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Abstract Let M be a covariant coefficient system for a finite group G. In
this paper, we analyze several topological abelian groups, some of them new,
whose homotopy groups are isomorphic to the Bredon-Illman G-equivariant
homology theory with coefficients in M. We call these groups equivariant
Dold-Thom topological groups and we show that they are unique up to
homotopy. We use one of the new groups to prove that the Bredon-Illman
homology satisfies the infinite-wedge axiom and to make some calculations
of the Oth equivariant homology
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0 Introduction

Given a finite group G, a covariant coeflicient system M for G, and a pointed
G-set S, we defined in [2] an abelian group F@(S, M). Using this construction,
we associate to a pointed G-space X a simplicial abelian group F&(8(X), M).
Its geometric realization, denoted by F G(X , M), is a topological group whose
homotopy groups are isomorphic to the reduced Bredon-Illman G-equivariant
homology of X with coefficients in M. Given a G-equivariant ordinary covering
map p: F — X, we also defined a continuous transfer tf : FG(X M) —
FG(E+,M ), that induces a transfer in equivariant homology, when M is a
Mackey functor.

In [3], we showed that when the G-space X is a strong p-space (e.g. a G-
simplicial complex or a finite dimensional countable locally finite G-CW-com-
plex), there is a topology in the abelian groups F&(X?, M), where X? stands
for the underlying set of X. With this topology, F&(X, M) is a topological
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group, which we denote by F¢(X, M). This is a smaller group than the group
F%(X, M) mentioned above. It has the property that its homotopy groups are
isomorphic to the reduced Bredon-Illman G-equivariant homology of X with
coefficients in M, when M is a homological Mackey functor. Furthermore, we
proved in [4] that these topological groups admit a continuous transfer for G-
equivariant ramified covering maps, whose total space 1—and base space are
strong p-spaces.

In this paper we present a different topology for the abelian group F&(X?, M)
and we denote the resulting topological group by F¢(X, M). We prove that
for any pointed G-space X of the homotopy type of a G-CW-complex, and
for any coefficient system, the homotopy groups of (X, M) are isomorphic
to the reduced Bredon-Illman G-equivariant homology of X with coefficients
in M. The assumptions on X and M are much weaker than those needed to
define F¢(X, M). However, in such a generality, it does not seem possible to
construct a continuous transfer even for ordinary covering G-maps.

These new topological groups 5 (X, M) can be used to prove the infinite wedge
axiom for the Bredon-Illman homology. They also allow us to make some cal-
culations of the Oth homology groups of a G-space X.

Those topological groups whose homotopy groups are isomorphic to the re-
duced Bredon-Illman G-equivariant homology of X with coefficients in M
will be called Dold-Thom topological groups. Hence F(X, M), F¢(X, M), and
"J"G(X , M) are Dold-Thom topological groups. Furthermore, all these groups
are algebraically subgroups of other topological groups, so they also have an-
other natural topology, namely the subspace topology. These topological groups
will be denoted by FG(X7 M), FG(X, M), and ?"G(X, M). The first two were
studied in [3]. In this paper we prove that these groups are isomorphic to the
former, if the coefficient system M takes values on k-modules, where k is a
field of characteristic 0 or a prime p that does not divide the order of G. We
also show that the Dold-Thom topological groups are unique up to homotopy.

The paper is organized as follows. In Section 1 we give the basic definitions that
are needed. Then in Section 2 we define the new topological groups F¢(X, M)

and ?G(X , M), and we prove that the former is a Dold-Thom topological group.
Then in Section 3 we compare the new topological groups with the previously
defined ones. In Section 4 we analyze the case of coefficients in k-Mod, with
the field k£ as explained above. In Section 5 we prove the wedge axiom and
we compute the 0th equivariant homology in some cases. Finally in Section 6,
we study the Dold-Thom topological groups and we show that two Dold-Thom



topological groups, which are locally connected and have the homotopy type of
a CW-complex, are homotopy equivalent.

1 PRELIMINARIES

We shall work in the category of k-spaces, which will be denoted by k-Top. We
understand by a k-space a topological space X with the property that a set
W C X is closed if and only if f~'W C Z is closed for any continuous map
f:Z — X, where Z is any compact Hausdorff space (see [13, 16]). Given
any space X , one can clearly associate to it a k-space k(X) using the condition
above, which is weakly homotopy equivalent to X . The product of two spaces
X and Y in this category is X XY = k(X Xop Y), where X Xiop Y is the
usual topological product. Two important properties of this category are that if
p: X — X' is an identification and X is a k-space, then X' is a k-space, and
ifp: X » X and q: Y — Y’ are identifications, then pxq: X XY — X' xY’
s an identification too. If X is a k-space, we shall say that A C X has the
relative k-topology (in k-Top) if A = k(A;e), where Ay denotes A with the
(usual) relative topology in Jop. This topology is characterized by the following
property: Let Y be a k-space. Then a map f :Y — A is continuous if and
only if the composite io f : Y — X is continuous, where i : A — X is the
inclusion (see [16]).

In what follows, we shall denote by G-Top, the category of topological pointed
G-spaces such that G acts trivially on the base point, or correspondingly
G-k-Top, . TJopab will denote the category of topological abelian groups in the
category of k-spaces. Recall that a covariant coefficient system is a covariant
functor M : O(G) — R-9Mod, where O(G) is the category of G-orbits G/H ,
H C G, and G-functions o : G/H — G/K, and R is a commutative ring.
A particular role will be played by the G-function R, : G/H — G/gHg™ ",
given by right translation by ¢~' € G, namely

Ry-1(aH) = aHg ' =ag ' (gHg™).

We shall often denote aH by [a]g. Observe that if X isa G-set and x € X, then
the canonical bijection G/G, — G/Gy, is precisely Rg-1. Here G denotes

the isotropy subgroup of x, namely, the maximal subgroup of G that leaves x
fixed.

Let S be a pointed G-set (where the base point xy remains fixed under the
action of G) and M a covariant coefficient system. In [2] we defined an abelian



group F(S, M) as follows. Let
M=) MG/H).
HcG
Then
FS,M)={u:S — M |u(zx) € M(G/Gg), u(zo) =0,

and u(xz) = 0 for almost every z € X} .

Indeed, this group F(S, M) is an R-module, whose structure is given by
(r-u)(z) =ru(x) € M(G/Gy).
It has as canonical generators the functions

Il ifd ==,

lx: S M iven b lx(z') =
% siven by () {0 if 2/ #x,

where x € S, © # zo, and | € M(G/G5). The group F(S,M) is a functor
of S as follows. Let f : S — T be a pointed G-function. Then we define
fs«: F(S,M) — F(T,M) on generators by

Follz) = Mo (Fo) (1) f (),

that is, the homomorphism whose value on y is M*(fA‘I)(l) if y= f(z) and 0
otherwise, where f, : G/G, — G /G, is the canonical surjection.

