SYMMETRIC QUASI-SCHURIAN ALGEBRAS.

Octavio Mendoza Hernández
Departamento de matemática
Universidad Nacional del Sur
8000 Bahía Blanca
Argentina.*

Abstract

Let k denote an algebraically closed field. We say that a finite dimensional k-algebra Λ is quasi-schurian, if it satisfies the following two conditions:

QS1) $\dim_k\text{Hom}_\Lambda(P, Q) \leq 1$ if P, Q are not isomorphic indecomposable projective Λ-modules.

QS2) $\dim_k\text{End}_\Lambda(P) = 2$ for each indecomposable projective Λ-module P.

An important class of quasi-schurian algebras is the trivial extensions of finite representation type.

In this paper, we give necessary and sufficient conditions for a given quasi-schurian algebra Λ to be weakly-symmetric or symmetric. These conditions are given in a combinatorial approach using a graph $GS(\Lambda)$ associated to Λ, and a function $\phi_{\Lambda} : \text{Ch}(GS(\Lambda)) \to k$ where $\text{Ch}(GS(\Lambda))$ is the set of chains of the graph $GS(\Lambda)$. Finally we give some connections between symmetric quasi-schurian algebras and trivial extensions of algebras.

1 Introduction

Throughout this paper, we let k denote a fixed algebraically closed field. By algebra is always meant a finite dimensional associative k-algebra with an identity, which we assume moreover to be basic and connected, and by module is meant a finitely generated left A-module.

Let A be a schurian triangular algebra. It is well known that the trivial extension $T(A)$ of A satisfies $\dim_k\text{Hom}_{T(A)}(P, Q) \leq 1$ and $\dim_k\text{End}_{T(A)}(P) = 2$ where P, Q are non isomorphic indecomposable projective $T(A)$-modules. In this way, we are interested

*Supported by a fellowship from CONICET, Argentina. The author gratefully acknowledges a grant from CONICET, Argentina.
in the class of algebras Λ satisfying the above property. Thus, we say that an algebra Λ is quasi-schurian if it satisfies the following two conditions:

QS1) \(\dim_k \text{Hom}_\Lambda(P, Q) \leq 1 \) if \(P, Q \) are not isomorphic indecomposable projective \(\Lambda \)-modules.

QS2) \(\dim_k \text{End}_\Lambda(P) = 2 \) for each indecomposable projective \(\Lambda \)-module \(P \).

The aim of this paper is both to give necessary and sufficient conditions for a given quasi-schurian algebra to be weakly-symmetric or symmetric, and to say when a symmetric quasi-schurian algebra arises from a trivial extension of a schurian triangular algebra.

Let \(\Lambda = \frac{kQ}{I} \) where \(Q \) is the ordinary quiver associated with \(\Lambda \) and \(I \) is an admissible ideal. If \(\delta \) is a path in the quiver \(Q \), we will denote by \(\delta \) the sub quiver of \(Q \) having as vertices and arrows those which belong to \(\delta \), this \(\delta \) is called the support of \(\delta \).

Let \(C \) be an oriented cycle. Each vertex \(j \) in the support \(C \) of \(C \) determines a cycle with origin \(j \) which we call \(C(j) \).

Finally we denote by \(\gamma \) the congruence class \(\gamma + I \) in \(\Lambda = \frac{kQ}{I} \).

In section 3 we prove the following theorems

Theorem. Let \(\Lambda = \frac{kQ}{I} \) be a quasi-schurian algebra. Then the following conditions are equivalent:

I) \(\Lambda \) is weakly-symmetric.

II) For every non zero path \(\gamma \) there exists a path \(\delta \) such that \(\delta \gamma \) is a non zero minimal oriented cycle.

III) For each non zero \(f \) in \(\text{Hom}_\Lambda(P, Q) \) the induced morphism

\[\text{Hom}_\Lambda(Q, f) : \text{Hom}_\Lambda(Q, P) \rightarrow \text{End}_\Lambda(Q) \]

is non zero, if \(P \) and \(Q \) are indecomposable non isomorphic projective \(\Lambda \)-modules.

IV) \(\Lambda \) satisfies the following conditions

a) If a minimal oriented cycle \(C \) is non zero, then \(\overline{C(t)} \neq 0 \) for each vertex \(t \) in the support \(C \) of \(C \).

b) Let \(\{C_1, C_2, \ldots, C_m\} \) be the set of supports corresponding to the non zero oriented cycles. Then \(Q = \cup_{i=1}^{m} C_i \).

Theorem. Let \(\Lambda = \frac{kQ}{I} \) be a quasi-schurian weakly-symmetric algebra. Let \(\{C_1, C_2, \ldots, C_m\} \) be the set of supports of the non zero minimal oriented cycles. The following statements are equivalent:

I) \(\Lambda \) is a symmetric algebra.
II) There are non zero elements a_1, \ldots, a_m in the field k such that, for each i and j with $(C_i)_0 \cap (C_j)_0 \neq \emptyset$ the following condition holds

$$\overline{C}_i(t) = a_i a_j^{-1} \overline{C}_j(t) \quad \forall t \in (C_i)_0 \cap (C_j)_0.$$

In section 4 we give a combinatorial approach to the above last theorem using a graph $GS(\Lambda)$ associated to Λ, and a function $\phi_\Lambda : Ch(GS(\Lambda)) \to k$ where $Ch(GS(\Lambda))$ is the set of chains of the graph $GS(\Lambda)$. In this way, the existence of the non zero constants a_1, \ldots, a_m which are required in the last theorem, is very closely related with the structure of the graph $GS(\Lambda)$ and with the function $\phi_\Lambda : Ch(GS(\Lambda)) \to k$. In fact, we prove that the quasi-schurian Weakly-Symmetric k-algebra Λ is symmetric if either the graph $GS(\Lambda)$ is a tree or ϕ_Λ satisfies $\phi_\Lambda(C) = 1$ for each minimal cycle C in $GS(\Lambda)$ with at least three vertices.

In section 5 we give a connexion between symmetric quasi-schurian algebras and trivial extensions of algebras, which we state next.

Theorem. Let Λ be basic connected finite dimensional k-algebra. The following statements are equivalent

1) There exists a schurian basic triangular algebra Λ' such that $\Lambda \simeq T(\Lambda')$.

2) Λ is symmetric quasi-schurian, and there exists a set $\mathcal{C}(\Lambda)$ consisting of exactly one arrow in each non zero minimal oriented cycle, such that $Q_{\mathcal{C}}$ has non oriented cycles, where $Q_{\mathcal{C}}$ is the quiver obtained from Q_Λ by deleting the arrows in $\mathcal{C}(\Lambda)$.

