2.2),
also the restrictions di| : p−1

m (x) −→ p−1
m−1(di(x)) are bijective.

3 A simplicial analog of Dold’s ramified covering maps

In this section we show that the simplicial ramified covering maps have prop-
erties analogous to those proved by Dold [2] for topological ramified covering
maps.

Theorem 3.1 Let p : K −→ Q be a map of simplicial sets. Then p is an n-
fold simplicial ramified covering map if and only if there is a map of simplicial
sets ϕp : Q −→ SPnK such that for each m the following hold:

1. If a ∈ Km , then a ∈ ϕpm(pm(a)).

2. The composition SPnpm ◦ ϕpm : Qm −→ SPnQm is the diagonal map.

Proof: Assume first that p : K −→ Q is an n-fold simplicial ramified covering
map. We have to check that ϕp , as given in Definition 1.7 (which by Proposition
1.8 is a map of simplicial sets), satisfies 1 and 2. To see 1, take a ∈ Km . Since
a ∈ p−1

m (pm(a)), by the definition of ϕpm , a ∈ ϕpm(pm(a)). In order to see 2,
take x ∈ Qm ; since

ϕpm(x) = 〈a1, . . . , a1︸ ︷︷ ︸
µm(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µm(ar)

〉 ,

where p−1
m (x) = {a1, . . . , ar}, then

SPnpmϕpm(x) = SPnpm(〈a1, . . . , a1︸ ︷︷ ︸
µm(a1)

, . . . , ar, . . . , ar︸ ︷︷ ︸
µm(ar)

〉)

= 〈pm(a1), . . . , pm(a1)︸ ︷︷ ︸
µm(a1)

, . . . , pm(ar), . . . , pm(ar)︸ ︷︷ ︸
µm(ar)

〉

= 〈x, . . . , x〉 ∈ SPnQm .
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Conversely, suppose that there is a map simplicial sets ϕp : Q −→ SPnK
satisfying conditions 1 and 2. Condition 1 implies condition 1 in Definition 1.1.
Now, since ϕp is a map of simplicial sets, in particular, the equality ϕpm−1 ◦di =
di ◦ ϕpm holds. Therefore, for every x ∈ Q, if {a1, . . . , ar} = p−1

m (x), then one
has, on the one hand,

diϕpm(x) = di(〈a1, . . . , a1, . . . , ar, . . . , ar〉)(3.2)
= 〈di(a1), . . . , di(a1), . . . , di(ar), . . . , di(ar)〉 ,

while, on the other hand,

(3.3) ϕpm−1(di(x)) = 〈b1, . . . , b1, . . . , bs, . . . , bs〉 ,
where p−1

m−1(d(x)) = {b1, . . . , bs}. Hence, every bk is the image of some aj under
di . Therefore di : p−1

m (x) −→ p−1
m−1(di(x)) is surjective, an thus condition 2 of

Definition 1.1 holds.

In order to check condition 3 in Definition 1.1, define µm : Km −→ N as follows.
Take a ∈ Km and consider ϕpm(pm(a)) ∈ SPnKm . If (a1, . . . , an) ∈ Kn

m is a
representative of ϕpm(pm(a)), define

µm(a) = #{i ∈ n | ai = a} .

Clearly 3 (a) holds. Since si is always injective, also 3 (b) holds. Finally, 3 (c)
follows from the equality of the expressions (3.2) and (3.3).

In the following results, we use the equivalence proved in the previous theorem.

Proposition 3.4 Let Γ be a finite group and Λ ⊂ Γ be a subgroup of index
n. If Γ acts simplicially on the right on a simplicial set W , then the orbit map
of simplicial sets

π : W/Λ −→ W/Γ

is an n-fold simplicial ramified covering map.

Proof: We shall prove that p satisfies conditions 1 and 2 of Theorem 3.1. Let
ϕπ : W/Γ −→ SPnW/Λ be given for [w]Γ ∈ Wm/Γ by

ϕπm([w]Γ) = 〈[wγ1]Λ, . . . , [wγn]Λ〉 ∈ SPnWm/Λ ,

where Γ/Λ = {[γ1], . . . , [γn]} (γ1 = e ∈ Γ).