There is an action of G on F(S, M) given on generators by

g - (lz) = M(Ry-1)(1)(g) -

Then one can consider the submodule F(S, M) of fixed points under the G-
action. Let f: S — T be as above. Since f, is clearly a G-homomorphism,
it restricts to a homomorphism between the submodules of fixed points, which

we denote by

79 FO 8, M) — FO(T, M) .

This makes FG(—, M) into a functor G-8et, — R-Mod

On the other hand, there is a surjective homomorphism fs : F(S,M) —
F(S, M)Y given by

Bs(lz) =77 ()= Y Mc(Ry1)(1)(g2),
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that is, essentially taking the sum over the orbit of x. One can now use this
to give a different functorial structure on F(S, M)%, defining for a G-function
f:S — T and a generator 75 (1),

FEQED) = 7wy Me(Jo) ().
This makes F%(—, M) into a functor G-8et, — R-Dod.

These three functors are related by the commutativity of the following diagram:

(1.1) S FO(S, M)~ F(S, M) —~ pG($, M)
f ffi lf* lff
o (G — s G
T F (T, M)~ F(5,M) o F“(S,M).

We shall use these groups to define different topological groups in the next
section.

2 TOPOLOGICAL GROUPS AND COEFFICIENT SYSTEMS

First recall the following construction. Let X be a topological space and L an
R-module. Then we have the R-module F(X,L) = {u : X — L | u(zg) =
0, and u(x) = 0 for almost every x € X }. Following [1] we have that this R-
module can be topologized as follows (see also [14]). There is a surjective func-
tion

p: [ x X)F - F(X,L)
k

given by (I1,x1;...;lk, k) — lixy + -+« + lpxg. Then F(X, L) has the identifi-
cation topology.

Given a pointed G-space X, we denote by X the pointed subspace of elements
of X that remain fixed under the group elements of H.

Definition 2.1 Let M be a covariant coefficient system and let X be any
pointed G-space. For each subgroup H C G consider the topological group
F(X" M(G/H)) as defined above. Define py : F(X, M(G/H)) — F(X, M)
by pu(lx) = M.(quz)(1), where z € X, 1 € M(G/H), and qp, : G/H —
G /Gy, is the canonical projection. Now take the homomorphism

px: [ F(X", M(G/H)) > F(X,M)
HcG



given by px((lgra)mca) = X gcqPa(larm), where the product has the prod-
uct topology of k-spaces. Given any generator [z € F (X, M), lz can be seen
also as an element in F(X% M(G/G,)). Therefore py is surjective. Give the
R-module F(X, M) the identification topology induced by px. We obtain a
k-space, which we denote by F(X, M). By giving FG(X , M) the relative k-
topology we obtain another k-space, which we denote by ?"G(X , M). Moreover,
by taking on F&(X, M) the identification topology given by the epimorphism
Bx , we obtain another k-space, which we denote by F¢ (X, M).

Proposition 2.2 The groups F(X, M), ?G(X, M), and 3¢ (X, M) are topo-
logical groups in the category of k-spaces.

Proof:  Consider the following diagram

[1F(XH, M(G/H)) x [T F(XH, M(G/H)) "L [T F(XH, M(G/H))

px pri pr

F(X, M) x F(X, M) - F(X, M)
Bx Xﬁxi iﬁx
FE(X, M) x FE(X, M) — FE(X, M).

The function on the top is given by the product of the sum on each topological
group F(XH M(G/H)) and therefore it is continuous. Since px and By are
homomorphisms, both squares commute. Furthermore, since px and (x are
identifications, so are px xpx and Bx x Bx . Therefore F(X, M) and FE(X, M)
are topological groups. Finally, since ?G(X , M) has the relative k-topology, it
is also a topological group. [ |

Proposition 2.3 Let f : X — Y be a pointed G-map. Then the homo-
morphism f, : F(X, M) — F(Y, M) is continuous. Thus the homomorphisms
O FYx, M) — FOY, M) and £G : FG(X, M) — FC(Y, M) are also
continuous.

Proof: The following diagram commutes:

e PO M (G/H) 1,0 PO M (G D)

pxl ipy

F(X, M) F(Y, M).




Indeed, if (lgza)uce € [{yce F(XH, M(G/H)) is a generator, then

Hf* ((agra)nce) =py((Uuf(zu))nce) = Z M@ () Ua) f(zm),

HCG
and
f*pX((leL‘H)HCG f* ZM Q:EH lH l'H ZM fo QIH)( )f(xH)
HCG HCG

Here we denote qp z,, simply by g¢., . Both composites are equal, since fo o
Qe = Qf(xH) .

Since px is an identification and [] f is continuous, f, is also continuous. =

The next result shows the homotopy invariance of the functors F.

Proposition 2.4 Let fy,f1 : X — Y be G-homotopic pointed G-maps.
Then fox, f1«: F(X, M) — F(Y, M) are G-homotopic homomorphisms. More-
over, also fo Fon @ T (X, M) — FO(V, M) and G, fS : FG(X, M) —
FE(Y, M) are homotopic homomorphisms.

Proof: For each H C G, take the restriction fZ : X# — YH and let 3 :
X xI — Y be a G-homotopy such that H(z,v) = f,(z), v =0, 1, and denote
by HHY : XH x T — YH the restriction of 3, which is a homotopy between
fH and fH. By [14], there is a homotopy H : F(X? M(G/H)) x I —
F(YH M(G/H)) between (ff), and (f{)., which is given by HH (u,t) =
(H).(u), where H (z) = H (2,t), z € XH.

Define a homotopy R : [TF(X", M(G/H)) x I — [[F(Y?,M(G/H)) b
R((ur)rca,t) = (K" (um, t))rce. Define K : F(X, M) x I — F(Y,M) by
K(u,t) = Hys(u) and consider the diagram

[1F(XH, M(G/H)) x I "= F(Y", M(G/H))

pPX Xidi ipy

F(X, M) x I - F(Y,M).

Since both R and X are homomorphisms for each fixed ¢, we may check the
commutativity on a generator ((lgyzg)uca,t) € [[ F(XH, M(G/H)) x I as



follows:

pyR((gza)nce.t) = py (laH (xu, b)) uce)

= Z M*(quH(xH,t))(lH)‘(}cH(xH7t)7
HCG

K(px xid)((lgzn),t) =X (Z M*(QxH)(lH)$H>

HcG

- Z M*(g/_\QCEH)M*(QxH)(lH)fH(J?H,t) .
HCG

Both expressions are equal, since H!! is the restriction of H, and one clearly
q.H
has that qgen(y, ) 1 G/H — G/Gy(zy ) is equal to the composite G/H —

g{tz
G/Ggy, e G /Gagzy 1)+ Since px x id is an identification, X is continuous

an so it is a homotopy as desired.