If these conditions hold, then $\Lambda' \simeq \Lambda/I_C$ where I_C is the ideal generated by $\mathcal{C}(\Lambda)$ in Λ. □

In the case that Q is an oriented tree and $\Lambda = T(kQ)$ we can always choose a set $\mathcal{C}(\Lambda)$ as in 2) in the theorem. Moreover, we prove that for any such choice the factor algebra Λ/I_C is iterated tilted of type Q. This is a useful approach to obtain iterated tilted algebras of a given tree class.

2 Preliminaries

It is well known that each basic finite dimensional algebra Λ over an algebraically closed field k is isomorphic to k-algebra kQ/I where Q is the finite quiver associated with Λ and I is an admissible ideal of the path algebra kQ.

Let Q be a quiver. We will denote by Q_0 the set of vertices and by Q_1 the set of arrows of Q. Given an arrow $\alpha \in Q_1$, we say it starts at the vertex $o(\alpha)$ and ends at $e(\alpha)$. A path in the quiver Q is either an oriented sequence of arrows $p = \alpha_n \cdots \alpha_1$ with $e(\alpha_i) = o(\alpha_{i+1})$ for $1 \leq t < n$, or the symbol e_i for $i \in Q_0$. We call the paths e_i trivial paths and we define $o(e_i) = e(e_i)$. For a nontrivial path $p = \alpha_n \cdots \alpha_1$ we define $o(p) = o(\alpha_1)$ and $e(p) = e(\alpha_n)$. If δ is a path in Q, we will denote by δ the support of δ in Q. Thus, δ is a sub quiver of Q having as vertices and arrows those which belong to δ. A nontrivial path p is said to be an oriented cycle if $o(p) = e(p)$.

3
Let $C = \alpha_n\alpha_{n-1} \cdots \alpha_2\alpha_1$ be an oriented cycle in Q. We will call C minimal oriented cycle if $n = 1$ or all the vertices $o(\alpha_1), o(\alpha_2), \ldots, o(\alpha_n)$ are different in case $n > 1$. Let j be a vertex in the support C of C, then the arrows of C determine a cycle with origin j, which we call $C(j)$. That is, $C(j) = \alpha_{r-1} \cdots \alpha_2\alpha_1\alpha_n \cdots \alpha_{r+1}\alpha_r$ where $j = o(\alpha_r)$ is the origin of α_r.

Let Λ be a finite dimensional k-algebra, we denote by $\text{mod}(\Lambda)$ the category of finitely generated left-Λ modules, by Q_Λ the ordinary quiver associated with Λ, by $S(a)$ the simple Λ-module corresponding to the vertex a in Q_Λ, by $P(a)$ the projective cover, and by $I(a)$ the injective envelope of $S(a)$. Let γ be a path in Q_Λ. By $\overline{\gamma}$ we denote the congruence class $\gamma + I$ in $\Lambda = kQ_\Lambda/I$. We will say that the path γ is zero if $\gamma = 0$.

Definition: An algebra Λ is called quasi-schurian, if it satisfies the following two conditions:

QS1) $\dim_k \text{Hom}_\Lambda(P,Q) \leq 1$ if P,Q are non isomorphic indecomposable projective Λ-modules.

QS2) $\dim_k \text{End}_\Lambda(P) = 2$ for each indecomposable projective Λ-module.

An important class of quasi-schurian algebras consists of the trivial extensions of Cartan type D, with D a Dynkin quiver. These algebras are closely related with the iterated tilted algebras of Dynkin type D, see [1],[2]. More generally, consider a schurian algebra Λ such that Q_Λ has no oriented cycles. Then the trivial extension $T(\Lambda)$ of Λ will be quasi-schurian.

2.1 Symmetric algebras. Let Λ be a k-algebra. We denote by D_Λ the usual duality

$$
\text{Hom}_k(-,k) : \text{mod}(\Lambda) \to \text{mod}(\Lambda^{op}).
$$

The algebra Λ is called symmetric if there exists an isomorphism $\varphi : \Lambda \cong D_\Lambda(\Lambda)$ as $\Lambda-\Lambda$ bimodules. It is well known that Λ is symmetric if and only if there is a non-degenerate Λ-balanced symmetric k-bilinear mapping $\theta : \Lambda \times \Lambda \to k$, see [4]. We will point out the following equivalent version of the above property.

Proposition 1 Let Γ be a finite dimensional k-algebra and $f \in D_\Gamma(\Gamma)$. Then there exists a $\Gamma-\Gamma$ bimodule isomorphism $\varphi : \Gamma \cong D_\Gamma(\Gamma)$ such that $\varphi(1) = f$ if and only if f satisfies:

α) For each $\gamma_1 , \gamma_2 \in \Gamma$ we have that $\gamma_2 \gamma_1 = 0$ is equivalent to $\gamma_1 \Gamma \gamma_2 \subseteq \text{Ker}f$.

β) $\gamma_1 \gamma_2 - \gamma_2 \gamma_1 \in \text{Ker}f$ for every $\gamma_1 , \gamma_2 \in \Gamma$.

Proof: straightforward calculations. \square

Remarks:

1) The condition α) may be changed by one of the following conditions

α') If $\gamma \Gamma \subseteq \text{Ker}f$, then $\gamma = 0$.

4
α’’ If Γγ ⊆ Ker f, then γ = 0.

2) Let {e1, · · · , en} be a complete family of orthogonal idempotents in Γ. Then the condition α) implies that
i) f(ejΓei) = 0 for i ̸= j.
ii) f(eiΓei) ̸= 0 for each i.

2.2 The Supplement Property for quasi-schurian algebras.

Definition: Let Λ = kQΛ/I be a quasi-schurian algebra. We will say that Λ satisfies the Supplement Property if for every non zero path γ there exists a non zero minimal oriented cycle C such that
1) o(γ) = o(C).
2) All the arrows in γ lie in the support C of the cycle C.
The path δ such that δγ = C is called the supplement of γ in the cycle C.
E. Fernández and M.I. Platzeck proved that this property holds for the trivial extension T(Λ) of a schurian algebra Λ (see [3]).

Lemma 2 Let Λ be a quasi-schurian algebra and δ a nontrivial path in kQΛ. If C is an oriented cycle then Cδ = δC = 0.

Proof: Suppose that Cδ ̸= 0. Then we will prove that the set {δ, Cδ} is linearly independent over k. This gives a contradiction since Λ is quasi-schurian.
Let aδ + bCδ = 0 where a and b lie in k. If a ̸= 0 then (1 + ba−1C)δ = 0. But ba−1C lies in the radical of Λ and so 1 + ba−1C is invertible in Λ. Thus δ = 0, a contradiction. So, a must be zero. This means that bCδ = 0 which also gives that b = 0. Then, the set {δ, Cδ} is linearly independent. □

3 Main results.

Let Λ be a finite dimensional k-algebra. Recall that Λ is called weakly-symmetric if for any indecomposable projective Λ-module P we have that soc(P) ≃ top(P). It can be proven (see [4]) that a weakly-symmetric algebra is self-injective. Moreover, symmetric implies weakly-symmetric. In case Λ is a quasi-schurian algebra, we give in this section an answer to the following questions.
1) When is Λ weakly-symmetric?.
2) When is Λ symmetric?.

