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Abstract Let M be a covariant coefficient system for a finite group G. In
this paper, we analyze several topological abelian groups, some of them new,
whose homotopy groups are isomorphic to the Bredon-Illman G-equivariant
homology theory with coefficients in M . We call these groups equivariant
Dold-Thom topological groups and we show that they are unique up to
homotopy. We use one of the new groups to prove that the Bredon-Illman
homology satisfies the infinite-wedge axiom and to make some calculations
of the 0th equivariant homology
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0 Introduction

Given a finite group G, a covariant coefficient system M for G, and a pointed
G-set S , we defined in [2] an abelian group FG(S,M). Using this construction,
we associate to a pointed G-space X a simplicial abelian group FG(S(X),M).
Its geometric realization, denoted by FG(X,M), is a topological group whose
homotopy groups are isomorphic to the reduced Bredon-Illman G-equivariant
homology of X with coefficients in M . Given a G-equivariant ordinary covering
map p : E −→ X , we also defined a continuous transfer tGp : FG(X+,M) −→
FG(E+,M), that induces a transfer in equivariant homology, when M is a
Mackey functor.

In [3], we showed that when the G-space X is a strong ρ-space (e.g. a G-
simplicial complex or a finite dimensional countable locally finite G-CW-com-
plex), there is a topology in the abelian groups FG(Xδ,M), where Xδ stands
for the underlying set of X . With this topology, FG(X,M) is a topological
∗Corresponding author, Phone: ++5255-56224489, Fax ++5255-56160348. This au-

thor was partially supported by PAPIIT grant IN105106-3 and by CONACYT grant
43724.

1



group, which we denote by FG(X,M). This is a smaller group than the group
FG(X,M) mentioned above. It has the property that its homotopy groups are
isomorphic to the reduced Bredon-Illman G-equivariant homology of X with
coefficients in M , when M is a homological Mackey functor. Furthermore, we
proved in [4] that these topological groups admit a continuous transfer for G-
equivariant ramified covering maps, whose total space 1—and base space are
strong ρ-spaces.

In this paper we present a different topology for the abelian group FG(Xδ,M)
and we denote the resulting topological group by FG(X,M). We prove that
for any pointed G-space X of the homotopy type of a G-CW-complex, and
for any coefficient system, the homotopy groups of FG(X,M) are isomorphic
to the reduced Bredon-Illman G-equivariant homology of X with coefficients
in M . The assumptions on X and M are much weaker than those needed to
define FG(X,M). However, in such a generality, it does not seem possible to
construct a continuous transfer even for ordinary covering G-maps.

These new topological groups FG(X,M) can be used to prove the infinite wedge
axiom for the Bredon-Illman homology. They also allow us to make some cal-
culations of the 0th homology groups of a G-space X .

Those topological groups whose homotopy groups are isomorphic to the re-
duced Bredon-Illman G-equivariant homology of X with coefficients in M
will be called Dold-Thom topological groups. Hence FG(X,M), FG(X,M), and
FG(X,M) are Dold-Thom topological groups. Furthermore, all these groups
are algebraically subgroups of other topological groups, so they also have an-
other natural topology, namely the subspace topology. These topological groups
will be denoted by F

G(X,M), FG(X,M), and F
G

(X,M). The first two were
studied in [3]. In this paper we prove that these groups are isomorphic to the
former, if the coefficient system M takes values on k -modules, where k is a
field of characteristic 0 or a prime p that does not divide the order of G. We
also show that the Dold-Thom topological groups are unique up to homotopy.

The paper is organized as follows. In Section 1 we give the basic definitions that
are needed. Then in Section 2 we define the new topological groups FG(X,M)
and F

G
(X,M), and we prove that the former is a Dold-Thom topological group.

Then in Section 3 we compare the new topological groups with the previously
defined ones. In Section 4 we analyze the case of coefficients in k -Mod, with
the field k as explained above. In Section 5 we prove the wedge axiom and
we compute the 0th equivariant homology in some cases. Finally in Section 6,
we study the Dold-Thom topological groups and we show that two Dold-Thom
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topological groups, which are locally connected and have the homotopy type of
a CW-complex, are homotopy equivalent.

1 Preliminaries

We shall work in the category of k-spaces, which will be denoted by k-Top. We
understand by a k-space a topological space X with the property that a set
W ⊂ X is closed if and only if f−1W ⊂ Z is closed for any continuous map
f : Z −→ X , where Z is any compact Hausdorff space (see [13, 16]). Given
any space X , one can clearly associate to it a k-space k(X) using the condition
above, which is weakly homotopy equivalent to X . The product of two spaces
X and Y in this category is X × Y = k(X ×top Y ), where X ×top Y is the
usual topological product. Two important properties of this category are that if
p : X � X ′ is an identification and X is a k-space, then X ′ is a k-space, and
if p : X � X ′ and q : Y � Y ′ are identifications, then p×q : X×Y � X ′×Y ′
is an identification too. If X is a k-space, we shall say that A ⊂ X has the
relative k-topology (in k-Top) if A = k(Arel), where Arel denotes A with the
(usual) relative topology in Top. This topology is characterized by the following
property: Let Y be a k-space. Then a map f : Y −→ A is continuous if and
only if the composite i ◦ f : Y −→ X is continuous, where i : A ↪→ X is the
inclusion (see [16]).

In what follows, we shall denote by G-Top∗ the category of topological pointed
G-spaces such that G acts trivially on the base point, or correspondingly
G-k-Top∗ . Topab will denote the category of topological abelian groups in the
category of k-spaces. Recall that a covariant coefficient system is a covariant
functor M : O(G) −→ R-Mod, where O(G) is the category of G-orbits G/H ,
H ⊂ G, and G-functions α : G/H −→ G/K , and R is a commutative ring.
A particular role will be played by the G-function Rg−1 : G/H −→ G/gHg−1 ,
given by right translation by g−1 ∈ G, namely

Rg−1(aH) = aHg−1 = ag−1(gHg−1) .

We shall often denote aH by [a]H . Observe that if X is a G-set and x ∈ X , then
the canonical bijection G/Gx −→ G/Ggx is precisely Rg−1 . Here Gx denotes
the isotropy subgroup of x, namely, the maximal subgroup of G that leaves x
fixed.

Let S be a pointed G-set (where the base point x0 remains fixed under the
action of G) and M a covariant coefficient system. In [2] we defined an abelian
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group F (S,M) as follows. Let

M̂ =
⋃
H⊂G

M(G/H) .

Then
F (S,M) = {u : S −→ M̂ | u(x) ∈M(G/Gx) , u(x0) = 0 ,

and u(x) = 0 for almost every x ∈ X} .

Indeed, this group F (S,M) is an R-module, whose structure is given by

(r · u)(x) = ru(x) ∈M(G/Gx) .

It has as canonical generators the functions

lx : S −→ M̂ given by lx(x′) =

{
l if x′ = x ,

0 if x′ 6= x ,

where x ∈ S , x 6= x0 , and l ∈ M(G/Gx). The group F (S,M) is a functor
of S as follows. Let f : S −→ T be a pointed G-function. Then we define
f∗ : F (S,M) −→ F (T,M) on generators by

f∗(lx) = M∗(f̂x)(l)f(x) ,

that is, the homomorphism whose value on y is M∗(f̂x)(l) if y = f(x) and 0
otherwise, where f̂x : G/Gx � G/Gf(x) is the canonical surjection.

There is an action of G on F (S,M) given on generators by

g · (lx) = M∗(Rg−1)(l)(gx) .

Then one can consider the submodule F (S,M)G of fixed points under the G-
action. Let f : S −→ T be as above. Since f∗ is clearly a G-homomorphism,
it restricts to a homomorphism between the submodules of fixed points, which
we denote by

f
G
∗ : FG(S,M) −→ F

G(T,M) .