The homotopy X is G-equivariant. Indeed, since Hy, is G-equivariant, one has
K(g-u,t) =Hul(g-u) = gHp(u) = gK(u,t). Thus we can take the restriction
of X, X< ?"G(X, M) x I — ?"G(Y, M), which is a homotopy between ?(i

and ?i, and by the naturality of G, we also have a commutative diagram

e

F(X, M) x I F(Y, M)

Bx Xidl lﬁy

FE(X, M) x I— o~ FE(Y, M),

where K% (v,t) = H&(v). Thus f§, f9 : F9X, M) — FE(Y, M) are also
homotopic. [ |

We shall need the following G-equivariant version of the Whitehead Theorem.

Proposition 2.5 Let Y and Z be G-spaces and ¢ : Y — Z be a G-
equivariant weak homotopy equivalence. Let yo € Y and ¢(yg) € Z be base
points. Assume that (Y, yo) and (Z, p(yo)) have the G-homotopy type of pointed
G-CW-complexes. Then ¢ : (Y,y0) — (Z,¢(yo)) is a pointed G-homotopy
equivalence.



Proof:  Consider the square

(Y, 0) —— (Z, ¢ (0))

| |=c

(C,Co) - a > (D,do),

where (C,cg) and (D,dy) are pointed G-CW-complexes and v is defined so
that the square commutes. Since the vertical arrows are G-homotopy equiva-
lences, v is a G-equivariant weak homotopy equivalence.

Using [6, I1(2.5)], one can show that 1 is a pointed G-homotopy equivalence.
Therefore ¢ is also a pointed G-homotopy equivalence. [ |

As a consequence of the previous two results we have the following.

Corollary 2.6 LetY and Z be G-spaces and ¢ : Y — Z be a G-equivariant
weak homotopy equivalence. Let yo € Y and ¢(yo) € Z be base points. As-
sume that (Y,yo) and (Z,¢(yo)) have the G-homotopy type of pointed G-
CW-complexes. Then ¢ induces a homotopy equivalence of topological groups
©G FEY, M) — FE(Z,M). n

Lemma 2.7 Let (X,xz9) be a pointed G-space of the G-homotopy type of a
pointed G-CW-complex, and let §(X) be the singular simplicial G-set of X .
Let px : |S(X)| — X be given by p([o,s]) = o(s), where o : A9 — X and
s € A?. Then p$, : FC(|8(X)|, M) — FE(X, M) is a homotopy equivalence
of topological groups.

Proof: By [5, 1.9(e)], we have |$(X)|# = |§(X)|, and clearly [S(X)¥| =
IS(XH)|. Hence p& : |8(X)[# — XH coincides with pyu : [S(XH)] — X,
which by Milnor’s theorem (see [12]) is a weak homotopy equivalence. Therefore,
px is a G-equivariant weak homotopy equivalence. Hence, by the previous
corollary, the result follows. [ |

Definition 2.8 Assume now that () is a simplicial pointed G-set and consider
the simplicial group F(Q, M) such that for any n, F(Q,M), = F(Qn, M).
Given a morphism g : m — n in A, we denote by u? : Q, — Q,n the
induced pointed G-function. Then we define pf'(@M) = ,ug  F(Q,M), —

F(Q, M),,. Then one has two other simplicial groups FG(Q, M) and FE(Q, M).
FG(Q,M ) is the simplicial subgroup of F(Q, M) induced by the restricted

functor FG(—, M) defined above. F&(Q, M) is the simplicial quotient group of
F(Q, M) induced by the quotient functor F&(—, M) defined in page 5.



Theorem 2.9 There is a natural isomorphism of topological groups

Vo : |[F(Q,M)| — F(Q, M) given by  ¥q([lz,t]) = Mi(ges) ()2, 1],
where @t : G/Gz — G/G|yy) is the canonical projection.
Proof: In [2, 2.6] we showed that W¢ is a natural isomorphism of abelian
groups. Thus we only need to prove that it is a homeomorphism. First recall [5,

1.9(e)] that |Q¥| = |Q|” . Now we are going to see that the following diagram
commutes.

e F@QT,M(G/H))| —[1gce |FQT, M(G/H))|

NLH%H
Ipol [Mhce F(QM|, M(G/H))
iPIQ
|F(Q, M) F(QI, M).

Yo

Take a generator [(lgzm)uca,7) € |[Iyce F(QT, M(G/H))|. Then we can
chase it down and we get [> 5 ¢ Mi(qoy,)(lg)zm, 7], and then to the right
to obtain Yy Ma(Gey,r) My (Dey ) (la)[zm, 7]. If we first go right and down
with [[¢gu, we get (lu[zy,7]), and then down again with p|g|, we obtain
Yorca Mi(rey)(la)[zm, 7], where

Twpr,™

Pz Qu gy, 7

" GG,

are the canonical projections. By [12], the isomorphism on the top is a home-
omorphism, and by [1], each Ygu is also a homeomorphism. Since pq is a
surjective simplicial map, its realization |pg| is an identification. And since P|Q|
is also an identification, then W is a homeomorphism. [ |

Corollary 2.10 There are natural isomorphisms of topological groups

=G =G =G

U [F(Q M) —F(Q,M) and ¥G: |FQ,M)| — F(Q|, M).
Proof: The following is clearly a commutative diagram:

FE(Q, 1) [P(Q, M) 220 | FO(Q, )

—G ~ G
v =|Vq lWQ

_ L \
5 (101, M) (@1 M) % 56 (1), M)
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and the vertical arrows on the sides are isomorphisms of abelian groups (see
[2, 2.6]). Since the one in the middle, by the previous theorem, is a homeomor-
phism, and the first horizontal arrows are embeddings, while the second ones

are identifications, @g and \Ifg are homeomorphisms too. [

The following is the main result of this section.

Theorem 2.11 Let M be a covariant coefficient system for G and X a pointed
G'-space of the homotopy type of a G-CW-complex. Then the homotopy groups
my(F (X, M))

are naturally isomorphic to the (reduced) Bredon-Illman G-equivariant homol-
ogy groups Hf(X; M,) with coefficients in M .

Proof: FY(8(X), M) is a simplicial abelian group and hence, by [12], it is a
chain complex with differential aqG : FE(84(X), M) — FY(8;-1(X), M) given
by 8G — 0(—1)i(d§(X))*G. By [2, Thm. 4.5] this chain complex is isomorphic
to Illman s chain complex S% (X, ; M) given in [10, p. 15], whose homology is

by definition the Bredon-Illman G-equivariant reduced homology of X with
coefficients in M, denoted by Hf(X; M).

We shall give an isomorphism

Hy(F% (8,(X), M)) — my(FE(X, M)).

To construct the isomorphism, we shall give several isomorphisms as depicted
in the following diagram.