The Supplement Property which was defined above for quasi-schurian algebras is very closely related with these questions, as we will see in this section.

Theorem 3 Let Λ = kQΛ/I be a quasi-schurian algebra. Then the following conditions are equivalent
I) Λ is weakly-symmetric.

II) Λ satisfies the Supplement Property.

III) For each non zero f in $\text{Hom}_\Lambda(P,Q)$ the induced morphism

$$\text{Hom}_\Lambda(Q,f) : \text{Hom}_\Lambda(Q,P) \to \text{End}_\Lambda(Q)$$

is non zero, if P and Q are indecomposable non isomorphic projective Λ-modules.

IV) Λ satisfies the following conditions

a) If a minimal oriented cycle C is non zero, then $C(t) \neq 0$ for each vertex t in the support C of C.

b) Let $\{C_1, C_2, \ldots, C_m\}$ be the set of supports corresponding to the non zero oriented cycles. Then $Q_\Lambda = \bigcup_{i=1}^{m} C_i$.

Before proving the theorem, we will need the following result.

Lemma 4 Let $\Lambda = kQ_\Lambda/I$ be a finite dimensional k-algebra, let i be a vertex in Q_Λ and γ a non trivial path in Q_Λ, non zero in Λ.

If $\text{soc}(P(i)) \simeq S(i)$ and $\overline{\gamma} \in \text{soc}(P(i))$, then γ is a cycle with origin at the vertex i.

Proof: Assume that $\text{soc}(P(i)) \simeq S(i)$ and $\overline{\gamma}$ lies in $\text{soc}(P(i))$. Let $j = e(\gamma)$. Then $\overline{\gamma} \in I(j)$. But $k\overline{\gamma} = \text{soc}(P(i)) \simeq S(i)$, hence $k\overline{\gamma} \simeq S(i)$. But $\overline{\gamma}$ is in $I(j)$, then $k\overline{\gamma} = \text{soc}(I(j)) \simeq S(j)$. This means that $S(i) \simeq S(j)$ and hence $i = j$.

Remark: We recall that, if M is a Λ module then the socle of M is equal to the right annihilator of $\text{rad}(\Lambda)$ in M (see [4]). This property will be used in the next proof.

Proof of Theorem 3:

I) \Rightarrow II) Assume that Λ is weakly-symmetric. Let $\gamma = \alpha_r \alpha_{r-1} \cdots \alpha_1$ be a non zero path such that $o(\gamma) \neq e(\gamma)$. Therefore $\overline{\gamma} \notin \text{soc}(P(o(\gamma)))$: indeed, if this is not the case, then Lemma 4 would imply that $o(\gamma) = e(\gamma)$, a contradiction. Then there exists an arrow β such that $\beta \gamma$ is non zero. So, multiplying γ by the necessary number of arrows β_1, \ldots, β_m, we may assume that the non zero path $\delta = \beta_m \beta_{m-1} \cdots \beta_1 \gamma$ is an oriented cycle or δ lies in the socle of $P(o(\delta))$. Hence the assertion is now a consequence of Lemma 2 and Lemma 4.

II) \Rightarrow I) Assume that Λ satisfies the Supplement Property. Let i be a vertex in Q_Λ and γ a non zero path in Λ such that $\overline{\gamma} \in \text{soc}(P(i))$. By the Supplement Property, there exists a non zero minimal oriented cycle C containing the path γ and such that $o(C) = i$. If $\gamma \neq C$, then there is an arrow β in C such that $\beta \overline{\gamma} \neq 0$. Hence $\overline{\gamma}$ does not lie in $\text{soc}(P(i))$, giving a contradiction. Thus, $\gamma = C$ and hence $\text{soc}(P(i)) = kC$. So, the socle of $P(i)$ is isomorphic to the simple $S(i)$.

II) \Leftrightarrow III) III) is just a restatement of II).

II) \Rightarrow IV)

a) Let $C = \alpha_n \alpha_{n-1} \cdots \alpha_2 \alpha_1$ be a non zero oriented cycle. Assume that $t = o(\alpha_i)$. Since $\overline{C} \neq \overline{0}$ we have that the path $\gamma = \alpha_i \cdots \alpha_{i+1} \alpha_i$ is non zero. Then by the supplement
property there is a path \(\delta \) such that \(\delta \gamma \) is a non zero minimal oriented cycle. Since the paths \(\delta \) and \(\alpha_{i-1} \cdots \alpha_1 \) have the same starting and ending vertices we obtain that \(\overline{\delta} = a\overline{\alpha_{i-1}} \cdots \overline{\alpha_1} \) where \(a \in k - \{0\} \). Then \(\overline{0} \neq \overline{\delta \gamma} = a\overline{C}(t) \) and hence \(\overline{0} \neq \overline{C}(t) \).

b) Each arrow of \(Q \Lambda \) is non zero in \(\Lambda \). Hence by the Supplement Property we get that \(Q \Lambda = \bigcup_{i=1}^{m} \overline{C}_i \).

IV) \(\Rightarrow \) II) Let \(\gamma \) be a non zero path. By b) and Lemma 2 we get that \(\gamma \) belongs to some non zero minimal oriented cycle \(C \). Thus the Supplement Property holds since by a) we have that \(\overline{C}(o(\gamma)) \neq 0 \).

Corollary 5 Let \(\Lambda = kQ \Lambda / I \) be a quasi-schurian weakly-symmetric algebra. Then the ordinary quiver \(Q \Lambda \) is the union of all non zero minimal oriented cycles.

The other main result in this section is the following theorem.

Theorem 6 Let \(\Lambda = kQ \Lambda / I \) be a quasi-schurian weakly-symmetric algebra. Let \(\{C_1, C_2, \ldots, C_m\} \) be the set of supports of the non zero minimal oriented cycles. The following statements are equivalent:

I) \(\Lambda \) is a symmetric algebra.

II) There are non zero elements \(a_1, \ldots, a_m \) in the field \(k \) such that, for each \(i \) and \(j \) with \((C_i)_0 \cap (C_j)_0 \neq \emptyset \) the following condition holds

\[
\overline{C}_i(t) = a_ia_j^{-1}\overline{C}_j(t) \quad \forall t \in (C_i)_0 \cap (C_j)_0.
\]

We will need the next lemma to give a proof of this theorem.