This makes FG(−,M) into a functor G-Set∗ −→ R-Mod

On the other hand, there is a surjective homomorphism βS : F (S,M) �
F (S,M)G given by

βS(lx) = γGx (l) =
∑

[g]∈G/Gx

M∗(Rg−1)(l)(gx) ,
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that is, essentially taking the sum over the orbit of x. One can now use this
to give a different functorial structure on F (S,M)G , defining for a G-function
f : S −→ T and a generator γGx (l),

fG∗ (γGx (l)) = γGf(x)M∗(f̂x)(l) .

This makes FG(−,M) into a functor G-Set∗ −→ R-Mod.

These three functors are related by the commutativity of the following diagram:

(1.1) S

f

��

F
G(S,M)

� � ιS //

f
G
∗

��

F (S,M)
βS // //

f∗

��

FG(S,M)

fG∗
��

T F
G(T,M)

� �

ιT
// F (S,M)

βT
// // FG(S,M) .

We shall use these groups to define different topological groups in the next
section.

2 Topological groups and coefficient systems

First recall the following construction. Let X be a topological space and L an
R-module. Then we have the R-module F (X,L) = {u : X −→ L | u(x0) =
0, and u(x) = 0 for almost every x ∈ X}. Following [1] we have that this R-
module can be topologized as follows (see also [14]). There is a surjective func-
tion

µ :
∐
k

(L×X)k � F (X,L)

given by (l1, x1; . . . ; lk, xk) 7→ l1x1 + · · ·+ lkxk . Then F (X,L) has the identifi-
cation topology.

Given a pointed G-space X , we denote by XH the pointed subspace of elements
of X that remain fixed under the group elements of H .

Definition 2.1 Let M be a covariant coefficient system and let X be any
pointed G-space. For each subgroup H ⊂ G consider the topological group
F (XH ,M(G/H)) as defined above. Define pH : F (XH ,M(G/H)) −→ F (X,M)
by pH(lx) = M∗(qH,x)(l), where x ∈ XH , l ∈ M(G/H), and qH,x : G/H �
G/Gx , is the canonical projection. Now take the homomorphism

pX :
∏
H⊂G

F (XH ,M(G/H)) � F (X,M)
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given by pX((lHxH)H⊂G) =
∑

H⊂G pH(lHxH), where the product has the prod-
uct topology of k-spaces. Given any generator lx ∈ F (X,M), lx can be seen
also as an element in F (XGx ,M(G/Gx)). Therefore pX is surjective. Give the
R-module F (X,M) the identification topology induced by pX . We obtain a
k-space, which we denote by F(X,M). By giving F

G(X,M) the relative k-
topology we obtain another k-space, which we denote by F

G
(X,M). Moreover,

by taking on FG(X,M) the identification topology given by the epimorphism
βX , we obtain another k-space, which we denote by FG(X,M).

Proposition 2.2 The groups F(X,M), F
G

(X,M), and FG(X,M) are topo-
logical groups in the category of k-spaces.

Proof: Consider the following diagram∏
F (XH ,M(G/H))×

∏
F (XH ,M(G/H))

Q
+H //

pX×pX
����

∏
F (XH ,M(G/H))

pX
����

F(X,M)× F(X,M)
+

//

βX×βX
����

F(X,M)

βX
����

FG(X,M)× FG(X,M)
+

// FG(X,M) .

The function on the top is given by the product of the sum on each topological
group F (XH ,M(G/H)) and therefore it is continuous. Since pX and βX are
homomorphisms, both squares commute. Furthermore, since pX and βX are
identifications, so are pX×pX and βX×βX . Therefore F(X,M) and FG(X,M)
are topological groups. Finally, since F

G
(X,M) has the relative k-topology, it

is also a topological group.

Proposition 2.3 Let f : X −→ Y be a pointed G-map. Then the homo-
morphism f∗ : F(X,M) −→ F(Y,M) is continuous. Thus the homomorphisms

f
G
∗ : F

G
(X,M) −→ F

G
(Y,M) and fG∗ : FG(X,M) −→ FG(Y,M) are also

continuous.

Proof: The following diagram commutes:∏
H⊂G F (XH ,M(G/H))

Q
fH∗ //

pX
��

∏
H⊂G F (Y H ,M(G/H))

pY

��
F(X,M)

f∗
// F(Y,M) .
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Indeed, if (lHxH)H⊂G ∈
∏
H⊂G F (XH ,M(G/H)) is a generator, then

pY (
∏

fH∗ )((lHxH)H⊂G) = pY ((lHf(xH))H⊂G) =
∑
H⊂G

M∗(qf(xH))(lH)f(xH) ,

and

f∗pX((lHxH)H⊂G) = f∗(
∑
H⊂G

M∗(qxH )(lH)xH) =
∑
H⊂G

M∗(f̂xH )M∗(qxH )(lH)f(xH) .

Here we denote qH,xH simply by qxH . Both composites are equal, since f̂xH ◦
qxH = qf(xH) .

Since pX is an identification and
∏
fH∗ is continuous, f∗ is also continuous.

The next result shows the homotopy invariance of the functors F .

Proposition 2.4 Let f0, f1 : X −→ Y be G-homotopic pointed G-maps.
Then f0∗, f1∗ : F(X,M) −→ F(Y,M) are G-homotopic homomorphisms. More-

over, also f
G
0∗, f

G
1∗ : F

G
(X,M) −→ F

G
(Y,M) and fG0∗, f

G
1∗ : FG(X,M) −→

FG(Y,M) are homotopic homomorphisms.

Proof: For each H ⊂ G, take the restriction fHν : XH −→ Y H , and let H :
X×I −→ Y be a G-homotopy such that H(x, ν) = fν(x), ν = 0, 1, and denote
by HH : XH × I −→ Y H the restriction of H , which is a homotopy between
fH0 and fH1 . By [14], there is a homotopy H̃H : F (XH ,M(G/H)) × I −→
F (Y H ,M(G/H)) between (fH0 )∗ and (fH1 )∗ , which is given by H̃H(u, t) =
(HH

t )∗(u), where HH
t (x) = HH(x, t), x ∈ XH .

Define a homotopy R :
∏
F (XH ,M(G/H)) × I −→

∏
F (Y H ,M(G/H)) by

R((uH)H⊂G, t) = (H̃H(uH , t))H⊂G . Define K : F(X,M) × I −→ F(Y,M) by
K(u, t) = Ht∗(u) and consider the diagram

∏
F (XH ,M(G/H))× I R //

pX×id
����

∏
F (Y H ,M(G/H))

pY
����

F(X,M)× I
K

// F(Y,M) .

Since both R and K are homomorphisms for each fixed t, we may check the
commutativity on a generator ((lHxH)H⊂G, t) ∈

∏
F (XH ,M(G/H)) × I as
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follows:

pYR((lHxH)H⊂G, t) = pY ((lHHH(xH , t))H⊂G)

=
∑
H⊂G

M∗(qHH(xH ,t))(lH)HH(xH , t) ,

K(pX × id)((lHxH), t) = K

(∑
H⊂G

M∗(qxH )(lH)xH

)
=
∑
H⊂G

M∗(ĤtxH )M∗(qxH )(lH)H(xH , t) .

Both expressions are equal, since HH is the restriction of H , and one clearly

has that qHH(xH ,t) : G/H −→ G/GH(xH ,t) is equal to the composite G/H
q
xH

�

G/GxH

cHtxH
� G/GH(xH ,t) . Since pX × id is an identification, K is continuous

an so it is a homotopy as desired.

The homotopy K is G-equivariant. Indeed, since Ht∗ is G-equivariant, one has
K(g · u, t) = Ht∗(g · u) = gHt∗(u) = gK(u, t). Thus we can take the restriction
of K, K

G
: F

G
(X,M) × I −→ F

G
(Y,M), which is a homotopy between f

G
0∗

and f
G
1∗ , and by the naturality of β , we also have a commutative diagram

F(X,M)× I K //

βX×id

��

F(Y,M)

βY
��

FG(X,M)× I
KG

// FG(Y,M) ,

where KG(v, t) = HG
t∗(v). Thus fG0∗, f

G
1∗ : FG(X,M) −→ FG(Y,M) are also

homotopic.