Hy(FO(8(X), M) < my(FE(8(X), M) —Z= my(S(IFE(S(X). M)]))

v N =
mg(FE (X, M)) ﬁﬂq(gg(ls( ), M))ﬁﬂq(lFG(S(X) M)])
By [12, 22.1], i, is an isomorphism. In particular, this shows that every cycle
in H%(X; M) is represented by a chain u, all of whose faces are zero. We call
this a special chain.

The homomorphism ¥, which is given by ¥(u)[r] = [u, 7], where u is a special
g-chain and 7 € A?, is an isomorphism, as follows from [12, 16.6].

In order to define ®, we must express W(u) as a map 7 : (Alg],Alg]) —
(8| F(8(X), M)|,*). By the Yoneda lemma, ~ is the unique map such that
v(6q) = ¥(u), where 6, = id : § — ¢. The homomorphism &, defined by

11



S|[f, '] = v(f)(7), for f € Alg], and 7" € A", is given by the adjunction
between the realization functor and the singular complex functor (see [12, 16.1]).

By Theorem 2.9, Vg x is an isomorphism of topological groups.

Finally, by Lemma 2.7, the homomorphism p¢ is a homotopy equivalence. m

REMARK 2.12 Chasing along the diagram and using the canonical homeo-
morphism |Alg]] — A7 given by [f,7'] — fu(7'), one obtains that the iso-
morphism H,(F%(8§(X),M)) — m,(F%(X, M)) is given as follows. It maps
a homology class [u] represented by a special chain u = >4 (u(oq)) to
the homotopy class [u] given by u(r) = >, 'yfa(T)(M*(pa)(u(aa))), where
Pa i G/Go, — G /Gy, (r) is the quotient function and §(X)/G = {[oa]}-

3 OTHER TOPOLOGICAL ABELIAN GROUPS

A different way of topologizing the abelian groups F(X?, M) and FG(X 5. M) =
FG (X%, M), where X° denotes the underlying set of X, is as follows.

Definition 3.1 Let X be a pointed G-space (not necessarily a k-space) and
M be a covariant coefficient system. Denote by 8(X) the singular simplicial
pointed G-set associated to X and consider the surjective map

mx  [F(S(X), M)| - F(X°, M) given by 7x([lo,t]) = Mu(pos)(1)o(t),
where p,¢ : G/G, — G /Gy is the canonical projection.

Give F(X % M) the identification topology defined by 7x and denote the result-
ing space by F(X, M). Moreover, denote by ?G(X7 M) the group FG(X‘S, M)
with the relative k-topology induced by tx and denote by F&(X, M) the group
FG (X%, M) with the quotient topology induced by Sy .

Consider the restriction of wx

7¢ L [FC(8(X), M) — FO(X, M)
and denote by FC(X, M) the resulting identification space.
We thus have a commutative diagram

FE(S(X), M) [ E(8(X), M) 22 s x), )|

~G G
Wxi X lﬂ'x

FO(X, M) —1—F (X, M) F(X, M)

X

12



where the vertical maps are identifications. Thus id : ﬁG(X y M) — ?G(X , M)
is continuous.

REMARK 3.2 The topological groups FG(X , M) were defined in [3].

Recall [4] that a (pointed) G-space X is called a strong p-space if the map
px ¢ |8(X)| — X, given by px([o,t]) = o(t), is a G-retraction.

Proposition 3.3 If X is a strong p-space, then id : F(X, M) — F(X, M)
is a homeomorphism, and hence the maps id : FG(X, M) — ?G(X, M) and

id : F¢(X, M) — FE(X, M) are also homeomorphisms.
Proof:  Consider the diagram

Ys(x)
[F($(X), M)| —= F(|8(X)], M)

ﬂxi ipx*

~

F(X, M) —— F(X,M).

1
One easily verifies that the diagram commutes. The map on the top is a home-
omorphism by 2.9, the vertical map on the left is an identification by definition,
and the vertical map on the right is an identification, since it is a retraction.
Thus the identity on the bottom is a homeomorphism. [ |

Corollary 3.4 If X is a strong p-space, then the topological groups F& (X, M)
and FC(X, M) are equal, as well as the topological groups FG(X, M) and
7 (X, M). n
ExaMPLE 3.5 If K is a simplicial G-set, then by [4], |K| is a strong p-space.

Hence the topological groups F(|K|, M) and F(|K|, M) are equal, and thus
also the topological groups FE(|K|, M) and FY(|K|, M) are equal, as well as

the topological groups ﬁG(|K\, M) and ?"G(|K|, M).
Proposition 3.6 If X is a strong p-space, then F¢(X, M) = (X, M).

Proof: Since X is a strong p-space, the map px : [$(X)| — X is a G-
retraction. Thus the epimorphism p§ : FE(|8(X)|, M) — F¢(X, M) is an iden-
tification. Consider the diagram

G
P M

|FE(8(X), M)| —=FE(8(X)], M)

“)G(i iP*G

FC (X, M) FE(X, M)

id
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By definition of W)Cé it commutes and by 2.9, the arrow on the top is an isomor-
phism of topological groups. Since both vertical arrows are identifications, the
result follows. m

There are other topological groups related to the ones previously defined, that
were studied in [2].

Definition 3.7 Let X be a pointed G-space (not necessarily a k-space) and
M be a covariant coefficient system for G. Define the topological group (in the
category of k-spaces)

F(X, M) = |F($(X), M)|,

as well as the subgroup fG(X, M) = \FG(S(X), M)| and the quotient group
FG(X,M) = |FY(8(X), M)|. One clearly has continuous homomorphisms

FOX, M) & P(X, M) o e (X, M)

given by 1x = |tg(x)| and Bx = |Bg(x)|- The first is an embedding and the
second a quotient map of topological groups.

REMARK 3.8 One has identifications of topological groups
FOX, M) - FC(X, M), F(X,M)—FX, M), FCX,M)-—»FCX,M).

We shall see below under which conditions the topological groups @G(X , M)
and ﬁG(X, M) are equal.

4  COEFFICIENTS IN k-Mod

In this section we shall assume that M : O(G) — k-9Mod, where k is a field
of characteristic 0 or a prime p that does not divide the order of G,

Recall that if S is a pointed G-set, then we have homomorphisms
FE(S, M) S F(s, ) 5 RO s, M.

We shall study the composite ag = Bg 0 tg : FG(S, M) — FG(S,M).

Proposition 4.1 Let S be a pointed G-set. Then «ag is a natural isomor-
phism.

14



Proof: Take a generator

W)= 3 M(Ry1)(D)(gz) € FE(S,M).
[9]eG /Gy

Since ’YngM*(Rg—l) =%, we have

aswf(w)ﬁs( > M*<Rgl><l><g:c>)

[g]EG/Gz

= 3 Bs (MR, 1)(D(ga))

= Y YeM(Ry)(1)

[9]€eG/Ga

= > E

[9]€G/Ga
= [G:G NS ()
=5([G:Gal) .