Since the action of Γ on W is simplicial, one easily verifies that ϕπ is a map of
simplicial sets. To see condition 1, take a = [w]Λ ∈ Wm/Λ; since γ1 = e, a =
[wγ1]Λ ∈ ϕπmπm(a) = ϕπm([w]Γ). To see condition 2, take x = [w]Γ ∈ Wm/Γ.
Then

SPnπmϕπm(x) = SPnπm(〈[wγ1]Λ, . . . , [wγn]Λ〉) = 〈[wγ1]Γ, . . . , [wγn]Γ〉 =
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= 〈[w]Γ, . . . , [w]Γ〉 = 〈x, . . . , x〉 .

Conversely, we have the following.

Theorem 3.5 Let p : K −→ Q be an n-fold simplicial ramified covering
map. Then there exists a simplicial set W with a simplicial action of the
symmetric group Σn , such that the n-fold simplicial ramified covering map
π : W/Σn−1 −→ W/Σn is isomorphic to p.

Proof: Define the simplicial set W as follows. Take

Wm = {(x; a1, . . . , an) ∈ Qm ×Kn
m | ϕpm(x) = 〈a1, . . . , an〉} .

Define di : Wm −→ Wm−1 by di(x; a1, . . . , an) = (di(x); di(a1), . . . , di(an)), and
si : Wm −→ Wm+1 in the same way.

This is well defined, since ϕp is a map of simplicial sets.

We define a right action of Σn on Wm by

(x; a1, . . . , an)σ = (x; aσ(1), . . . , aσ(n)) .

We consider Σn−1 as the subgroup of those permutations that leave the first
coordinate fixed. Let αm : Wm/Σn−1 −→ Km and βm : Wm/Σn −→ Qm be
given by

αm([x; a1, . . . , an]Σn−1) = a1 and βm([x; a1, . . . , an]Σn) = x .

Let πm : Wm/Σn−1 −→ Wm/Σn be the canonical surjection. Clearly pm ◦αm =
βm◦πm . One can easily check that both αm and βm are bijective and determine
maps α and β of simplicial sets.

4 Geometric realization of simplicial ramified covering maps

We recall that given a simplicial set S , the geometric realization |S| is a CW-
complex with one m-cell ϕσ : ∆m −→ |S| for each nondegenerate simplex
σ ∈ Sm given by ϕσ(t) = [σ, t].

Lemma 4.1 Let γ : S −→ T be a map of simplicial sets, with the prop-
erty that for each τ ∈ Tm and any si : Tm −→ Tm+1 , the restriction of si ,
γ−1

m (τ) −→ γ−1
m+1(si(τ)), is surjective. Then there is a bijection β : γ−1

m (τ0) −→
|γ|−1([τ0, t0]), where (τ0, t0) ∈ Tm ×

◦
∆

m
is a nondegenerate representative.
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Proof: Let β be given by β(σ) = [σ, t], where γm(σ) = τ .

Clearly, since τ0 is nondegenerate, so is any σ ∈ γ−1
m (τ0). Since

|S| =
⊔

σ∈S′m, m≥0

ϕσ(
◦
∆

m
) ,

where S′m is the subset of Sm of nondegenerate elements, then β is injective.

Assume that (ρ, t) is a nondegenerate element such that |γ|([ρ, t]) = [γl(ρ), t] =
[τ0, t0]. If γl(ρ) is also nondegenerate, then l = m, t = t0 , and γm(ρ) = τ0 . If
we now assume that γl(ρ) is degenerate, then there is a unique nondegenerate
element τ ′ ∈ Tr and an iterated degeneracy operator s : Tr −→ Tl such that
s(τ ′) = γl(ρ). By hypothesis, there is an element σ′ ∈ Sr such that s(σ′) = ρ.
Therefore [τ0, t0] = [γl(ρ), t] = [s(τ ′), t] = [τ ′, s#(t)]. Since (τ ′, s#(t)) is nonde-
generate, τ0 = τ ′ and t0 = s#(t), so that r = m, σ′ ∈ Sm , and γm(σ′) = τ0 .
Hence β(σ′) = [σ′, t0] = [σ′, s#(t)] = [s(σ′), t] = [ρ, t], and thus β is surjective.

Theorem 4.2 Let : K −→ Q be a simplicial n-fold ramified covering map.
Then |p| : |K| −→ |Q| is a topological n-fold ramified covering map.

Proof: By the previous lemma, |p| has finite fibers.

We shall now see that |p| : |K| −→ |Q| satisfies Dold’s definition, namely, the
topological version of conditions 1 and 2 of Theorem 3.1.

Consider the map of simplicial sets ϕp : Q −→ SPnK . There is a natural
homeomorphism |SPnQ| −→ SPn|Q| induced by the natural homeomorphism

|Qn| −→ |Q|n given by [(x1, . . . , xn), t] 7−→ ([x1, t], . . . , [xn, t]) .