We shall need the following G-equivariant version of the Whitehead Theorem.

Proposition 2.5 Let Y and Z be G-spaces and ϕ : Y −→ Z be a G-
equivariant weak homotopy equivalence. Let y0 ∈ Y and ϕ(y0) ∈ Z be base
points. Assume that (Y, y0) and (Z,ϕ(y0)) have the G-homotopy type of pointed
G-CW-complexes. Then ϕ : (Y, y0) −→ (Z,ϕ(y0)) is a pointed G-homotopy
equivalence.
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Proof: Consider the square

(Y, y0)
ϕ // (Z,ϕ(y0))

'G
��

(C, c0)

'G

OO

ψ
//___ (D, d0) ,

where (C, c0) and (D, d0) are pointed G-CW-complexes and ψ is defined so
that the square commutes. Since the vertical arrows are G-homotopy equiva-
lences, ψ is a G-equivariant weak homotopy equivalence.

Using [6, II(2.5)], one can show that ψ is a pointed G-homotopy equivalence.
Therefore ϕ is also a pointed G-homotopy equivalence.

As a consequence of the previous two results we have the following.

Corollary 2.6 Let Y and Z be G-spaces and ϕ : Y −→ Z be a G-equivariant
weak homotopy equivalence. Let y0 ∈ Y and ϕ(y0) ∈ Z be base points. As-
sume that (Y, y0) and (Z,ϕ(y0)) have the G-homotopy type of pointed G-
CW-complexes. Then ϕ induces a homotopy equivalence of topological groups
ϕG∗ : FG(Y,M) −→ FG(Z,M).

Lemma 2.7 Let (X,x0) be a pointed G-space of the G-homotopy type of a
pointed G-CW-complex, and let S(X) be the singular simplicial G-set of X .
Let ρX : |S(X)| −→ X be given by ρ([σ, s]) = σ(s), where σ : ∆q −→ X and
s ∈ ∆q . Then ρGX∗ : FG(|S(X)|,M) −→ FG(X,M) is a homotopy equivalence
of topological groups.

Proof: By [5, 1.9(e)], we have |S(X)|H = |S(X)H |, and clearly |S(X)H | =
|S(XH)|. Hence ρHX : |S(X)|H −→ XH coincides with ρXH : |S(XH)| −→ XH ,
which by Milnor’s theorem (see [12]) is a weak homotopy equivalence. Therefore,
ρX is a G-equivariant weak homotopy equivalence. Hence, by the previous
corollary, the result follows.

Definition 2.8 Assume now that Q is a simplicial pointed G-set and consider
the simplicial group F (Q,M) such that for any n, F (Q,M)n = F (Qn,M).
Given a morphism µ : m −→ n in ∆, we denote by µQ : Qn −→ Qm the
induced pointed G-function. Then we define µF (Q,M) = µQ∗ : F (Q,M)n −→
F (Q,M)m . Then one has two other simplicial groups FG(Q,M) and FG(Q,M).
F
G(Q,M) is the simplicial subgroup of F (Q,M) induced by the restricted

functor FG(−,M) defined above. FG(Q,M) is the simplicial quotient group of
F (Q,M) induced by the quotient functor FG(−,M) defined in page 5.
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Theorem 2.9 There is a natural isomorphism of topological groups

ΨQ : |F (Q,M)| −→ F(|Q|,M) given by ΨQ([lx, t]) = M∗(qx,t)(l)[x, t] ,

where qx,t : G/Gx � G/G[x,t] is the canonical projection.

Proof: In [2, 2.6] we showed that ΨQ is a natural isomorphism of abelian
groups. Thus we only need to prove that it is a homeomorphism. First recall [5,
1.9(e)] that |QH | = |Q|H . Now we are going to see that the following diagram
commutes.

|
∏
H⊂G F (QH ,M(G/H))|

∼= //

|pQ|

����

∏
H⊂G |F (QH ,M(G/H))|

∼=
Q
ψ
QH

��∏
H⊂G F (|QH |,M(G/H))

p|Q|
����

|F (Q,M)|
ΨQ

// F(|Q|,M) .

Take a generator [(lHxH)H⊂G, τ ] ∈ |
∏
H⊂G F (QH ,M(G/H))|. Then we can

chase it down and we get
[∑

H⊂GM∗(qxH )(lH)xH , τ
]
, and then to the right

to obtain
∑

H⊂GM∗(qxH ,τ )M∗(p̂xH )(lH)[xH , τ ]. If we first go right and down
with

∏
ψQH , we get (lH [xH , τ ]), and then down again with p|Q| , we obtain∑

H⊂GM∗(rxH )(lH)[xH , τ ], where

G/H
rxH,τ //

pxH %%KKKKK
G/G[xH ,τ ]

G/GxH

qxH,τ

77oooooo

are the canonical projections. By [12], the isomorphism on the top is a home-
omorphism, and by [1], each ψQH is also a homeomorphism. Since pQ is a
surjective simplicial map, its realization |pQ| is an identification. And since p|Q|
is also an identification, then ΨQ is a homeomorphism.

Corollary 2.10 There are natural isomorphisms of topological groups

ΨG
Q : |FG(Q,M)| −→ F

G
(|Q|,M) and ΨG

Q : |FG(Q,M)| −→ FG(|Q|,M) .

Proof: The following is clearly a commutative diagram:

|FG(Q,M)| �
� |ιQ| //

Ψ
G
Q

��

|F (Q,M)|
|βQ| // //

ΨQ∼=
��

|FG(Q,M)|

ΨGQ
��

F
G

(|Q|,M)
� � ι|Q| // F(|Q|,M)

β|Q| // // FG(|Q|,M)
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and the vertical arrows on the sides are isomorphisms of abelian groups (see
[2, 2.6]). Since the one in the middle, by the previous theorem, is a homeomor-
phism, and the first horizontal arrows are embeddings, while the second ones
are identifications, ΨG

Q and ΨG
Q are homeomorphisms too.

The following is the main result of this section.

Theorem 2.11 Let M be a covariant coefficient system for G and X a pointed
G-space of the homotopy type of a G-CW-complex. Then the homotopy groups

πq(FG(X,M))

are naturally isomorphic to the (reduced) Bredon-Illman G-equivariant homol-
ogy groups H̃G

q (X;M∗) with coefficients in M .

Proof: FG(S(X),M) is a simplicial abelian group and hence, by [12], it is a
chain complex with differential ∂Gq : FG(Sq(X),M) −→ FG(Sq−1(X),M) given

by ∂Gq =
∑q

i=0(−1)i(dS(X)
i )G∗ . By [2, Thm. 4.5] this chain complex is isomorphic

to Illman’s chain complex SG(X, ∗;M) given in [10, p. 15], whose homology is
by definition the Bredon-Illman G-equivariant reduced homology of X with
coefficients in M , denoted by H̃G

q (X;M).

We shall give an isomorphism

Hq(FG(S∗(X),M)) −→ πq(FG(X,M)) .

To construct the isomorphism, we shall give several isomorphisms as depicted
in the following diagram.

Hq(FG(S(X),M)) oo i∗
∼=

��

πq(FG(S(X),M)) Ψ
∼=

// πq(S(|FG(S(X),M)|))
Φ∼=

��
πq(FG(X,M)) oo

∼=
(ρG∗ )∗

πq(FG(|S(X)|,M)) oo
∼=

ΨS(X)∗
πq(|FG(S(X),M)|)

By [12, 22.1], i∗ is an isomorphism. In particular, this shows that every cycle
in H̃G(X;M) is represented by a chain u, all of whose faces are zero. We call
this a special chain.