Lemma 7 Let \(\Lambda = kQ \Lambda / I \) be a symmetric k-algebra. Let \(\varphi : \Lambda \to D(\Lambda) \) be an isomorphism of \(\Lambda - \Lambda \) bimodules and \(f = \varphi(1) \). Then the following conditions hold for every non zero minimal oriented cycle \(C \).

a) If \(\dim_k End_{\Lambda}(P(i)) = 2 \) where \(o(C) = i \), then \(f(C) \neq 0 \).

b) \(f(\overline{C}(j)) = f(C) \) for every \(j \in (C)_0 \).

Proof:

b): Follows from \(\beta \) in Proposition 1 since \(\gamma_1 \gamma_2 - \gamma_2 \gamma_1 \in Ker f \) for every \(\gamma_1, \gamma_2 \in \Lambda \).

a): By b) above it is sufficient to prove that \(f(C) \neq 0 \). Since \(\dim_k End_{\Lambda}(P(i)) = 2 \) we get that \(\{\overline{e_i}C, \overline{C}C\} \) is a k-basis of \(End_{\Lambda}(P(i)) \) and \(\overline{C}^2 = 0 \).

We know that \(\overline{e_i}C \neq 0 \). Then by Proposition 1 it follows that there exists \(\lambda \in \Lambda \) such that \(f(\overline{C} \overline{e_i}) \neq 0 \). In particular \(0 \neq \lambda \overline{e_i} \in End_{\Lambda}(P_i) \), and we get that \(\lambda \overline{e_i} = r\overline{e_i} + s\overline{C} \) where \(r, s \in k \). Then \(\overline{C} \lambda \overline{e_i} = r\overline{C} \overline{e_i} + s\overline{C}^2 = r\overline{C} \) and this means that \(f(\overline{C}) \neq 0 \) since \(0 \neq f(\overline{C} \lambda \overline{e_i}) = f(r\overline{C}) \). \(\square \)
Remark: Let $f : \Lambda \to k$ be as in Lemma 7, and C be a non zero minimal oriented cycle. It is clear by Lemma 7 that $f(C(i)) = f(C(j))$ for all vertices i, j in C. Hence f can be defined on the support C as follows, fix a vertex j in C and let $f(C) = f(C(j))$. In this way, we say that f is constant and non zero on C.

Proof of Theorem 6:

$I) \Rightarrow II$: Assume that Λ is a symmetric algebra. Let $\varphi : \Lambda \to D(\Lambda)$ be an isomorphism of $\Lambda - \Lambda$ bimodules and $f = \varphi(1)$. To obtain the nonzero constants a_1, \cdots, a_m we can use the above remark and define $a_i = f(C_i)$.

$II) \Rightarrow I$: The idea of the proof is to construct a linear functional $f : \Lambda \to k$ such that the properties α', β in Proposition 1 hold. Let us start with the linear functional $F : kQ\Lambda \to k$ defined on the basis of the paths in $Q\Lambda$ as follows: $F(\gamma) = a_i$ if there are i and t such that $\gamma = C_i(t)$, and zero otherwise. Then II implies that $\overline{\gamma} = F(\gamma)(F(\gamma'))^{-1}\overline{\gamma'}$, for nonzero cycles γ and γ' with the same origin. The next step is to check that $F : kQ\Lambda \to k$ factors through the canonical epimorphism $\pi : kQ\Lambda \to \Lambda$, that is, that $I \subseteq KerF$. Let $\gamma = \sum_{i=1}^{n} c_{\gamma_i} \in I$ be a linear combination of paths γ_i starting at the vertex a and ending at the vertex b for $1 \leq i \leq n$. We may assume that $a = b$ and γ_i is a non zero oriented cycle for $i = 1, \cdots, n$. Since $\overline{\gamma} = (F(\gamma_i)/F(\gamma_1))\overline{\gamma_i}$ $i = 2, 3, \cdots, n$, we get that $0 = \overline{\gamma} = \sum_{i=1}^{n} c_{\gamma_i} \overline{\gamma_i} = (\sum_{i=1}^{n} c_i F(\gamma_i)/F(\gamma_1))\overline{\gamma_1}$. But $\overline{\gamma_1} \neq 0$. So $\sum_{i=1}^{n} c_i F(\gamma_i)/F(\gamma_1) = 0$ and then $\gamma = \sum_{i=1}^{n} c_i (\gamma_i - (F(\gamma_i)/F(\gamma_1)) \gamma_1)$, therefore $F(\gamma) = 0$. Hence there exists $f : \Lambda \to k$ such that $f = F_{\pi}$.

We will prove that α' holds, that is $\lambda_1 \lambda \subseteq Kerf$ implies $\lambda_1 = 0$. Assume that $\lambda_1 = \sum_{j=1}^{n} c_j \overline{\gamma_j}$ be such that $\lambda_1 \Lambda \subseteq Kerf$ where γ_j is a path in $Q\Lambda$ for $j = 1, 2, \cdots, n$. Observe that $\lambda_1 = \sum_{j=1}^{n} c_j \overline{\gamma_j}, \lambda_1 \overline{\gamma} \subseteq \lambda \Lambda \subseteq Kerf$. Hence it is enough to prove α' only for each $\lambda_i e_i$; that is, for all linear combination of paths starting at the vertex i. Then we may assume without loose of generality that $i = 1$ and $o(\gamma_j) = 1$ for $j = 1, 2, \cdots, n$.

Let $\{b_1, \cdots, b_r\}$ be the set of end points of the paths γ_j, for $j = 1, 2, \cdots, n$. Let $A_j = \{i \mid e(\gamma_i) = b_j\}$. Then we can write $\lambda_1 = \sum_{j=1}^{r} \sum_{i \in A_j} c_i \overline{\gamma_i}$. Let us prove that $\sum_{i \in A_j} c_i \overline{\gamma_i} = 0$. Assume that ν is a supplement to the paths $\{\gamma_i : i \in A_j\}$. This path exists since Λ is quasi-schurian and the Supplement Property holds. Fix an index i_1 in A_1, then $\overline{\gamma_j} = d_j \overline{\gamma_i}$ for some $d_j \in k$ and each $j \in A_1 - \{i_1\}$. Multiplying both sides of the above equality by $\overline{\nu}$ and applying f we get $d_j = f(\overline{\gamma_j})/f(\overline{\gamma_i})$. Now, by Lemma 2 and the fact that $f = F_{\pi}$ we obtain $f(\overline{\gamma_j}) = 0$ for all $i \in A_j$ with $j > 1$. Hence $0 = f(\lambda_1) = \sum_{i \in A_j} c_i f(\overline{\gamma_i})$, and this implies that $\sum_{i \in A_j} c_i \overline{\gamma_i} = (\sum_{i \in A_j} c_i d_i) \overline{\gamma_i} = (\sum_{i \in A_j} c_i f(\overline{\gamma_i}))\overline{\gamma_i}/f(\overline{\gamma_i}) = 0$. We point out that the equality $\sum_{i \in A_j} c_i \overline{\gamma_i} = 0$ for $j = 2, 3, \cdots, r$ can be obtained in an analogous way. Hence $\lambda_1 = 0$, as we wanted.