Then, the composite

|Q| |ϕp|−→ |SPnK| ≈−→ SPn|K|
coincides with ϕ|p| , as one easily shows. Therefore, ϕ|p| is continuous.

In order to see condition 1, take [a, t] ∈ |K|, a ∈ Km . Then

ϕ|p||p|([a, t]) = ϕ|p|([pm(a), t]) = 〈[a1, t], . . . , [an, t]〉 ,
where ϕpmpm(a) = 〈a1, . . . , an〉. Since by condition 1 in the simplicial case,
a = ai for some i, we have [a, t] ∈ ϕ|p||p|([a, t]).

Condition 2 follows from the simplicial condition 2, since

SPn|p| ◦ ϕ|p| : |Q|
|SPnp◦ϕp| // |SPnQ| ≈ // SPn|Q| .

Hence |p| is an n-fold ramified covering map.
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Remark 4.3 The multiplicity function µ : |K| −→ N of the simplicial ramified
covering map |p| : |K| −→ |Q| is defined by µ([a, t]) = µm(a), where (a, t) ∈
Km ×∆m is the nondegenerate representative. One can verify that it satisfies
the conditions given in Smith’s definition of a ramified covering map.

5 Ramified covering maps in the category of
simplicial complexes

The geometric realization functor | · | : Simpset −→ Top has a right adjoint
functor S : Top −→ Simpset given by the singular simplicial set associated to
a space. The simplicial map S(p) : S(E) −→ S(X) associated to a topological
ramified covering map p : E −→ X is not in general a simplicial ramified cov-
ering map, because it is not always finite-to-one as the example below shows.
However, if we work in the category of simplicial complexes, then there is an-
other functor K from this category to Simpset. In this section we define the
concept of an n-fold ramified covering map p : C −→ D in the category of
simplicial complexes and we show that the associated map of simplicial sets
p̂ : K(C) −→ K(D) is a ramified covering map. Furthermore, we show that the
map of triangulated spaces |p| : |C| −→ |D| is a topological ramified covering
map.

Example 5.1 Consider the topological ramified covering map p : E −→ X
given by X = R and E ⊂ R2 such that

E = {(s, t) | t = sinπs or t = − sinπs} ,

and p the projection to the first coordinate. Let moreover µ : E −→ N be given
by

µ(s, t) =

{
1 if s /∈ Z ,

2 if s ∈ Z .

Since p is the orbit map of the action of Z2 on E given by (s, t) 7→ (s,−t), p is
a ramified covering map (see Figure 1). Observe first that p has infinitely many
sections. Indeed, each interval [k, k + 1] can be mapped by the section either
with s 7→ (s, sinπs) or with s 7→ (s,− sinπs), so that for each real number
(written binarily) there is a different section.

Consider now the map λ : [0, 1] −→ R given as follows. First subdivide the
interval by the points 1− 1

2k , k ∈ N and map the interval [0, 1
2 ] by

λ(s) =

{
2s if s ≤ 1

4 ,

1− 2s if s ≥ 1
4 ;

12



Figure 1: Topological ramified covering map of multiplicity 2

then map the interval [12 , 3
4 ] by

λ(s) =

{
2s− 1 if s ≤ 5

8 ,
3
2 − 2s if s ≥ 5

8 ;

and so on. This map is continuous and has the property of mapping each point
of the subdivision to 0. Thus, the restriction of λ to each of the subintervals
can be continuously lifted by composing it with either s 7→ (s, sinπs) or with
s 7→ (s,− sinπs). Hence, at each point 1− 1

2k , one has two different possibilities
of continuing the lifting of λ and so one has that λ has infinitely many liftings.

This shows that for λ ∈ S1(R), Sp−1
1 (λ) has infinitely many elements.

Note that this kind of examples can easily be given for many other ramified
covering maps.

Recall ([10]) that a simplicial complex C is a family of nonempty finite subsets
of a set VC , whose elements are the vertices of C and which have the following
two properties:

(i) For each v ∈ VC , the set {v} ∈ C .

(ii) Given σ ∈ C and σ′ ⊂ σ , then σ′ ∈ C .

A map f : C −→ D of simplicial complexes is given by a function f : VC −→ VD

such that if {v0, . . . , vq} ∈ C , then {f(v0), . . . , f(vq)} ∈ D .