The homomorphism Ψ, which is given by Ψ(u)[τ ] = [u, τ ], where u is a special
q -chain and τ ∈ ∆q , is an isomorphism, as follows from [12, 16.6].

In order to define Φ, we must express Ψ(u) as a map γ : (∆[q], ∆̇[q]) −→
(S|FH(S(X),M)|, ∗). By the Yoneda lemma, γ is the unique map such that
γ(δq) = Ψ(u), where δq = id : q −→ q . The homomorphism Φ, defined by
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Φ[γ][f, τ ′] = γ(f)(τ ′), for f ∈ ∆[q]n and τ ′ ∈ ∆n , is given by the adjunction
between the realization functor and the singular complex functor (see [12, 16.1]).

By Theorem 2.9, ΨS(X) is an isomorphism of topological groups.

Finally, by Lemma 2.7, the homomorphism ρG∗ is a homotopy equivalence.

Remark 2.12 Chasing along the diagram and using the canonical homeo-
morphism |∆[q]| −→ ∆q given by [f, τ ′] 7→ f#(τ ′), one obtains that the iso-
morphism Hq(FG(S(X),M)) −→ πq(FG(X,M)) is given as follows. It maps
a homology class [u] represented by a special chain u =

∑
α γ

G
σα(u(σα)) to

the homotopy class [u] given by u(τ) =
∑

α γ
G
σα(τ)(M∗(pα)(u(σα))), where

pα : G/Gσα −→ G/Gσα(τ) is the quotient function and S(X)/G = {[σα]}.

3 Other topological abelian groups

A different way of topologizing the abelian groups F (Xδ,M) and FG(Xδ,M) =
FG(Xδ,M), where Xδ denotes the underlying set of X , is as follows.

Definition 3.1 Let X be a pointed G-space (not necessarily a k-space) and
M be a covariant coefficient system. Denote by S(X) the singular simplicial
pointed G-set associated to X and consider the surjective map

πX : |F (S(X),M)|� F (Xδ,M) given by πX([lσ, t]) = M∗(pσ,t)(l)σ(t) ,

where pσ,t : G/Gσ � G/Gσ(t) is the canonical projection.

Give F (Xδ,M) the identification topology defined by πX and denote the result-
ing space by F(X,M). Moreover, denote by FG(X,M) the group F

G(Xδ,M)
with the relative k-topology induced by ιX and denote by FG(X,M) the group
FG(Xδ,M) with the quotient topology induced by βX .

Consider the restriction of πX

π̂GX : |FG(S(X),M)|� F
G(X,M)

and denote by F̂G(X,M) the resulting identification space.

We thus have a commutative diagram

|FG(S(X),M)|

bπGX ����

� � |ιS(X)| // |F (S(X),M)|

πX
����

|βS(X)|// // |FG(S(X),M)|

πGX
����

F̂G(X,M)
id

// FG(X,M)
� �

ιX
// F(X,M)

βX
// // FG(X,M) ,

12



where the vertical maps are identifications. Thus id : F̂G(X,M) −→ FG(X,M)
is continuous.

Remark 3.2 The topological groups FG(X,M) were defined in [3].

Recall [4] that a (pointed) G-space X is called a strong ρ-space if the map
ρX : |S(X)| −→ X , given by ρX([σ, t]) = σ(t), is a G-retraction.

Proposition 3.3 If X is a strong ρ-space, then id : F(X,M) −→ F(X,M)
is a homeomorphism, and hence the maps id : FG(X,M) −→ F

G
(X,M) and

id : FG(X,M) −→ FG(X,M) are also homeomorphisms.

Proof: Consider the diagram

|F (S(X),M)|

πX
����

ΨS(X)

∼=
// F(|S(X)|,M)

ρX∗
����

F(X,M)
∼=
id

// F(X,M) .

One easily verifies that the diagram commutes. The map on the top is a home-
omorphism by 2.9, the vertical map on the left is an identification by definition,
and the vertical map on the right is an identification, since it is a retraction.
Thus the identity on the bottom is a homeomorphism.

Corollary 3.4 If X is a strong ρ-space, then the topological groups FG(X,M)
and FG(X,M) are equal, as well as the topological groups FG(X,M) and

F
G

(X,M).

Example 3.5 If K is a simplicial G-set, then by [4], |K| is a strong ρ-space.
Hence the topological groups F(|K|,M) and F(|K|,M) are equal, and thus
also the topological groups FG(|K|,M) and FG(|K|,M) are equal, as well as
the topological groups FG(|K|,M) and F

G
(|K|,M).

Proposition 3.6 If X is a strong ρ-space, then FG(X,M) = FG(X,M).

Proof: Since X is a strong ρ-space, the map ρX : |S(X)| −→ X is a G-
retraction. Thus the epimorphism ρGX : FG(|S(X)|,M) � FG(X,M) is an iden-
tification. Consider the diagram

|FG(S(X),M)|
ψGM //

πGX ����

FG(|S(X)|,M)

ρG∗����
FG(X,M)

id
// FG(X,M) .

13



By definition of πGX it commutes and by 2.9, the arrow on the top is an isomor-
phism of topological groups. Since both vertical arrows are identifications, the
result follows.

There are other topological groups related to the ones previously defined, that
were studied in [2].

Definition 3.7 Let X be a pointed G-space (not necessarily a k-space) and
M be a covariant coefficient system for G. Define the topological group (in the
category of k-spaces)

F (X,M) = |F (S(X),M)| ,

as well as the subgroup F
G(X,M) = |FG(S(X),M)| and the quotient group

FG(X,M) = |FG(S(X),M)|. One clearly has continuous homomorphisms

F
G(X,M)

ιX
↪→ F (X,M)

βX
� FG(X,M)

given by ιX = |ιS(X)| and βX = |βS(X)|. The first is an embedding and the
second a quotient map of topological groups.

Remark 3.8 One has identifications of topological groups

F
G(X,M) � F̂G(X,M) , F (X,M) � F(X,M) , FG(X,M) � FG(X,M) .

We shall see below under which conditions the topological groups F̂G(X,M)
and FG(X,M) are equal.

4 Coefficients in k-Mod

In this section we shall assume that M : O(G) −→ k-Mod, where k is a field
of characteristic 0 or a prime p that does not divide the order of G,

Recall that if S is a pointed G-set, then we have homomorphisms

F
G(S,M)

ιS
↪→ F (S,M)

βS
� FG(S,M) .

We shall study the composite αS = βS ◦ ιS : FG(S,M) −→ FG(S,M).

Proposition 4.1 Let S be a pointed G-set. Then αS is a natural isomor-
phism.

14



Proof: Take a generator

γGx (l) =
∑

[g]∈G/Gx

M∗(Rg−1)(l)(gx) ∈ FG(S,M) .

Since γGgxM∗(Rg−1) = γGx , we have

αS(γGx (l)) = βS

 ∑
[g]∈G/Gx

M∗(Rg−1)(l)(gx)


=

∑
[g]∈G/Gx

βS
(
M∗(Rg−1)(l)(gx)

)
=

∑
[g]∈G/Gx

γGgxM∗(Rg−1)(l)

=
∑

[g]∈G/Gx

γGx (l)

= [G :Gx]γGx (l)

= γGx ([G :Gx]l) .

Since p 6 | |G|, the indexes [G :Gx], seen as elements in k , are invertible elements,
i.e., there exist the elements [G :Gx]−1 ∈ k . Since for every generator γGx (l),
one has

αS(γGx ([G :Gx]−1l) = γGx (l) ,

αS is surjective. To see that it is injective, assume that u ∈ FG(S,M) is such
that αS(u) = 0. Hence

αS(u)(x) = [G :Gx]u(x) = 0 ∀x .

Thus [G :Gx]−1[G :Gx]u(x) = u(x) = 0 for all x and so u = 0.

The naturality of αS follows from (1.1).