Since p [ |G|, the indexes [G:G;], seen as elements in k, are invertible elements,
i.e., there exist the elements [G:G,]~! € k. Since for every generator v&(I),
one has

as(v7 (1G:Ga] 1) =77 (1),

ag is surjective. To see that it is injective, assume that u € FG(S, M) is such
that ag(u) = 0. Hence

as(u)(z) = [G:Gzlu(z) =0 V.
Thus [G:G,]) 7 G :Glu(z) = u(x) = 0 for all z and so u = 0.

The naturality of ag follows from (1.1). ]

Proposition 4.2 Let X be a pointed G-space. Then

(a) ax = |agx| : FO(X,M) = [FOS(X),M)| — |FES(X),M)| =
F%(X,M) and
(b) ax : FC(X, M) — FC(X, M)

are isomorphisms of topological groups.

15



Proof:  (a) follows immediately from Proposition 4.1. To see (b), consider the
diagram

FE(S(X), M) 22 | FO(5(x), M)

~G G

FC(X, M) FC(X,M).

oY

ax

To see that it is commutative, take a generator [Y&(1),t] € |fG(8(X),M)|.
Then

ax®G ([ (1), 1)) = ax([Gogr) : GolnS(n Ma(po) (1))
= [GU@ Gol7Sity M (o) ([G: Gon)]l)
= 150 M (po) ([G: Go 1)

7$lasco (08 (1), 1)) = 74 (S (1G: Gol), 1)
V5 M (Do) (G Goll)

Thus we have the assertion.

Since both vertical arrows are identifications, \ozg( X)| on the top is a homeo-
morphism and ax on the bottom is bijective, then ax is a homeomorphism
too. ]

Corollary 4.3 The topological groups ﬁG(X, M) and F&(X, M) are naturally
isomorphic.

Proof: The isomorphism of topological groups ax factors as the composite
ax : FG(X, M) —>TF(X, M) 2 FC (X, M).

Therefore ay' o fx : F(X, M) — FC(X, M) is a left inverse for vx, so that
ix is an embedding. Hence FG(X, M) = F (X, M) = FG(X, M). n

5 SOME APPLICATIONS OF THE HOMOTOPICAL BREDON-ILLMAN HO-
MOLOGY

In this section we shall use the topological groups ?G(X , M) defined in Section
2, together with the G-equivariant weak homotopy equivalence axiom, that
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we proved in [5] using the groups F'%(X, M), to show that the Bredon-Illman
equivariant homology satisfies the (infinite) wedge axiom and to make some
calculations. We start with a general result.

Lemma 5.1 Let X have the homotopy type of a CW-complex. Then the
connected components and the path-components of X coincide.

Proof: Let C: TJop — 8et be the functor which associates to a space X the
set C'(X) of its connected components. This is clearly a homotopy functor.

Now let ¢ : X — Y be a homotopy equivalence, where Y is a CW-complex.
Consider the commutative diagram

m0(X) —>mo(Y')

Clp)
Since Y is locally path-connected, the arrow on the right is a bijection. Hence
the arrow on the left is also a bijection. [ |

Definition 5.2 Let A be a set of indexes, and let p(A) be the set of finite
subsets of A. p(A) is a directed set by inclusion. Let {F,, | « € A} be a family of
pointed k-spaces. If A C B are finite sets of indexes, then we have an inclusion
[locaFa C HBEB Fg, defined by putting the base point *g in each factor Fjg,
whenever 3 ¢ A. Define

@ F, = gohm F,

a€el ep(A aeA
Since the category k-Top is closed under colimits, this new space lies in k-Top.
Notice that when A = N is the set of natural numbers, then the space defined
above coincides with the weak product defined in [17].

REMARK 5.3 If the spaces F, in the previous definition are topological abelian
groups, then algebraically @ ., Fu is the direct sum of them, and the topology
defined therein will give this sum a structure of a topological group (see next
proposition). Thus, as topological groups,

@ F, = cohm F,
aeA Aep) 2a

Proposition 5.4 If for each o € A, F, is a Ty topological group, then
@D.ca Fa is a topological group.

17



Proof: Since we are taking products in k-Top, we consider a compact Haus-
dorff space K and any continuous map f : K — @ cp Fa X @Daep Fa- We
thus have to prove that the composite

/ +
KH@(}GAF& x GBaGAFaH@aEAFa
is continuous.
To see this, notice that the family {4 Fa | A € p(A)} has the following two
properties:
(i) For any A, B € p(A) the index C = AN B € p(A) satisfies
Brn@r.-@r.
acA BeB veC
(ii) For each A € p(A), the set {B € p(A) | Dpcp Fp C Daca Ful is finite.
Therefore, by [8, 15.10], there are indexes Ai,...,A,, and Bi,...,B,, such
that p1f(K) C Duea, Fa U UByea,, Fo and p2f(K) C Dgep, FpU -+ U
@ﬂeBn Fg, where p; and po are the projections. Let C' = AjU---UA,,UB1 U
-+ U By,. Hence we have the following commutative diagram:

+
@vecva@yechﬁ@yecFﬂy

7
-

~
-
-

-7 +
KT’@aeAFa X Dopep Fo — DBpep Fa

where the sum on the top is continuous because a finite product of topolog-
ical groups is a topological group, and the vertical inclusion on the right is
continuous. Hence the composite on the bottom is continuous. [ |

Proposition 5.5 Let X and Y be pointed spaces and L be an abelian group.
Then there is an isomorphism of topological groups
F(XVY,L)2XF(X,L)x F(Y,L).
Proof: Consider the sequences of spaces
X xvy Loy yloxvy-Z-x
Then it follows that
F(X,L)—“=F(XVY,L) %~ F(Y,L)

is a short exact sequence that splits. Namely, by functoriality one has that i,
is a split monomorphism, ¢, is a split epimorphism and ¢4 o 7, = 0. Now, if
v € F(XVY,L) is such that g.(v) = 0, then ¢.(v)(y) = v(xo,y) = 0. Thus
v =1ix(u), where u € F(X, L) is given by u(x) = v(z,yo). ]
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Coming back to Definition 5.2, we have the following generalization to the
infinite case of the previous proposition.

Proposition 5.6 Let X,, a € A, be a family of pointed spaces. Then there
is an isomorphism of topological groups @ cp F(Xa, L) = F(\/ 4ep Xas L).

Proof: For each A € p(A), call Y4 : @ cp F(Xa,L) = F(Vpep Xan L) —
F(V aep Xa, L), where the isomorphism comes from Proposition 5.5 and the
second map is induced by the canonical inclusion. If A C B, one easily verifies
that ¢¥p = 14 01ap, where Yap : Poep F(Xa, L) — Bocp F(Xa, L) is
induced by the inclusion \/ . 4 Xo C /e Xa modulo the isomorphism of 5.5.