We will prove that β holds, that is $\lambda_1 \lambda_2 - \lambda_2 \lambda_1 \in Kerf$ for all $\lambda_1, \lambda_2 \in \Lambda$.

Let $\lambda_1 = \sum_{i} c_i \overline{\gamma_i}$ and $\lambda_2 = \sum_{j} d_j \overline{\gamma_j}$, where γ_i, γ_j are paths for each i and j. Assume that $\overline{\gamma_i \gamma_j} \neq 0$, hence $\overline{\gamma_i \gamma_j}$ lies in a non zero minimal oriented cycle C such that $o(\gamma_i \gamma_j) = o(C)$. If $\gamma_i \gamma_j = C$ we obtain that the supports of $\gamma_i \gamma_j$ and $\gamma_j \gamma_i$ coincide. Hence $F(\gamma_i \gamma_j) = F(\gamma_j \gamma_i)$ and this implies that $f(\overline{\gamma_i \gamma_j}) = f(\overline{\gamma_j \gamma_i})$. In case $\overline{\gamma_i \gamma_j} \neq e(C)$ we have $\overline{\gamma_j \gamma_i} = 0$ and also $F(\gamma_i \gamma_j) = 0$.

Therefore, $\overline{\gamma_i \gamma_j} \neq 0$ implies that $f(\overline{\gamma_i \gamma_j}) = f(\overline{\gamma_j \gamma_i})$.

8
In the same way it can be proved that $\gamma_i \gamma_j = 0$ implies that $f(\gamma_i \gamma_j) = f(\gamma_j \gamma_i)$. Hence the assertion follows.

4 A combinatorial approach to Theorem 6. Let $\Lambda = kQ_{\Lambda}/I$ be a weakly-symmetric and quasi-schurian k-algebra. We associate to Λ a graph $GS(\Lambda)$. The construction is as follows. Let $\{C_1, C_2, \ldots, C_m\}$ be the set of supports of the non-zero minimal oriented cycles. Then the set of vertices of $GS(\Lambda)$ is $\{1, 2, \ldots, m\}$ and the edges are determined as follows.

a) If $m = 1$, the set of edges is empty.

b) If $m > 1$, there is only one edge with vertices $\{i, j\}$ in case $(C_i)_0 \cap (C_j)_0 \neq \emptyset$ and $i \neq j$.

It is not difficult to see that $GS(\Lambda)$ is a connected graph without loops and non parallel edges.

Notation: a chain C in $GS(\Lambda)$ joining the vertices v_1 and v_k is a sequence of vertices and edges $v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k$ where for each i the edge A_i has vertices v_i, v_{i+1}. We say that the length of C is $k - 1$. Let $B = w_1 B_1 w_2 B_2 \cdots w_n B_{n-1} w_n$ be another chain in $GS(\Lambda)$. We will say that the composition $A \circ B$ is defined if $v_k = w_1$ and we let $A \circ B$ be the chain $v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k B_1 w_2 B_2 \cdots w_n B_{n-1} w_n$.

A chain $v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k$ is called reduced if $v_{i-1} \neq v_{i+1}$ for each $i = 2, 3, \ldots, k-1$. The set of all chains in $GS(\Lambda)$ is denoted by $Ch(GS(\Lambda))$. Usually we shall only be interested in reduced chains, and unless the contrary is explicitly stated, we shall assume that all chains under discussion are reduced.

A cycle C in $GS(\Lambda)$ is a chain of the form $v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_1$. If the vertices $v_1, v_2, \ldots, v_{k-1}$ are all different, then the chain C is called a minimal cycle. We observe that a minimal cycle has at least three vertices.

Let C be the chain $v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k$ in $GS(\Lambda)$. We denote by C the support of C which is defined as the subgraph of $GS(\Lambda)$ with vertices v_1, \ldots, v_k and edges A_1, \ldots, A_{k-1}. Given a minimal cycle $C = v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k$ in $GS(\Lambda)$, we denote by $C(v_i)$ the cycle $v_i A_i v_{i+1} \cdots v_{k-1} A_{k-1} v_1 v_2 A_2 \cdots v_{i-1} A_{i-1} v_i$, for $1 \leq i \leq k-1$.

The set $\{C_1, C_2, \ldots, C_m\}$ of supports of the non-zero minimal oriented cycles induces a family of nonzero constants $\lambda_{ij}(t) \in k$, such that $C_i(t) = \lambda_{ij}(t) C_j(t)$ for $t \in (C_i)_0 \cap (C_j)_0$. If the algebra Λ is symmetric we obtain by Theorem 6 that $\lambda_{ij} = \lambda_{ij}(t) \forall t \in (C_i)_0 \cap (C_j)_0$. Thus, the non-zero constants $\lambda_{ij}(t)$ do not depend on the common vertices $t \in (C_i)_0 \cap (C_j)_0$.

Having this property as a motivation we will assume that the family of constants $\lambda_{ij}(t) \in k$, satisfies the following condition

$$\lambda_{ij} = \lambda_{ij}(t) \forall t \in (C_i)_0 \cap (C_j)_0.$$

Now, we can define a map $\phi_{\Lambda} : Ch(GS(\Lambda)) \rightarrow k$ in the following way

$$\phi_{\Lambda}(v_1 A_1 v_2 A_2 \cdots v_{k-1} A_{k-1} v_k) = \lambda_{v_1 v_2} \lambda_{v_2 v_3} \cdots \lambda_{v_{k-1} v_k}.$$

We point out that, if C_1 and C_2 are chains such that their composition is defined, then we have that $\phi_{\Lambda}(C_1 \circ C_2) = \phi_{\Lambda}(C_1) \phi_{\Lambda}(C_2)$.
Let D be the chain $v_1A_1v_2A_2\cdots v_{k-1}A_{k-1}v_k$. We denote by D^{-1} the chain $v_kA_{k-1}v_{k-1}\cdots v_2A_1v_1$. In this way $\phi_\Lambda(D^{-1}) = \phi_\Lambda(D^{-1} \circ D) = 1$ and hence $\phi_\Lambda(D^{-1}) = \phi_\Lambda(D)^{-1}$.

Let C be a minimal cycle in $GS(\Lambda)$ with support C. It is clear that $\phi_\Lambda(C(v_i)) = \phi_\Lambda(C(v_j))$ for each v_i, v_j in C. Hence ϕ_Λ can be defined on C as follows, fix a vertex v in C and let $\phi_\Lambda(C) = \phi_\Lambda(C(v))$.