In what follows, we shall assume that the vertices of any simplicial complex con-
sidered have a partial order such that each simplex is totally ordered. Moreover,
we can also assume that any simplicial map preserves the order. This can always
be achieved as follows. Let f : C −→ D be any simplicial map. Put a total order
on VD and define a partial order on VC such that v < v′ ⇐⇒ f(v) < f(v′).
Then extend this partial order to a total order on VC . Alternatively, one can
consider the barycentric subdivision of each of the simplicial complexes. We
denote by σ(i) the ith face of any ordered m-simplex σ = (v0 < · · · < vm) in
a simplicial complex, which is defined by σ(i) = (v0 < · · · < v̂i < · · · < vm),
where we omit the ith vertex.

13



Figure 2: Ramified covering map of simplicial complexes

Definition 5.2 Let p : C −→ D be a simplicial map between simplicial
complexes. We say that p is an n-fold ramified covering map of simplicial
complexes if there exists a multiplicity function µ : C −→ N such that the
following conditions hold:

1. For each vertex w of D , the fiber p−1(w) is a finite nonempty set and if
σ ∈ p−1(τ), then σ and τ have the same dimension.

2. For each simplex τ ∈ D and each simplex σ′ ∈ C , such that p(σ′) = τ (i) ,
there is a simplex σ ∈ D such that p(σ) = τ and σ(i) = σ′ .

3. For each simplex τ in D ,
∑

p(σ)=τ

µ(σ) = n .

4. For each simplex σ ∈ C ,

µ(σ(i)) =
∑

p(σ)=p(σ′)
σ(i)=σ′(i)

µ(σ′) .

Example 5.3 Consider the simplicial complexes C with vertex set VC = {v0 <
v1 < v2 < v3} and 1-simplexes {v0, v1}, {v1, v3}, {v0, v2}, {v2, v3}, and D with
VD = {w0 < w1 < w2} and 1-simplexes {w0, w1}, {w1, w2}, and the simplicial
map p : C −→ D such that p(v0) = w0 , p(v1) = p(v2) = w1 , and p(v3) = w2 .
If one defines µ(v0) = 2 = µ(v3) and µ(σ) = 1 for any other simplex σ ∈ C ,
then p is a 2-fold ramified covering map of simplicial complexes (see Figure 2).

Definition 5.4 Given any simplicial complex C , one can associate to it a
simplicial set K(C) as follows. Define

K(C)m = {(v0, . . . , vm) | {v0, . . . , vm} ∈ C, v0 ≤ · · · ≤ vm} ,

14



di : K(C)m −→ K(C)m−1 is given by

di(v0, . . . , vm) = (v0, . . . , v̂i, . . . , vm) ,

and si : K(C)m −→ K(C)m+1 is given by

si(v0, . . . , vm) = (v0, . . . , vi, vi, . . . , vm) .

If p : C −→ D is an n-fold ramified covering map of simplicial complexes,
call p̂m : K(C)m −→ K(D)m the induced map of simplicial sets, given by
p̂(v0, . . . , vm) = (p(v0), . . . , p(vm)). Define µm : K(C)m −→ N by µm(σ) =
µ(σ′), where σ′ ∈ K(C)l , l ≤ m, is the unique nondegenerate simplex such
that s(σ′) = σ .

Lemma 5.5 Let p : C −→ D be an n-fold ramified covering map of simplicial
complexes. Then, for any i, the restriction si| : p̂−1

m−1(τ) −→ p̂−1
m (si(τ)) is

bijective.

Proof: Take τ = (w0, . . . , wm−1). Then si(τ) = (w0, . . . , wi, wi, . . . , wm−1).
If p̂m(v0, . . . , vm) = si(τ), then vi = vi+1 . Otherwise, the dimension of σ′ =
(v0, . . . , vm) would be higher than the dimension of si(τ), contradicting condi-
tion 1 in Definition 5.2. Hence σ′ = si(σ) for some σ ∈ p̂−1

m−1(τ). Since si is
always injective, the result follows.

We have the following result that relates both the concept of simplicial n-fold
ramified covering map defined in Section 1 and the concept of n-fold ramified
covering map of simplicial complexes just defined.

Theorem 5.6 Let p : C −→ D be an n-fold ramified covering map of sim-
plicial complexes. Then p̂ : K(C) −→ K(D) is a simplicial n-fold ramified
covering map with {µm} defined as above.

Proof: Condition 1 in 5.2 implies that the fibers of p̂m are finite for each m.
Thus condition 1 in Definition 1.1 holds.