By the universal property of the colimit, the maps (continuous homomorphisms)
14 induce a continuous homomorphism

v P F(Xa, L) — F(\/ Xa,L).

acA a€A

In order to see that v is an isomorphism of topological groups, we now construct
an inverse
§:F(\/ Xa, L) — P F(Xa, L)
acl aEA
as follows. Let u : \/,cp Xa — L be an element in F(\/ o Xa, L) and let
uq : Xo — L be the restriction of u; that is, us = pas«(u), where p, :
Vaea Xa — Xq is the canonical projection. Then u, # 0 only for finitely
many values of «, i.e., only for o € A, and some A € p(A). Thus (uy) €
@D,cr F(Xa, L) and one can define &(u) = (uq). The homomorphism ¢ is
clearly an (algebraic) inverse of . To see that £ is continuous, define the
function x : L x \/cp — @Paen F(Xa, L) by x(l,24) = l24. Composing x
with the identification [] . L x Xo = L x \/ cp Xo and then restricting to
each L x X, we obtain the composite
L x Xo 2% F(Xa,L) = @ F(Xa, L)
a€EA
which is continuous. Therefore y is continuous. Now consider the commutative
diagram

Xk

(L X Vaen Xo)F —— (Daen F(Xa, L))k

i [

F(Vae/\ Xa,L) T> @aGA F(Xa,L).

Since the vertical map on the left is an identification and the maps on the top
and on the right are continuous (+ by 5.4), £ is continuous. [ |
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Now we can use the groups fiG(X , M) to prove that the Bredon-Illman G-
equivariant homology theory HE(—; M) satisfies the wedge axiom. We need a
lemma whose proof is not difficult.

Lemma 5.7 Let {Ya;iga: Yo — Y3} and {Ya;ipa : Yo — Y} be diagrams
in k-Top such that each ig, and ig, are closed embeddings, and let {qq : Y, —
Y.} be a family of identifications such that 439130 = 18.a ©qo- Then the map
q : colimY, —» colimY,, induced in the colimits in k-Top is an identification. m

The next lemma is a consequence of the previous one.

Lemma 5.8 Let X, be a pointed G-space for each o € A. Then the map

Drxo

PBoca [luca FIXT M(G/H)) —% B qep F¢(Xa, M)
is an identification. [

Now, as an application of our groups F¢ (X, M), we have the next results. First
we have that the Bredon-Illman homology satisfies the wedge-axiom.

Proposition 5.9 Let X,, a € A, be an arbitrary family of pointed G -spaces.
Then there is an isomorphism

F\ Xa M) = P F9(Xa, M).

a€A acel

Proof: By Proposition 5.6, the inclusions iy : X, — \/, X, induce an iso-
morphism ¢ of topological groups by

GBQGAIIch;FT)Qf;AIU3/ff»
Ni Tl g
Mirce Bacr FEMG/) 1= Tce F(Vaen X5 M(G/H)
Similarly, we can define an isomorphism of abelian groups

T/JG : @ae/\ ng(Xod M) — 3~G(\/aeA Xo, M) .

—

They fit into a commutative diagram

D e F (X MG/H)) == TTuca F (Vo XE M(G/H))

@pxai ipvxa

D, T¢ (Xa, M) FE (Vo Xa, M)

wG
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where the vertical arrows are identifications (the left one by the previous lemma).
Since the top arrow is a homeomorphism, then the bottom arrow is a homeo-
morphism too. u

Proposition 5.10 Let X, a € A, be an arbitrary family of pointed G -spaces
having the homotopy type of G-CW-complexes. Then there is an isomorphism

ﬁ*G(\/Xa;M) geaﬁf(Xa;M)'

Proof:  Under conditions (i) and (ii) given in the proof of 5.4, that are satisfied
by the family {P,c4 F¢(V, Xa, M) | A € p(A)}, it is proved in [8] that the
homotopy groups commute with the colimit. Hence

HE(\/ Xo3 M) = my(F9(\/ Xa: M)) (by 2.11)
- o wq(QBA ;EGA(XQ, M)) (by 5.9)

o wq(z;imA(Q% FY(Xa, M))) (by 5.3)

= conmA(wq(OéE; FE(Xa, M))) (by [8, 15.9])

= colim A(@a;j(afc’ (Xa, M)))  (since A is finite)

~ D wq(;ce’?xa, M))) (by 5.3)
%Céeé\f{ff(Xa;M) (by 2.11).

a€h

In order to prove the wedge axiom in full generality, we need the following
lemmas.

Lemma 5.11 Let X and Y, and X' and Y’ be well-pointed spaces and let
p: X' — X and ¢ : Y’ — Y be weak homotopy equivalences (mapping base
points to base points). Then ¢ V¢ : X' VY’ — X VY is a weak homotopy
equivalence.

Proof: Consider the double attaching spaces X UI UY and X' UT UY’,
where the base point xy € X is identified with 0 € I, the base point yp € Y
is identified with 1 € I, and similarly with the other union. Since the spaces
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are well pointed, the quotient maps ¢ : XUJIUY — X VY and ¢ : X' U
IUY" — X'VY’ that collapse I to the common base point are homotopy
equivalences. The pairs (X U[0,1),(0,1]UY) and (X' U[0,1),(0,1]UY”) are
excisive in X UTUY and X' UTUY, respectively. Hence, by [8, 16.24], the
map e Uid; Uy : XUTUY — X' UTUY’ is a weak homotopy equivalence.
The following is clearly a commutative diagram

Uidr U
xuruy 22U vy

|- o

X'vy’ o XVvY.

Therefore, ¢ V 1 is a weak homotopy equivalence. [ |

As a consequence, we obtain the following result.

Lemma 5.12 Let X, and X!, a € A be an arbitrary family of well-pointed
G-spaces, and let ¢, : X! — X, be an equivariant weak homotopy equiv-
alences (mapping base points to base points). Then Vaea@a : Vaen Xoa —
Vaea Xao is an equivariant weak homotopy equivalence.

Proof: First notice that since the base points are fixed under the G-action,
(Vaen Xa)™ = Vaea X&', and similarly (V,ep Xo)7 = Ve X4

Let p(A) be the set of finite subsets of A. Then, by 5.11, for every A € p(A),
Vacapt : Vaca Xt Vaca X is a weak homotopy equivalence and in-
duces isomorphisms between all the homotopy groups. Thus again, as in the
proof of 5.10 and using [8, 15.9], Vaea® : Voer XiF — Voer X&' induces
isomorphisms in all homotopy groups and hence it is a weak homotopy equiva-
lence, thus Vaea®a : Vaer Xo — Vaea Xa is an equivariant weak homotopy
equivalence. [ |

Now we can prove the general wedge axiom for the Bredon-Illman G-equivariant
homology.