The existence of the non zero constants a_1, a_2, \cdots, a_m which are required in Theorem 6 for Λ to be symmetric is very closely related with the structure of the graph $GS(\Lambda)$ and with the function $\phi_\Lambda : Ch(GS(\Lambda)) \rightarrow k$ as can be seen in the next theorem.

Theorem 8 Let Λ be a quasi-schurian weakly-symmetric k-algebra, and $\{C_1, C_2, \cdots, C_m\}$ be the set of supports of the non zero minimal oriented cycles. Suppose that the non zero constants $\lambda_{ij}(t)$ above defined do not depend on the common vertices $t \in (C_0) \cap (C_j)_0$.

Then

a) If the graph $GS(\Lambda)$ is a tree, then Λ is symmetric.

b) Suppose that $GS(\Lambda)$ is not a tree. Then Λ is symmetric if and only if the function $\phi_\Lambda : Ch(GS(\Lambda)) \rightarrow k$ satisfies $\phi_\Lambda(C) = 1$ for each minimal cycle C in $GS(\Lambda)$.

Proof:

a): Assume that $GS(\Lambda)$ is a tree. Let us prove that in this case the required non zero constants always exist. Since $GS(\Lambda)$ is a tree we have that for each vertex $j \neq 1$ in the graph $GS(\Lambda)$ there exists only one nontrivial chain D_j in $GS(\Lambda)$ joining the vertex j with the vertex 1. Hence we can define a_1, a_2, \cdots, a_m in the following way, let $a_1 = 1$ and $a_j = \phi_\Lambda(D_j)$ if $j \neq 1$. The next step is to prove that $\lambda_{ij} = a_ia_j^{-1}$ in case $(C_0) \cap (C_j)_0 \neq \emptyset$ and $i \neq j$. Let A be the edge with vertices i and j. Since $GS(\Lambda)$ is a tree we have that $D_i = (iA_j) \circ D_j$ and hence $a_i = \phi_\Lambda(D_i) = \phi_\Lambda((iA_j) \circ D_j) = \phi_\Lambda(iA_j)\phi_\Lambda(D_j) = \lambda_{ij}a_j$. Thus, $\lambda_{ij} = a_ia_j^{-1}$ as we wanted.

b):,(\Rightarrow) assume that Λ is symmetric, that is the non zero constants a_1, a_2, \cdots, a_m of Theorem 6 exist.

Let $C = v_1A_1v_2A_2\cdots v_{k-1}A_{k-1}v_1$ be a minimal cycle in $GS(\Lambda)$. Then $\phi_\Lambda(C) = \lambda_{v_1v_2, \cdots, \lambda_{v_{k-1}v_1}} = a_{v_1}a_{v_2}^{-1}a_{v_3}^{-1}\cdots a_{v_{k-1}}^{-1}a_{v_1}^{-1} = 1$.

(\Leftarrow) Assume that $\phi_\Lambda(C) = 1$ for each minimal cycle C in $GS(\Lambda)$. We will need the next Lemma.

Lemma: if B_j and D_j are two chains in $GS(\Lambda)$ joining the vertex j with the vertex 1 where $j \neq 1$, then $\phi_\Lambda(B_j) = \phi_\Lambda(D_j)$.

Proof: If $B_j \circ D_j^{-1}$ is a minimal cycle, then by hypothesis we have $1 = \phi_\Lambda(B_j \circ D_j^{-1}) = \phi_\Lambda(D_j)\phi_\Lambda(B_j)^{-1}$. Hence $\phi_\Lambda(B_j) = \phi_\Lambda(D_j)$.

Assume that $B_j \circ D_j^{-1}$ is not a minimal cycle. Then it is not difficult to see that B_j and D_j have a decomposition $B_j = F_1 \circ F_2$, $D_j = G_1 \circ G_2$ in such way that $F_1 \circ G_1^{-1}$ is a minimal cycle in $GS(\Lambda)$. Hence $B_j \circ D_j^{-1} = F_1 \circ F_2 \circ G_2 \circ G_1^{-1}$ implies $\phi_\Lambda(B_j \circ D_j^{-1}) = \phi_\Lambda(F_1 \circ G_1^{-1})\phi_\Lambda(F_2 \circ G_2^{-1})$. But we know by construction that $\phi_\Lambda(F_1 \circ G_1^{-1}) = 1$. Then $\phi_\Lambda(B_j \circ D_j^{-1}) = \phi_\Lambda(F_2 \circ G_2^{-1})$ but now, the length of the chain
$F_2 \circ G_2^{-1}$ is smaller than the length of $B_j \circ D_j^{-1}$. Hence by induction we can obtain that

$$\phi_{\Lambda}(B_j \circ D_j^{-1}) = 1$$

and conclude that $\phi_{\Lambda}(B_j) = \phi_{\Lambda}(D_j)$. □

Now, using this lemma it is possible to define the required constants. Let D_j be a chain in $GS(\Lambda)$ joining the vertices j and 1 where $j \neq 1$. Then we define $a_1 = 1$ and $a_j = \phi_{\Lambda}(D_j)$ if $j \neq 1$. By the above lemma we have that the constant a_j is well defined. Now we will check that $\lambda_{ij} = a_ia_j^{-1}$ in case $(\mathcal{C}_i)_0 \cap (\mathcal{C}_j)_0 \neq \emptyset$ and $i \neq j$. Let A be the edge with vertices i and j, let D_j be a chain joining the vertex j with the vertex 1. Then the chain $B_i = (iAj) \circ D_j$ is a chain in $GS(\Lambda)$ joining the vertices i and 1. Hence $a_i = \phi_{\Lambda}(B_i) = \phi_{\Lambda}((iAj) \circ D_j) = \phi_{\Lambda}(iAj)\phi_{\Lambda}(D_j) = \lambda_{ij}a_j$. This implies that $\lambda_{ij} = a_i a_j^{-1}$. □

From the above theorem we obtain the following corollaries.

Let Λ be a quasi-schurian and weakly-symmetric k-algebra, $\{\mathcal{C}_1, \ldots, \mathcal{C}_n\}$ be the set of supports of the non zero minimal oriented cycles and $\lambda_{ij}(t) \in k$ be the family of non zero constants such that $\overrightarrow{\mathcal{C}_i(t)} = \lambda_{ij}(t)\overrightarrow{\mathcal{C}_j(t)}$ for $t \in (\mathcal{C}_i)_0 \cap (\mathcal{C}_j)_0$.

Corollary 9 If the graph $GS(\Lambda)$ associated to the quasi-schurian weakly-symmetric k-algebra Λ is a tree, then the following conditions are equivalent

I) Λ is a symmetric algebra.