We shall prove condition 2 in three steps. Take τ ∈ K(D)m and σ′ ∈ K(C)m−1

such that p̂m−1(σ′) = di(τ).

First step: Assume that τ is nondegenerate. Therefore, di(τ) ∈ K(D)m−1 is
nondegenerate, and hence σ′ is also nondegenerate. By condition 2 in Definition
5.2, there exists a simplex σ ∈ K(C)m such that p̂m(σ) = τ and di(σ) = σ′ .
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Second step: Assume that τ is degenerate of the form τ = sj(τ ′), where τ ′ is
nondegenerate. Using the relations in a simplicial set, we have the following.

di(τ) = di(sj(τ ′)) =





sj−1di(τ ′) if j > i (1),
τ ′ if j = i− 1 or j = i (2),
sjdi−1(τ ′) if j < i− 1 (3).

In case (2) we have that since di(τ) = τ ′ is nondegenerate, σ′ is also nondegen-
erate. Define σ = sj(σ′). Then

p̂m(σ) = p̂m(sj(σ′)) = sj(p̂m−1(σ′)) = sjdi(τ) = sjdisj(τ ′) = sj(τ ′) = τ .

On the other hand,
di(σ) = disj(σ′) = σ′ .

In case (1), we claim that σ′ = sj−1(σ′′), where σ′′ ∈ K(C)m−2 is nondegen-
erate. To see this, notice that sj−1di(τ ′) = p̂m−1(σ′). If we assume that σ′ is
nondegenerate, then σ′ is a geometric simplex of dimension m − 1, which is
mapped by p to a simplex of dimension m − 2 contradicting condition 1 of
Definition 5.4.

Hence
p̂m−1(σ′) = p̂m−1(sj−1(σ′′)) = sj−1(p̂m−2(σ′′)) ;

while on the other hand

p̂m−1(σ′) = di(τ) = sj−1di(τ ′) .

Since the degenerate operators are injective, we have that p̂m−2(σ′′) = di(τ ′).
Because σ′′ and τ ′ are nondegenerate, by the geometric condition there is a
geometric simplex σ′ ∈ K(C)m−1 such that p̂m−1(σ′) = τ ′ and di(σ′) = σ′′ .

Now define σ = sj(σ′). Then

p̂m(σ) = p̂m(sj(σ′)) = sj(p̂m−1(σ′)) = sj(τ ′) = τ .

Moreover,
di(σ) = disj(σ′) = sj−1di(σ′) = sj−1(σ′′) = σ′ ,

where the last equality follows from the claim above.

In case (3) the proof is analogous to case (1).

Third step: When τ = s(τ ′), where s is a composite of degeneracy operators,
the proof is done by induction on the number of degeneracy operators using the
same kind of arguments as above.
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We now pass to condition 3. Take

τ = (w0, . . . , wi, . . . , wm) ∈ K(D)m

and let σ = (v0, . . . , vm) be any element in the fiber of τ . If τ is nondegenerate,
then so is σ . Then, by condition 3 in 5.4,

∑

p(σ)=τ

µm(σ) =
∑

p(σ)=τ

µ(σ) = n .

Thus 3 (a) in Definition 1.1 holds in this case. If τ is degenerate, then there
is a nondegenerate τ ′ ∈ K(D)m−r and a composite of degeneracy operators
s : K(D)m−r −→ K(D)m such that s(τ ′) = τ . Since by the previous lemma
the corresponding composite of degeneracy operators s : K(C)m−r −→ K(C)m

maps the fiber p̂−1
m−r(τ

′) bijectively onto the fiber p̂−1
m (τ), and since µm ◦ s =

µm−r , condition 3 (a) in Definition 1.1 holds in general, as follows from the case
when τ is nondegenerate.

Clearly 3 (b) in Definition 1.1 also holds.

Finally, to prove 3 (c), assume first that σ ∈ K(C)m is nondegenerate. Then

µm−1di(σ) = µ(σ(i)) =
∑

p(σ)=p(σ′)
σ′(i)=σ(i)

µ(σ′) =
∑

p̂m(σ)=p̂m(σ′)
di(σ′)=di(σ)

µm(σ′) .