Theorem 5.13 Let X,, a € A, be an arbitrary family of well-pointed G-
spaces. Then there is an isomorphism @,y HY (Xa; M) = HE (\/ e Xai; M)
induced by the canonical inclusions X, — \/ X, .

Proof:  For each o € A there is an equivariant weak homotopy equivalence
Yo : Xo — X, where X, is a (pointed) G-CW-complex (for instance X, =
[$(Xa)l)-
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By 5.12, ¢ = Vaga : V, X, — V., Xq is an equivariant weak homotopy equiv-
alence. Hence, by [5, 1.19], ¢ induces an isomorphism ¢, : Hf(\/a Xo; M) —
HqG(\/a Xa). Recall that

HE(\/ Xa; M) = HE((\) Xo)": M) and  HE(\/ Xa) = HE((\/ Xa)*: M)

On the other hand, the cofiber sequences
S0 — (\/ X))t — \/)Z'a and SY — (\/ Xo)T — \/Xa
(0% (0% (0%

«

induce short exact sequences that fit into the diagram

0 — HE(S°; M) — HE X, )T M) —=HE(\ Xo; M) —>0
0 0 a 0 o

0 — HS(S*; M) — HE X)) M) —= HE(\ Xa; M) —>0
0 0 o 0 o

Thus, by the five-lemma, we have an isomorphism

ot H (\/ Xos M) — HE (\/ X5 M).
« «

On the other hand, since H. f (S° M) =0 if ¢ > 0, there are isomorphisms
H((\) Xa)"s M) = HE (\[ Xa; M)
«

(0%
Hy (\/ Xa)"s M) = HE (\[ Xa3 M)
(0% [0
and thus also an isomorphism
P f{/qG(\/XaaM) - ﬁf(\/Xa;M)'
[e% (63

Similarly, for every a € A, there are isomorphisms
Gax : f[f()za;M) — fIqG(Xa;M).

Since the G-spaces )?a are G-CW-complexes, by 5.10 there is an isomorphism
@HqG(Xa;M) = HOG(\/)?OGM)
acA a
for all ¢ > 0, and by the isomorphisms above it follows that there is an isomor-
phism
TG ~ 117G
P HY (Xa: M) = HE (\/ Xo; M)
a€A a
as desired. [ |
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Next we make some calculations using the homotopical approach to Bredon-
Illman homology.

Proposition 5.14 Let X be a pointed G-space of the homotopy type of a
G-CW-complex. Assume that X is connected for each H C G. Then

HS§(X; M) =0.
Proof: By Lemma 5.1, C(X*) = 7q(X!) for each H C G. Hence
mo(F(X" M(G/H))) = Hy(X"; M(G/H) =0.

Thus the topological groups F(X M(G/H)) are path-connected and so is
their product. Since F¢(X, M) is a quotient of this product, its also path-
connected. Hence 0 = 7o(FE (X, M)) = HS (X; M). |

Proposition 5.15 Let X be a G-space of the homotopy type of a G-CW-
complex. Assume that X is connected for each H C G. Consider the fam-
ily H of all H C G such that X® # (). Then H{(X;M) is a quotient of
@D resc M(G/H). Furthermore, if X has a fixed point, then HS(X;M) =
M(G/G).

Proof: For each H € H, there is an isomorphism
mo(F((X™)", M(G/H))) = Ho(X"; M(G/H)) = M(G/H).
Hence one has an epimorphism

D M@/ H) =mo( [] FUX™T)F, M(G/H))) — mo(FC (X, M)) = HF (X; M).
HeXH HeXH

Furthermore, if X has a fixed point zg, then X* = X v S°, where we take zg
as base point of X'. By the exactness axiom, one always has H G(X VY M) =

HE(X; M) ® HE(Y; M). Then, in particular, HG(X+ M) =~ HS(X; M) &
H(? (SY; M). Since by the previous proposition Ho (X;M) = 0, one obtains
HS (X; M) = HS(S% M) = M(G/G). m

6 DoLD-THOM TOPOLOGICAL GROUPS AND THE TRANSFER

In this section we summarize the properties of the topological groups defined
and explain which of them admit a transfer, either for ordinary or for ramified
covering G-maps. We start with the following concept.
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Definition 6.1 Let M be a covariant coefficient system for G. We shall call
a functor §(—, M) : G-Top — Topab a Dold-Thom topological group func-
tor with coefficients in M for a subcategory T C G-TJop if there is a natural
isomorphism

px 1 m(G(X, M) — HE(X; M),

where the right-hand side denotes the reduced G-equivariant Bredon-Illman
homology groups of X with coefficients in M, and X is an object of T.

EXAMPLES 6.2 The following are examples of Dold-Thom topological group
functors with coefficients in a coefficient system M :

1.

9.

The groups F¢(X, M) = |FE(8(X), M)|, for any G-space X, defined in
2].

The groups F(X, M) defined in Section 5 of [3], when M is a homological
Mackey functor and X has the homotopy type of a G-CW-complex.
The groups F¢(X, M) as shown in 2.11.

The groups |F¢(Q, M)| for X = |Q| and @ a simplicial G-set, in partic-
ular, the simplicial G-set associated to a simplicial G-complex as shown
in [5].

The groups AG(X) and AG(X;m) defined by Dold and Thom [7] in
the nonequivariant case, where the coefficients are a cyclic group (Z and
Z/mZ, respectively) and X is a (countable) simplicial complex. Here G
does not stand for any group.

The groups B(L, X) defined by McCord [14] in the nonequivariant case
and coefficients in an abelian group L, where X is a weak Hausdorff
k-space of the homotopy type of a CW-complex.

The groups AG(X) defined by Lima-Filho [11] for a G-CW-complex X
and coefficients in Z.

The groups L® X defined by dos Santos [9] for a pointed G-CW-complex
X and coefficients in a G-module L.

The groups §X ®gg M defined in [15] for a pointed G-CW-complex X .

And if M takes values in k-Mod, where k is a field of characteristic 0 or a
prime p that does not divide |G|:

10.
11.

The groups FG(X7 M), by 4.2(a) and 1.

The groups ﬁG(X , M), if X has the homotopy type of a G-CW-complex,
by 4.3 and 2.
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12. The groups ?G(X7 M) for a strong p-space X, by 4.2(b), 4.3, 3.6, and 3.

Definition 6.3 Let M be a Mackey functor for the finite group G and
9(—, M) be a Dold-Thom topological group functor with coefficients in (the
covariant part of) M. Let p: E — X be either an n-fold G-equivariant ordi-
nary covering map (see [2], or an n-fold G-equivariant ramified covering map
(see [4]. By a transfer for p in §(—, M) we understand a continuous homomor-
phism

t5: (X T, M) — §(ET, M),

which satisfies the following conditions:

(a) Pullback: If f:Y — X is continuous and we take the pullback diagram

Elif}_E
q

p

. X

then t§ o f& = fCot{ : G(YT, M) — G(E*, M).