II) $\lambda_{ij} = \lambda_{ij}(t) \forall t \in (\mathcal{C}_i)_0 \cap (\mathcal{C}_j)_0$, $i \neq j$.

Corollary 10 Suppose that the graph $GS(\Lambda)$ associated to the quasi-schurian and weakly-symmetric k-algebra Λ is not a tree. Then the following conditions are equivalent.

I) Λ is a symmetric algebra.

II) $\lambda_{ij} = \lambda_{ij}(t) \forall t \in (\mathcal{C}_i)_0 \cap (\mathcal{C}_j)_0$, $i \neq j$, and the function $\phi_{\Lambda}: Ch(GS(\Lambda)) \to k$ defined above satisfies $\phi_{\Lambda}(C) = 1$ for each minimal cycle C.

Example: Let Λ be the factor algebra of the path algebra kQ for Q the quiver

$$\begin{align*}
1 & \xrightarrow{\alpha_1} 0 \xrightarrow{\alpha_2} 2 \\
& \quad \alpha_3 \\
& \quad \alpha_4 \xrightarrow{\alpha_5} 3 \\
& \quad \alpha_6
\end{align*}$$

modulo the ideal $I = \langle \alpha_1 \alpha_0 - a\alpha_4 \alpha_3, \alpha_0 \alpha_2 \alpha_4, \alpha_3 \alpha_2 \alpha_1, \alpha_0 \alpha_0, \alpha_6 \alpha_5 \alpha_6, \alpha_5 \alpha_3, \alpha_1 \alpha_5, \alpha_4 \alpha_6, \alpha_5 \alpha_6 \alpha_5, b\alpha_0 \alpha_2 \alpha_1 - \alpha_5 \alpha_6, \alpha_2 \alpha_1 \alpha_0 \alpha_2, \alpha_3 \alpha_2 \alpha_4 - \alpha_0 \alpha_5 \rangle$ where $a, b, c \in k - \{0\}$.

Λ is quasi-schurian and moreover weakly-symmetric since this algebra satisfies the Supplement Property (see Theorem 3).

We will prove that Λ is symmetric if and only if $abc = 1$.

11
Let $$C_1 = \alpha_1\alpha_0\alpha_2$$, $$C_2 = \alpha_4\alpha_3\alpha_2$$ and $$C_3 = \alpha_6\alpha_5$$. Then $$\{C_1, C_2, C_3\}$$ is the set of supports of the non zero minimal oriented cycles. Hence the graph $$GS(\Lambda)$$ is

![Diagram](image)

Let us now compute the family of non zero constants $$\lambda_{ij}(t) \in k$$, such that $$\overline{C_i(t)} = \lambda_{ij}(t)\overline{C_j(t)}$$ for $$t \in (C_1)_0 \cap (C_2)_0$$. In this case $$C_1(0) = \alpha_1\alpha_0\alpha_2$$, $$C_2(0) = \alpha_4\alpha_3\alpha_2$$, $$C_1(2) = \alpha_2\alpha_0\alpha_0$$, and $$C_2(2) = \alpha_2\alpha_4\alpha_3$$. Using the relations given in the ideal $$I$$ we have $$\overline{C_1(0)} = a\overline{C_2(0)}$$, $$\overline{C_1(2)} = a\overline{C_2(2)}$$. Hence $$\lambda_{12} = \lambda_{12}(0) = \lambda_{12}(2) = a$$. In an analogous way we obtain that $$\lambda_{13} = \lambda_{13}(1) = b^{-1}$$, $$\lambda_{23} = \lambda_{23}(3) = c$$.

Consider the following minimal cycle $$C$$ in $$GS(\Lambda)$$, $$C = 1A_12A_23A_31$$. Then $$\phi(\Lambda)(C) = \lambda_{12}\lambda_{23}\lambda_{31} = abc$$, and $$\mathcal{C}_i$$ is the set of supports of the minimal cycles in $$GS(\Lambda)$$. So, by Corollary 10 we get $$\Lambda$$ is symmetric if and only if $$abc = 1$$.

5 A connexion with trivial extensions of algebras.

Let $$\Lambda$$ be a quasi-schurian weakly-symmetric algebra, $$\{\mathcal{C}_1, \cdots, \mathcal{C}_m\}$$ be the set of supports of the non zero minimal oriented cycles. In case it is possible to select exactly one arrow in each of the $$\mathcal{C}_i$$'s, we fix such a choice, and denote by $$\mathcal{C}(\Lambda)$$ the set consisting of the chosen arrows. Thus, $$\mathcal{C}(\Lambda)$$ is a set of arrows of $$Q_\Lambda$$ such that $$\mathcal{C}(\Lambda) \cap \mathcal{C}_i$$ has only one arrow for each $$i = 1, 2, \cdots, m$$. The ideal generated in $$\Lambda$$ by $$\mathcal{C}(\Lambda)$$ will be denoted by $$I_C$$. Moreover, $$\mathcal{C}(\Lambda)$$ induces a sub quiver $$Q_C$$ of $$Q_\Lambda$$ as follows $$(Q_C)_0 = (Q_\Lambda)_0$$ and $$(Q_C)_1 = (Q_\Lambda)_1 - \mathcal{C}(\Lambda)$$. Let $$\beta$$ be an arrow in $$Q_\Lambda$$. We will denote by $$Suppl(\beta)$$ the set of supplements of $$\beta$$. Thus, a path $$\delta$$ lies in $$Suppl(\beta)$$ if and only if $$\delta\beta$$ is a non zero minimal oriented cycle.

Our aim in this section is to give a proof and some consequences of the following result.

Theorem 11 Let $$\Lambda$$ be a quasi-schurian symmetric algebra. If there exists a choice of arrows $$\mathcal{C}(\Lambda)$$ as above then $$\Lambda/I_C$$ is a schurian algebra, and moreover $$\Lambda \simeq T(\Lambda/I_C)$$ where $$T(\Lambda/I_C)$$ is the trivial extension of $$\Lambda/I_C$$.

In the proof of this theorem we will need the following lemmas.

Lemma 12 Let $$\Lambda$$ be a quasi-schurian weakly-symmetric algebra. If there exists a choice of arrows $$\mathcal{C}(\Lambda)$$ as above, then $$\Lambda/I_C$$ is a schurian algebra and $$Q_C$$ is the ordinary quiver associated with $$\Lambda/I_C$$.