Proposition 4.2 Let X be a pointed G-space. Then

(a) αX = |αS(X)| : FG(X,M) = |FG(S(X),M)| −→ |FG(S(X),M)| =
FG(X,M) and

(b) αX : F̂G(X,M) −→ FG(X,M)

are isomorphisms of topological groups.
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Proof: (a) follows immediately from Proposition 4.1. To see (b), consider the
diagram

|FG(S(X),M)|
|αS(X)|
∼=

//

bπGX ����

|FG(S(X),M)|

πGX����
F̂G(X,M) αX

∼= // FG(X,M) .

To see that it is commutative, take a generator [γGσ (l), t] ∈ |FG(S(X),M)|.
Then

αX π̂
G
X([γGσ (l), t]) = αX([Gσ(t) :Gσ]γGσ(t)M∗(pσ)(l))

= [Gσ(t) :Gσ]γGσ(t)M∗(pσ)([G :Gσ(t)]l)

= γGσ(t)M∗(pσ)([G :Gσ]l)

πGX |αS(X)|([γGσ (l), t]) = πGX([γGσ ([G :Gσ]l), t])

= γGσ(t)M∗(pσ)([G :Gσ]l) .

Thus we have the assertion.

Since both vertical arrows are identifications, |αS(X)| on the top is a homeo-
morphism and αX on the bottom is bijective, then αX is a homeomorphism
too.

Corollary 4.3 The topological groups FG(X,M) and FG(X,M) are naturally
isomorphic.

Proof: The isomorphism of topological groups αX factors as the composite

αX : F̂G(X,M)
ιX // F(X,M)

βX // // FG(X,M) .

Therefore α−1
X ◦ βX : F(X,M) −→ F̂G(X,M) is a left inverse for ιX , so that

ιX is an embedding. Hence F̂G(X,M) = FG(X,M) ∼= FG(X,M).

5 Some applications of the homotopical Bredon-Illman ho-
mology

In this section we shall use the topological groups FG(X,M) defined in Section
2, together with the G-equivariant weak homotopy equivalence axiom, that
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we proved in [5] using the groups FG(X,M), to show that the Bredon-Illman
equivariant homology satisfies the (infinite) wedge axiom and to make some
calculations. We start with a general result.

Lemma 5.1 Let X have the homotopy type of a CW-complex. Then the
connected components and the path-components of X coincide.

Proof: Let C : Top −→ Set be the functor which associates to a space X the
set C(X) of its connected components. This is clearly a homotopy functor.

Now let ϕ : X −→ Y be a homotopy equivalence, where Y is a CW-complex.
Consider the commutative diagram

π0(X)
ϕ∗

≈
//

��

π0(Y )

��
C(X)

C(ϕ)

≈ // C(Y ) .

Since Y is locally path-connected, the arrow on the right is a bijection. Hence
the arrow on the left is also a bijection.

Definition 5.2 Let Λ be a set of indexes, and let p(Λ) be the set of finite
subsets of Λ. p(Λ) is a directed set by inclusion. Let {Fα | α ∈ Λ} be a family of
pointed k-spaces. If A ⊂ B are finite sets of indexes, then we have an inclusion∏
α∈A Fα ⊂

∏
β∈B Fβ , defined by putting the base point ∗β in each factor Fβ ,

whenever β /∈ A. Define ⊕
α∈Λ

Fα = colim
A∈p(Λ)

∏
α∈A

Fα .

Since the category k-Top is closed under colimits, this new space lies in k-Top.
Notice that when Λ = N is the set of natural numbers, then the space defined
above coincides with the weak product defined in [17].

Remark 5.3 If the spaces Fα in the previous definition are topological abelian
groups, then algebraically

⊕
α∈Λ Fα is the direct sum of them, and the topology

defined therein will give this sum a structure of a topological group (see next
proposition). Thus, as topological groups,⊕

α∈Λ

Fα = colim
A∈p(Λ)

⊕
α∈A

Fα .

Proposition 5.4 If for each α ∈ Λ, Fα is a T1 topological group, then⊕
α∈Λ Fα is a topological group.
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Proof: Since we are taking products in k-Top, we consider a compact Haus-
dorff space K and any continuous map f : K −→

⊕
α∈Λ Fα ×

⊕
α∈Λ Fα . We

thus have to prove that the composite

K
f //

⊕
α∈Λ Fα ×

⊕
α∈Λ Fα

+ //
⊕

α∈Λ Fα

is continuous.

To see this, notice that the family {
⊕

α∈A Fα | A ∈ p(Λ)} has the following two
properties:

(i) For any A,B ∈ p(Λ) the index C = A ∩B ∈ p(Λ) satisfies⊕
α∈A

Fα ∩
⊕
β∈B

Fα =
⊕
γ∈C

Fα .

(ii) For each A ∈ p(Λ), the set {B ∈ p(Λ) |
⊕

β∈B Fβ ⊂
⊕

α∈A Fα} is finite.

Therefore, by [8, 15.10], there are indexes A1, . . . , Am and B1, . . . , Bn , such
that p1f(K) ⊂

⊕
α∈A1

Fα ∪ · · · ∪
⊕

α∈Am Fα and p2f(K) ⊂
⊕

β∈B1
Fβ ∪ · · · ∪⊕

β∈Bn Fβ , where p1 and p2 are the projections. Let C = A1 ∪ · · · ∪Am ∪B1 ∪
· · · ∪Bn . Hence we have the following commutative diagram:⊕

γ∈C Fγ ×
⊕

γ∈C Fγ
+ //

⊕
γ∈C Fγ� _

��
K

f
//

77ooooooo ⊕
α∈Λ Fα ×

⊕
α∈Λ Fα

+ //
⊕

α∈Λ Fα

where the sum on the top is continuous because a finite product of topolog-
ical groups is a topological group, and the vertical inclusion on the right is
continuous. Hence the composite on the bottom is continuous.

Proposition 5.5 Let X and Y be pointed spaces and L be an abelian group.
Then there is an isomorphism of topological groups

F (X ∨ Y, L) ∼= F (X,L)× F (Y,L) .

Proof: Consider the sequences of spaces

X
� � i // X ∨ Y

q // // Y Y
� � j // X ∨ Y

p // // X

Then it follows that

F (X,L)
i∗ // F (X ∨ Y,L)

q∗ // F (Y,L)

is a short exact sequence that splits. Namely, by functoriality one has that i∗
is a split monomorphism, q∗ is a split epimorphism and q∗ ◦ i∗ = 0. Now, if
v ∈ F (X ∨ Y, L) is such that q∗(v) = 0, then q∗(v)(y) = v(x0, y) = 0. Thus
v = i∗(u), where u ∈ F (X,L) is given by u(x) = v(x, y0).
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Coming back to Definition 5.2, we have the following generalization to the
infinite case of the previous proposition.

Proposition 5.6 Let Xα , α ∈ Λ, be a family of pointed spaces. Then there
is an isomorphism of topological groups

⊕
α∈Λ F (Xα, L) ∼= F (

∨
α∈ΛXα, L).

Proof: For each A ∈ p(Λ), call ψA :
⊕

α∈A F (Xα, L) ∼= F (
∨
α∈AXα, L) −→

F (
∨
α∈ΛXα, L), where the isomorphism comes from Proposition 5.5 and the

second map is induced by the canonical inclusion. If A ⊂ B , one easily verifies
that ψB = ψA ◦ ψA,B , where ψA,B :

⊕
α∈A F (Xα, L) −→

⊕
α∈B F (Xα, L) is

induced by the inclusion
∨
α∈AXα ⊂

∨
α∈BXα modulo the isomorphism of 5.5.

By the universal property of the colimit, the maps (continuous homomorphisms)
ψA induce a continuous homomorphism

ψ :
⊕
α∈Λ

F (Xα, L) −→ F (
∨
α∈A

Xα, L) .