If σ = s(σ1), then we have the following three cases. Either di ◦ s = id, di ◦ s =
s”, or di ◦ s = s′ ◦ dj . In the first two cases, the assertion follows from the fact
that di restricted to the fibers is bijective, because it is the inverse of sj , which
is bijective on fibers by Lemma 5.5. In the third case,

µm−1di(σ) = µm−1s
′dj(σ1)

= µm−k−1dj(σ1)

=
∑

p̂m−k(σ′1)=p̂m−k(σ1)

dj(σ′1)=dj(σ1)

µm−k(σ′1)

=
∑

p̂m−k(σ′1)=p̂m−k(σ1)

dj(σ′1)=dj(σ1)

µms(σ′1)

=
∑

p̂m(σ′)=p̂m(σ)

di(σ′)=di(σ)

µm(σ′) ,
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where the third equality follows from the nondegenerate case and the last equal-
ity follows from the fact that the degeneracy operators induce bijections on the
fibers, and because

di(σ′) = dis(σ′1) = s′dj(σ′1) .

The following result is proved in [6].

Proposition 5.7 Given a simplicial complex C , there is a natural homeomor-
phism between the geometric realizations ϕC : |C| −→ |K(C)|.

From the previous proposition and Theorem 4.2 we obtain the following.

Theorem 5.8 Let p : C −→ D be an n-fold ramified covering map of simpli-
cial complexes. Then |p| : |C| −→ |D| is a topological n-fold ramified covering
map.

Corollary 2.4 suggests the following.

Definition 5.9 Let p : C −→ D be a simplicial map between simplicial
complexes. We say that p is an n-fold covering map of simplicial complexes
if the following conditions hold:

1. For each simplex τ of D , the fiber p−1(τ) is a set of cardinality n and if
σ ∈ p−1(τ), then σ and τ have the same dimension.

2. For each simplex τ ∈ D and each simplex σ′ ∈ C , such that p(σ′) = τ (i) ,
there is a unique simplex σ ∈ D such that p(σ) = τ and σ(i) = σ′ .

Remark 5.10 Notice that if we define µ : D −→ N by µ(σ) = 1 for all σ ∈ D ,
then p is an n-fold ramified covering map.

Rotman [8] has another definition of a covering map of simplicial complexes. It
is equivalent to ours. Namely, we have the following.

Proposition 5.11 Let p : C −→ D be a simplicial map between simplicial
complexes. Then p is an n-fold covering map if and only if for each simplex
τ ∈ D , p−1(τ) =

⊔n
k=1 σk , so that p|σk

: σk −→ τ ∈ D is bijective.
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Proof: Assume first that p is an n-fold covering map. Let σk, σl be such that
p(σk) = p(σl) = τ . Suppose first that σk ∩ σl 6= ∅ and p(σk ∩ σl) = τ (i) . Then
by condition 2 in the definition, σk = σl . The general case follows by induction
on the number of missing vertices.

Conversely, assume that p satisfies Rotman’s definition. Then condition 1 fol-
lows immediately. To see condition 2, we use the unique lifting property of p
(see [8, Thms. 3.1 and 3.2]). Define the simplicial complex ∆m whose vertex set
is m and whose simplexes are all its subsets. Then any m-simplex τ ∈ D can
be seen as an injective simplicial map τ : ∆m −→ D . Consider the following
lifting problem:

(∆m−1, 0)Ä _

di

²²

σ′ // (C, σ′(0))

p

²²
(∆m, di(0)) τ

//

σ
77nnnnnn

(D, pσ′(0)) .

Since ∆m is contractible, by the unique lifting property, there exists σ : ∆m −→
C making the lower triangle commute. To see that the upper triangle also
commutes, just observe that σ ◦ di and σ′ are both liftings of τ ◦ di that
coincide in 0. By the uniqueness of the liftings, they are equal.

As a consequence of 5.8, 4.2, 5.7, and 4.3, we have the following.

Corollary 5.12 Let p : C −→ D be an n-fold covering map of simplicial
complexes. Then |p| : |C| −→ |D| is a topological n-fold covering map.
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Boston Berlin, 1999

[6] A. T. Lundell, S. Weingram, The topology of CW-complexes, Van Nostrand
Reinhold Co., New York 1969

[7] J. P. May, Simplicial Objects in Algebraic Topology, The University of Chicago
Press, Chicago London 1992.

[8] J. Rotman, Covering complexes with applications to algebra, Rocky Mountain
J. Math., 3 (1973), 641–674

[9] L. Smith, Transfer and ramified coverings, Math. Proc. Camb. Phil. Soc. 93
(1983), 485–493.

[10] E. H. Spanier, Algebraic Topology, Springer, New York Heidelberg Berlin
(McGraw-Hill) 1966

July 1, 2008

20