(b) Normalization: If p = idx : X — X, then tﬁx =id : §(X*, M) —
G(XT,M).

(¢c) Functoriality: If p : B — X and ¢ : X — Y are G-equivariant ordi-
nary, resp. ramified covering maps, then

G _ ;G 4G . + +
tgop = tp Ol :S(YT, M) — G(ET,M).

(d) If M is homological, then the composite pSotS : G(X T, M) — G(XT, M)
is multiplication by n.

EXAMPLES 6.4 The following Dold-Thom topological group functors have trans-
fers for p:

1. If p: E — X is an n-fold G-equivariant ordinary covering map and
M is any Mackey functor, then there is a transfer tg c FE(XT, M) —
FG(E*, M), as shown in [2].

2. If p: E — X is an n-fold G-equivariant ramified covering map between
strong p-spaces of the homotopy type of G-CW-complexes, and M is
homological, then there is a transfer tlcf FE(X+, M) — FE(Et, M), as
shown in [4].

26



3. If p: K — (@ is a special G-equivariant simplicial ramified cover-
ing map and M is any Mackey functor, then there is a transfer \tf | :
|FC(Q*, M)| — |FY(K*, M)|, as shown in [5].

4. If p: E — X is an n-fold G-equivariant ramified covering map between
strong p-spaces of the homotopy type of G-CW-complexes, and M is
homological, then there is a transfer tS : F9(X+, M) — FE(ET, M),
by 3.3 and Example 2.

REMARK 6.5 Let p: E — X be an n-fold G-equivariant covering map. The
restrictions p : Ff — XH are not, in general, covering maps. Thus there are
no transfers F(XH+ M(G/H)) — F(E"+ M(G/H)). Since the topology of
the groups F¢(X*, M) and F¢(E+, M) is given in terms of that of the groups
F(X"*+ M(G/H)) and F(E"*+ M(G/H)), it does not seem possible to prove
the continuity of tg. And even if the transfers ¢, exist, they do not commute
with the identifications. However, if as stated in Example 4 above, the spaces
are p-spaces, then the groups F¢(X+, M) and F(E*, M) coincide with the
groups F¢(X+, M) and F¢(E*, M), as shown in 3.4, and one can show that
the transfer is continuous.

Now we study the homotopy type of the Dold-Thom topological groups. First
we have the following general result.

Theorem 6.6 Let A be a locally connected topological abelian group in the
category k-TJop that has the homotopy type of a CW-complex. Then there is a
homotopy equivalence

A~ @K(ﬂq(A),q) ,

q>0

where K (m4(A),q) denotes the corresponding Eilenberg-Mac Lane space.

Proof:  Since translation by ag, ag € A, is a homeomorphism in the k-topology,
the connected component Ag of 0 € A is a closed subgroup of A.

By Lemma 5.1, the connected components of A coincide with the path-com-
ponents. Thus A is the topological sum of all its path-components, and they
are closed and open, because A is locally connected. Since all path-components
of A are homeomorphic (via translation) to Ay, we have a homeomorphism

(66) A= 7T0(A) X AO .
Since A has the homotopy type of a CW-complex, so does Aj. Consider

Ao <5 F(Ao,Z) % Ay,
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given by i(a) = la and v(u) = ), 4, u(a)a. Then i and v are clearly continu-
ous, and the composite v o7 is equal to the identity id4,. Applying the functor
7y we have the following

1

T T
7q(Ao) ——> 74 (F (Ao, Z)) —> 4 (Ao)

H,(Ao; Z)

where )\, is defined so that the triangle commutes, and thus we obtain a left
inverse for the Hurewicz homomorphism.

Now consider a homotopy equivalence Ag 2, Cy, where Cy is a CW-complex,
and the diagram

hy ~ Ag
mq(Ao) — H,(Ao) > 7q(Ao)

W#l/% ‘P#i% W#l/%

7q(Co) e Hy(Co) - 5, m4(Co),

Qq

where «aq is so that the diagram commutes. Hence oy is a left inverse to
Hurewicz too. Since Cj is a connected CW-complex, by Moore’s theorem (see
(17, IX(1.9)], we have Co ~ €P,>1 K(m(Co),q) (see 5.2). Hence, using (6.6),
we get

A= mo(A) x Ag ~ mo(A) x @ K(mg(Co),q) ~ @D K(my(Ao), q) -

q=>1 q=0

As a consequence of the previous theorem we have the following.

Theorem 6.7 Let G(—, M) is a Dold-Thom topological group functor. If X
is a pointed G-space such that G(X, M) is locally connected and has the ho-
motopy type of a CW-complex, then

S(X, M) ~ P K (H (X; M), q).
q>0

Hence these groups are unique up to homotopy. [ |

Proposition 6.8 (a) The topological groups F%(X, M) are CW-complexes
for any pointed G-space X .
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(b) If X is a pointed G-CW-complex, then F&(X, M) is locally connected
and has the homotopy type of a CW-complex.

(¢) If X is a pointed G-simplicial complex or a finite-dimensional countable
locally finite G-CW-complex, then F&(X, M) is locally connected and
has the homotopy type of a CW-complex.

We conclude that in all these cases the topological groups have the homotopy
type of @50 K(HS (X; M), q).

Proof: (a) follows from the fact that F¢(X, M) is the geometric realization
[FE(8(X), M)|.

(b) First notice that the property of a space being locally connected is inherited
by quotient spaces. Hence, if X is locally connected, so is also [],,~;(LxX)" for
any abelian group L, and given the quotient map [, -, (L x X)"* - F(X, L),
the topological group F(X, L) is locally connected.

Now, if X is a G-CW-complex, then X is locally connected for every H C G.
Hence each topological group F(X, M(G/H)) is locally connected and since
by definition there is a quotient map []y-q F(X?, M(G/H)) - F%(X, M),
the topological group FE(X, M) is also locally connected. Furthermore there is
a G-homotopy equivalence px : |S(X)| — X, which by the homotopy invari-
ance 2.4 induces a homotopy equivalence p$, : F¢(|8(X)|, M) — FE (X, M).
But by 2.10, there is an isomorphism of topological groups F¢(|8(X)|, M) =
|FC(8(X), M), thus the first is a CW-complex, and hence F&(X, M) has the
homotopy type of a CW-complex.

(c) Actually we only need X to be a pointed G-CW-complex which is also a
strong p-space, then by 3.4, F¢(X, M) = (X, M) and the result follows from

(b).

In any case, the corresponding topological group satisfies the assumptions of
Theorem 6.6 and we obtain the conclusion. [ |
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