In order to see that ψ is an isomorphism of topological groups, we now construct
an inverse

ξ : F (
∨
α∈Λ

Xα, L) −→
⊕
α∈Λ

F (Xα, L)

as follows. Let u :
∨
α∈ΛXα −→ L be an element in F (

∨
α∈ΛXα, L) and let

uα : Xα −→ L be the restriction of u; that is, uα = pα∗(u), where pα :∨
α∈ΛXα −→ Xα is the canonical projection. Then uα 6= 0 only for finitely

many values of α, i.e., only for α ∈ A, and some A ∈ p(Λ). Thus (uα) ∈⊕
α∈Λ F (Xα, L) and one can define ξ(u) = (uα). The homomorphism ξ is

clearly an (algebraic) inverse of ψ . To see that ξ is continuous, define the
function χ : L ×

∨
α∈Λ −→

⊕
α∈Λ F (Xα, L) by χ(l, xα) = lxα . Composing χ

with the identification
∐
α∈Λ L ×Xα � L ×

∨
α∈ΛXα and then restricting to

each L×Xα , we obtain the composite

L×Xα
µ1−→ F (Xα, L) ↪→

⊕
α∈Λ

F (Xα, L)

which is continuous. Therefore χ is continuous. Now consider the commutative
diagram

(L×
∨
α∈ΛXα)k

χk //

����

(
⊕

α∈Λ F (Xα, L))k

+
��

F (
∨
α∈ΛXα, L)

ξ
//
⊕

α∈Λ F (Xα, L) .

Since the vertical map on the left is an identification and the maps on the top
and on the right are continuous (+ by 5.4), ξ is continuous.
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Now we can use the groups FG(X,M) to prove that the Bredon-Illman G-
equivariant homology theory H̃G

∗ (−;M) satisfies the wedge axiom. We need a
lemma whose proof is not difficult.

Lemma 5.7 Let {Yα; iβ,α : Yα ↪→ Yβ} and {Y α; iβ,α : Y α ↪→ Y β} be diagrams
in k-Top such that each iβ,α and iβ,α are closed embeddings, and let {qα : Yα �
Y α} be a family of identifications such that qβ ◦ iβ,α = iβ,α ◦ qα . Then the map
q : colimYα � colimY α induced in the colimits in k-Top is an identification.

The next lemma is a consequence of the previous one.

Lemma 5.8 Let Xα be a pointed G-space for each α ∈ Λ. Then the map⊕
α∈Λ

∏
H⊂G F (XH

α ;M(G/H))
⊕pXα // ⊕

α∈Λ FG(Xα,M)

is an identification.

Now, as an application of our groups FG(X,M), we have the next results. First
we have that the Bredon-Illman homology satisfies the wedge-axiom.

Proposition 5.9 Let Xα , α ∈ Λ, be an arbitrary family of pointed G-spaces.
Then there is an isomorphism

FG(
∨
α∈Λ

Xα,M) ∼=
⊕
α∈Λ

FG(Xα,M) .

Proof: By Proposition 5.6, the inclusions iα : Xα ↪→
∨
αXα induce an iso-

morphism ϕ of topological groups by⊕
α∈Λ

∏
H⊂G F (XH

α ;M(G/H))
ϕ

++WWWWWWWWWWW
∼=

��∏
H⊂G

⊕
α∈Λ F (XH

α ,M(G/H)) Q
ψH

∼= // ∏
H⊂G F (

∨
α∈ΛX

H
α ,M(G/H))

Similarly, we can define an isomorphism of abelian groups

ψG :
⊕

α∈Λ FG(Xα;M) // FG(
∨
α∈ΛXα,M) .

They fit into a commutative diagram⊕
α

∏
H⊂G F

(
XH
α ;M(G/H)

) ϕ //

⊕pXα ����

∏
H⊂G F

(∨
αX

H
α ,M(G/H)

)
p∨Xα

����⊕
α FG (Xα,M)

ψG
// FG (

∨
αXα,M) ,
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where the vertical arrows are identifications (the left one by the previous lemma).
Since the top arrow is a homeomorphism, then the bottom arrow is a homeo-
morphism too.

Proposition 5.10 Let Xα , α ∈ Λ, be an arbitrary family of pointed G-spaces
having the homotopy type of G-CW-complexes. Then there is an isomorphism

H̃G
∗ (
∨
α

Xα;M) ∼=
⊕
α

H̃G
∗ (Xα;M) .

Proof: Under conditions (i) and (ii) given in the proof of 5.4, that are satisfied
by the family {

⊕
α∈A FG(

∨
αXα,M) | A ∈ p(Λ)}, it is proved in [8] that the

homotopy groups commute with the colimit. Hence

H̃G
∗ (
∨
α∈Λ

Xα;M) ∼= πq(FG(
∨
α∈Λ

Xα;M)) (by 2.11)

∼= πq(
⊕
α∈Λ

FG(Xα,M)) (by 5.9)

∼= πq(colimA(
⊕
α∈A

FG(Xα,M))) (by 5.3)

∼= colimA(πq(
⊕
α∈A

FG(Xα,M))) (by [8, 15.9])

∼= colimA(
⊕
α∈A

πq(FG(Xα,M))) (since A is finite)

∼=
⊕
α∈Λ

πq(FG(Xα,M))) (by 5.3)

∼=
⊕
α∈Λ

H̃G
∗ (Xα;M) (by 2.11).

In order to prove the wedge axiom in full generality, we need the following
lemmas.

Lemma 5.11 Let X and Y , and X ′ and Y ′ be well-pointed spaces and let
ϕ : X ′ −→ X and ψ : Y ′ −→ Y be weak homotopy equivalences (mapping base
points to base points). Then ϕ ∨ ψ : X ′ ∨ Y ′ −→ X ∨ Y is a weak homotopy
equivalence.

Proof: Consider the double attaching spaces X ∪ I ∪ Y and X ′ ∪ I ∪ Y ′ ,
where the base point x0 ∈ X is identified with 0 ∈ I , the base point y0 ∈ Y
is identified with 1 ∈ I , and similarly with the other union. Since the spaces
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are well pointed, the quotient maps q : X ∪ I ∪ Y � X ∨ Y and q′ : X ′ ∪
I ∪ Y ′ � X ′ ∨ Y ′ that collapse I to the common base point are homotopy
equivalences. The pairs (X ∪ [0, 1), (0, 1] ∪ Y ) and (X ′ ∪ [0, 1), (0, 1] ∪ Y ′) are
excisive in X ∪ I ∪ Y and X ′ ∪ I ∪ Y , respectively. Hence, by [8, 16.24], the
map ϕ ∪ idI ∪ψ : X ∪ I ∪ Y −→ X ′ ∪ I ∪ Y ′ is a weak homotopy equivalence.
The following is clearly a commutative diagram

X ′ ∪ I ∪ Y ′
ϕ∪idI ∪ψ //

q′ '
��

X ∪ I ∪ Y
q'

��
X ′ ∨ Y ′

ϕ∨ψ
// X ∨ Y .

Therefore, ϕ ∨ ψ is a weak homotopy equivalence.

As a consequence, we obtain the following result.

Lemma 5.12 Let Xα and X ′α , α ∈ Λ be an arbitrary family of well-pointed
G-spaces, and let ϕα : X ′α −→ Xα be an equivariant weak homotopy equiv-
alences (mapping base points to base points). Then ∨α∈Λϕα :

∨
α∈ΛX

′
α −→∨

α∈ΛXα is an equivariant weak homotopy equivalence.

Proof: First notice that since the base points are fixed under the G-action,
(
∨
α∈ΛXα)H =

∨
α∈ΛX

H
α , and similarly (

∨
α∈ΛX

′
α)H =

∨
α∈ΛX

′H
α .

Let p(Λ) be the set of finite subsets of Λ. Then, by 5.11, for every A ∈ p(Λ),
∨α∈AϕHα :

∨
α∈AX

′H
α −→

∨
α∈AX

H
α is a weak homotopy equivalence and in-

duces isomorphisms between all the homotopy groups. Thus again, as in the
proof of 5.10 and using [8, 15.9], ∨α∈Λϕ

H
α :

∨
α∈ΛX

′H
α −→

∨
α∈ΛX

H
α induces

isomorphisms in all homotopy groups and hence it is a weak homotopy equiva-
lence, thus ∨α∈Λϕα :

∨
α∈ΛX

′
α −→

∨
α∈ΛXα is an equivariant weak homotopy

equivalence.

Now we can prove the general wedge axiom for the Bredon-Illman G-equivariant
homology.

Theorem 5.13 Let Xα , α ∈ Λ, be an arbitrary family of well-pointed G-
spaces. Then there is an isomorphism

⊕
α∈Λ H̃

G
q (Xα;M) ∼= H̃G

q (
∨
α∈ΛXα;M)

induced by the canonical inclusions Xα ↪→
∨
Xα .

Proof: For each α ∈ Λ there is an equivariant weak homotopy equivalence
ϕα : X̃α −→ Xα , where X̃α is a (pointed) G-CW-complex (for instance X̃α =
|S(Xα)|).
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By 5.12, ϕ = ∨αϕα :
∨
α X̃α −→

∨
αXα is an equivariant weak homotopy equiv-

alence. Hence, by [5, 1.19], ϕ induces an isomorphism ϕ∗ : HG
q (
∨
α X̃α;M) −→

HG
q (
∨
αXα). Recall that

HG
q (
∨
α

X̃α;M) = H̃G
q ((
∨
α

X̃α)+;M) and HG
q (
∨
α

Xα) = H̃G
q ((
∨
α

Xα)+;M) .

On the other hand, the cofiber sequences

S0 ↪→ (
∨
α

X̃α)+ �
∨
α

X̃α and S0 ↪→ (
∨
α

Xα)+ �
∨
α

Xα

induce short exact sequences that fit into the diagram

0 // H̃G
0 (S0;M) // H̃G

0 ((
∨
α X̃α)+;M) //

ϕ+
∗

∼=
��

H̃G
0 (
∨
α X̃α;M) //

ϕ∗
��

0

0 // H̃G
0 (S0;M) // H̃G

0 ((
∨
αXα)+;M) // H̃G

0 (
∨
αXα;M) // 0

Thus, by the five-lemma, we have an isomorphism

ϕ∗ : H̃G
0 (
∨
α

X̃α;M) −→ H̃G
0 (
∨
α

Xα;M) .

On the other hand, since H̃G
q (S0;M) = 0 if q > 0, there are isomorphisms

H̃G
q ((
∨
α

X̃α)+;M) ∼= H̃G
q (
∨
α

Xα;M)

H̃G
q ((
∨
α

X̃α)+;M) ∼= H̃G
q (
∨
α

Xα;M)

and thus also an isomorphism

ϕ∗ : H̃G
q (
∨
α

X̃α;M) −→ H̃G
q (
∨
α

Xα;M) .

Similarly, for every α ∈ Λ, there are isomorphisms

ϕα∗ : H̃G
q (X̃α;M) −→ H̃G

q (Xα;M) .

Since the G-spaces X̃α are G-CW-complexes, by 5.10 there is an isomorphism⊕
α∈Λ

H̃G
q (X̃α;M) ∼= H̃G

0 (
∨
α

X̃α;M)

for all q ≥ 0, and by the isomorphisms above it follows that there is an isomor-
phism ⊕

α∈Λ

H̃G
q (Xα;M) ∼= H̃G

q (
∨
α

Xα;M)

as desired.
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Next we make some calculations using the homotopical approach to Bredon-
Illman homology.

Proposition 5.14 Let X be a pointed G-space of the homotopy type of a
G-CW-complex. Assume that XH is connected for each H ⊂ G. Then

H̃G
0 (X;M) = 0 .

Proof: By Lemma 5.1, C(XH) = π0(XH) for each H ⊂ G. Hence

π0(F (XH ,M(G/H))) ∼= H̃0(XH ;M(G/H) = 0 .

Thus the topological groups F (XH ,M(G/H)) are path-connected and so is
their product. Since FG(X,M) is a quotient of this product, its also path-
connected. Hence 0 = π0(FG(X,M)) ∼= H̃G

0 (X;M).

Proposition 5.15 Let X be a G-space of the homotopy type of a G-CW-
complex. Assume that XH is connected for each H ⊂ G. Consider the fam-
ily H of all H ⊂ G such that XH 6= ∅. Then HG

0 (X;M) is a quotient of⊕
H∈HM(G/H). Furthermore, if X has a fixed point, then HG

0 (X;M) ∼=
M(G/G).

Proof: For each H ∈ H , there is an isomorphism

π0(F ((XH)+,M(G/H))) ∼= H0(XH ;M(G/H)) ∼= M(G/H) .

Hence one has an epimorphism⊕
H∈H

M(G/H) ∼= π0(
∏
H∈H

F ((XH)+,M(G/H))) � π0(FG(X+,M)) ∼= HG
0 (X;M) .

Furthermore, if X has a fixed point x0 , then X+ = X ∨ S0 , where we take x0

as base point of X . By the exactness axiom, one always has H̃G
∗ (X ∨ Y ;M) ∼=

H̃G
∗ (X;M) ⊕ H̃G

∗ (Y ;M). Then, in particular, H̃G
0 (X+;M) ∼= H̃G

0 (X;M) ⊕
H̃G

0 (S0;M). Since by the previous proposition H̃G
0 (X;M) = 0, one obtains

HG
0 (X;M) ∼= H̃G

0 (S0;M) ∼= M(G/G).

6 Dold-Thom topological groups and the transfer

In this section we summarize the properties of the topological groups defined
and explain which of them admit a transfer, either for ordinary or for ramified
covering G-maps. We start with the following concept.
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Definition 6.1 Let M be a covariant coefficient system for G. We shall call
a functor G(−,M) : G-Top −→ Topab a Dold-Thom topological group func-
tor with coefficients in M for a subcategory T ⊂ G-Top if there is a natural
isomorphism

ϕX : π∗(G(X,M)) −→ H̃G
∗ (X;M) ,

where the right-hand side denotes the reduced G-equivariant Bredon-Illman
homology groups of X with coefficients in M , and X is an object of T .

Examples 6.2 The following are examples of Dold-Thom topological group
functors with coefficients in a coefficient system M :

1. The groups FG(X,M) = |FG(S(X),M)|, for any G-space X , defined in
[2].

2. The groups FG(X,M) defined in Section 5 of [3], when M is a homological
Mackey functor and X has the homotopy type of a G-CW-complex.

3. The groups FG(X,M) as shown in 2.11.

4. The groups |FG(Q,M)| for X = |Q| and Q a simplicial G-set, in partic-
ular, the simplicial G-set associated to a simplicial G-complex as shown
in [5].

5. The groups AG(X) and AG(X;m) defined by Dold and Thom [7] in
the nonequivariant case, where the coefficients are a cyclic group (Z and
Z/mZ, respectively) and X is a (countable) simplicial complex. Here G
does not stand for any group.

6. The groups B(L,X) defined by McCord [14] in the nonequivariant case
and coefficients in an abelian group L, where X is a weak Hausdorff
k-space of the homotopy type of a CW-complex.

7. The groups AG(X) defined by Lima-Filho [11] for a G-CW-complex X
and coefficients in Z.

8. The groups L⊗X defined by dos Santos [9] for a pointed G-CW-complex
X and coefficients in a G-module L.

9. The groups GX ⊗GF M defined in [15] for a pointed G-CW-complex X .

And if M takes values in k -Mod, where k is a field of characteristic 0 or a
prime p that does not divide |G|:

10. The groups FG(X,M), by 4.2(a) and 1.

11. The groups FG(X,M), if X has the homotopy type of a G-CW-complex,
by 4.3 and 2.
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12. The groups F
G

(X,M) for a strong ρ-space X , by 4.2(b), 4.3, 3.6, and 3.

Definition 6.3 Let M be a Mackey functor for the finite group G and
G(−,M) be a Dold-Thom topological group functor with coefficients in (the
covariant part of) M . Let p : E −→ X be either an n-fold G-equivariant ordi-
nary covering map (see [2], or an n-fold G-equivariant ramified covering map
(see [4]. By a transfer for p in G(−,M) we understand a continuous homomor-
phism

tGp : G(X+,M) −→ G(E+,M) ,

which satisfies the following conditions:

(a) Pullback: If f : Y −→ X is continuous and we take the pullback diagram

E′

q

��

ef // E

p

��
Y

f
// X ,

then tGp ◦ fG∗ = f̃G∗ ◦ tGq : G(Y +,M) −→ G(E+,M).

(b) Normalization: If p = idX : X −→ X , then tGidX = id : G(X+,M) −→
G(X+,M).

(c) Functoriality: If p : E −→ X and q : X −→ Y are G-equivariant ordi-
nary, resp. ramified covering maps, then

tGq◦p = tGp ◦ tGq : G(Y +,M) −→ G(E+,M) .

(d) If M is homological, then the composite pG∗ ◦tGp : G(X+,M) −→ G(X+,M)
is multiplication by n.

Examples 6.4 The following Dold-Thom topological group functors have trans-
fers for p:

1. If p : E −→ X is an n-fold G-equivariant ordinary covering map and
M is any Mackey functor, then there is a transfer tGp : FG(X+,M) −→
FG(E+,M), as shown in [2].

2. If p : E −→ X is an n-fold G-equivariant ramified covering map between
strong ρ-spaces of the homotopy type of G-CW-complexes, and M is
homological, then there is a transfer tGp : FG(X+,M) −→ FG(E+,M), as
shown in [4].
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3. If p : K −→ Q is a special G-equivariant simplicial ramified cover-
ing map and M is any Mackey functor, then there is a transfer |tGp | :
|FG(Q+,M)| −→ |FG(K+,M)|, as shown in [5].

4. If p : E −→ X is an n-fold G-equivariant ramified covering map between
strong ρ-spaces of the homotopy type of G-CW-complexes, and M is
homological, then there is a transfer tGp : FG(X+,M) −→ FG(E+,M),
by 3.3 and Example 2.

Remark 6.5 Let p : E −→ X be an n-fold G-equivariant covering map. The
restrictions pH : EH −→ XH are not, in general, covering maps. Thus there are
no transfers F (XH+,M(G/H)) −→ F (EH+,M(G/H)). Since the topology of
the groups FG(X+,M) and FG(E+,M) is given in terms of that of the groups
F (XH+,M(G/H)) and F (EH+,M(G/H)), it does not seem possible to prove
the continuity of tGp . And even if the transfers tpH exist, they do not commute
with the identifications. However, if as stated in Example 4 above, the spaces
are ρ-spaces, then the groups FG(X+,M) and FG(E+,M) coincide with the
groups FG(X+,M) and FG(E+,M), as shown in 3.4, and one can show that
the transfer is continuous.

Now we study the homotopy type of the Dold-Thom topological groups. First
we have the following general result.

Theorem 6.6 Let A be a locally connected topological abelian group in the
category k-Top that has the homotopy type of a CW-complex. Then there is a
homotopy equivalence

A '
⊕
q≥0

K(πq(A), q) ,

where K(πq(A), q) denotes the corresponding Eilenberg-Mac Lane space.

Proof: Since translation by a0 , a0 ∈ A, is a homeomorphism in the k-topology,
the connected component A0 of 0 ∈ A is a closed subgroup of A.

By Lemma 5.1, the connected components of A coincide with the path-com-
ponents. Thus A is the topological sum of all its path-components, and they
are closed and open, because A is locally connected. Since all path-components
of A are homeomorphic (via translation) to A0 , we have a homeomorphism

(6.6) A ∼= π0(A)×A0 .

Since A has the homotopy type of a CW-complex, so does A0 . Consider

A0
i
↪→ F (A0,Z)

ν
� A0 ,
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given by i(a) = 1a and ν(u) =
∑

a∈A0
u(a)a. Then i and ν are clearly continu-

ous, and the composite ν ◦ i is equal to the identity idA0 . Applying the functor
πq we have the following

πq(A0)

1

++

i#
//

hq &&MMMMMMMMMM
πq(F (A0,Z))

∼=
��

ν#
// πq(A0)

H̃q(A0; Z)

λq

88qqqqqqqqqq

where λq is defined so that the triangle commutes, and thus we obtain a left
inverse for the Hurewicz homomorphism.

Now consider a homotopy equivalence A0
ϕ−→ C0 , where C0 is a CW-complex,

and the diagram

πq(A0)
hq //

ϕ# ∼=
��

H̃q(A0)
λq //

ϕ# ∼=
��

πq(A0)

ϕ# ∼=
��

πq(C0)
hq

// H̃q(C0) αq
//___ πq(C0) ,

where αq is so that the diagram commutes. Hence αq is a left inverse to
Hurewicz too. Since C0 is a connected CW-complex, by Moore’s theorem (see
[17, IX(1.9)], we have C0 '

⊕
q≥1K(πq(C0), q) (see 5.2). Hence, using (6.6),

we get

A ∼= π0(A)×A0 ' π0(A)×
⊕
q≥1

K(πq(C0), q) ≈
⊕
q≥0

K(πq(A0), q) .

As a consequence of the previous theorem we have the following.

Theorem 6.7 Let G(−,M) is a Dold-Thom topological group functor. If X
is a pointed G-space such that G(X,M) is locally connected and has the ho-
motopy type of a CW-complex, then

G(X,M) '
⊕
q≥0

K(H̃G
q (X;M), q) .

Hence these groups are unique up to homotopy.

Proposition 6.8 (a) The topological groups FG(X,M) are CW-complexes
for any pointed G-space X .
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(b) If X is a pointed G-CW-complex, then FG(X,M) is locally connected
and has the homotopy type of a CW-complex.

(c) If X is a pointed G-simplicial complex or a finite-dimensional countable
locally finite G-CW-complex, then FG(X,M) is locally connected and
has the homotopy type of a CW-complex.

We conclude that in all these cases the topological groups have the homotopy
type of

⊕
q≥0K(H̃G

q (X;M), q).

Proof: (a) follows from the fact that FG(X,M) is the geometric realization
|FG(S(X),M)|.

(b) First notice that the property of a space being locally connected is inherited
by quotient spaces. Hence, if X is locally connected, so is also

∏
n≥1(L×X)n for

any abelian group L, and given the quotient map
∏
n≥1(L×X)n � F (X,L),

the topological group F (X,L) is locally connected.

Now, if X is a G-CW-complex, then XH is locally connected for every H ⊂ G.
Hence each topological group F (XH ,M(G/H)) is locally connected and since
by definition there is a quotient map

∏
H⊂G F (XH ,M(G/H)) � FG(X,M),

the topological group FG(X,M) is also locally connected. Furthermore there is
a G-homotopy equivalence ρX : |S(X)| −→ X , which by the homotopy invari-
ance 2.4 induces a homotopy equivalence ρGX∗ : FG(|S(X)|,M) −→ FG(X,M).
But by 2.10, there is an isomorphism of topological groups FG(|S(X)|,M) ∼=
|FG(S(X),M)|, thus the first is a CW-complex, and hence FG(X,M) has the
homotopy type of a CW-complex.

(c) Actually we only need X to be a pointed G-CW-complex which is also a
strong ρ-space, then by 3.4, FG(X,M) = FG(X,M) and the result follows from
(b).

In any case, the corresponding topological group satisfies the assumptions of
Theorem 6.6 and we obtain the conclusion.
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