Proof: Assume that $$\Lambda = kQ_\Lambda I$$ where $$I$$ is an admissible ideal. Let $$\varphi : kQ_C \to \Lambda/I_C$$ be defined as follows $$\varphi(\delta) = \pi(\delta)$$ where $$\pi : \Lambda \to \Lambda/I_C$$ is the canonical epimorphism. We get that $$rad(\Lambda/I_C) = rad\Lambda/I_C$$ and $$\Lambda/rad\Lambda \simeq (\Lambda/I_C)/rad(\Lambda/I_C)$$ since $$I_C \subseteq rad\Lambda$$ and $$\pi$$ is an epimorphism. Hence $$\Lambda/I_C$$ is basic and $$\{\varphi(i) : i \in (Q_C)_0\}$$ is a complete family of
orthogonal primitive idempotents of Λ/I_C. So, to obtain that $Q_C = Q_{\Lambda/I_C}$ it is enough to prove that $\{\varphi(\alpha) : \alpha \in (Q_C)_1\}$ is a k-basis of $\text{rad}(\Lambda/I_C)/\text{rad}^2(\Lambda/I_C)$. First, observe that $\alpha \not\in C(\Lambda)$ implies that $\varphi(\alpha)$ is non zero and also does not lie in $\text{rad}^2(\Lambda/I_C)$. Therefore $\{\varphi(\alpha) : \alpha \in (Q_C)_1\}$ is a k-basis of $\text{rad}(\Lambda/I_C)/\text{rad}^2(\Lambda/I_C)$ since $\text{rad}(\Lambda/I_C) = \text{rad}A/I_C$. Finally let us prove that Λ/I_C is schurian. Using the k-module isomorphisms

$$\pi(e_i)(\Lambda/I_C)\pi(e_i) \simeq \overline{e_i}C_i\overline{e_i}/\overline{e_i}C_i\overline{e_i}$$

for all i, j. It is enough to prove that $\text{dim}_k\overline{e_i}C_i\overline{e_i} = 1$ for each i, since Λ is quasi-schurian. But this follows easily because each non zero oriented cycle contains an arrow from $C(\Lambda)$. □

Definition. Let Γ be a finite dimensional k-algebra. We say that $x \in \Gamma$ is maximal in case $x \neq 0$ and $wx = wx = 0$ for all $w \in \text{rad}\Gamma$.

Remark. Let $\Gamma = Q_\Gamma/I$ with I an admissible ideal. Let δ be a non zero path in Q_Γ. Then δ is maximal in Γ if an only if $\overline{\delta} = 0$ for all arrows $\alpha \in Q_\Gamma$.

Lemma 13 Let $\Lambda = Q_{\Lambda}/I$ be a quasi-schurian weakly-symmetric algebra with I an admissible ideal. If there exists a choice of arrows $C(\Lambda)$ as above and Q_{Λ} has no loops then the next statements hold, where $\pi : \Lambda \rightarrow \Lambda/I_C$ is the canonical epimorphism.

a) $\overline{e_\beta}C_\beta\overline{e_\beta} = 0$ for all $\beta \in C(\Lambda)$. Therefore $\pi(\overline{\gamma}) \neq 0$ for any supplement γ of an arrow β in $C(\Lambda)$.

b) Let γ be a path in Q_{Λ}. Then $\pi(\overline{\gamma})$ is maximal if and only if there exists β in $C(\Lambda)$ such that $\gamma \in \text{Suppl}(\beta)$.

c) Let $C(\Lambda) = \{\beta_1, \beta_2, \cdots, \beta_r\}$. Then the set $\{\pi(\overline{e_i}) : \delta_i \in \text{Suppl}(\beta_i), 1 \leq i \leq r\}$ is a k-basis of the vector space generated by all the maximal paths in Λ/I_C.

Proof:

a): Suppose that γ is a non zero path and $\overline{\gamma} \in \overline{e_\beta}C_\beta\overline{e_\beta}$ for some $\beta \in C(\Lambda)$. Let δ be a supplement of γ, which exists since Λ is weakly-symmetric (see Theorem 3). Now, we may assume that γ contains an arrow β' of $C(\Lambda)$ because $\overline{\gamma} \in I_C$ and Λ is quasi-schurian. But β and δ have the same starting and ending vertices. Hence $\delta = \beta$ and the non zero oriented cycle $\beta\gamma$ has two arrows in $C(\Lambda)$, a contradiction. So, $\overline{\gamma} = 0$ and therefore $\overline{e_\beta}C_\beta\overline{e_\beta} = 0$.

b): Let γ be a path in Q_{Λ}. Assume that $\pi(\overline{\gamma})$ is maximal. So, $\overline{\gamma} \neq 0$. Let δ be a supplement of γ. Then δ contains an arrow β in $C(\Lambda)$ since $\overline{\gamma} \not\in I_C$ and $\delta\gamma$ is a non zero minimal oriented cycle. Now we will prove that $\delta = \beta$ using the fact that $\pi(\overline{\gamma})$ is maximal. Considering a decomposition of δ as $\gamma_1\beta\gamma_2$ we obtain by a) that $0 \neq \pi(\overline{\gamma_2\gamma_1}) = \pi(\overline{\gamma_2})\pi(\overline{\gamma})\pi(\overline{\gamma_1})$ and therefore γ_1, γ_2 are trivial paths by the maximality of $\pi(\overline{\gamma})$. Hence $\delta = \beta$ and this means that $\gamma \in \text{Suppl}(\beta)$.

Assume now that $\gamma \in \text{Suppl}(\beta)$ with β in $C(\Lambda)$, and let us prove that $\pi(\overline{\gamma})$ is maximal. From a) we obtain that $\pi(\overline{\gamma}) \neq 0$. Let α be an arrow in Q_{Λ} such that $\pi(\overline{\alpha})\pi(\overline{\gamma}) \neq 0$. So $\overline{\alpha\gamma} \neq 0$ and therefore there exists a supplement μ of $\alpha\gamma$. But β and $\mu\gamma$ have the same starting an ending vertices. Then there is c in $k - \{0\}$ such that $\overline{\beta} = c\overline{\alpha\gamma}$ since Λ is quasi-schurian, a contradiction because I is an admissible ideal. Hence $\pi(\overline{\alpha})\pi(\overline{\gamma}) = 0$ for all arrow $\alpha \in Q_{\Lambda}$.

In an analogous way we obtain that $\pi(\overline{\alpha})\pi(\overline{\gamma}) = 0$ for all arrow $\alpha \in Q_{\Lambda}$.
c): The set \(\{ \pi(\delta_i) \mid 1 \leq i \leq r \} \) generates all the maximal paths since b) holds and \(\Lambda/I_C \) is schurian by Lemma 12. Let \(\sum_{i=1}^{r} a_i \pi(\delta_i) = 0 \) with \(a_i \in k \). Then \(\sum_{i=1}^{r} a_i \delta_i \in I_C \), and using a) we obtain \(a_j \delta_j = \frac{c_{\alpha(\beta_j)}}{c_{\delta(\beta_j)}}(\sum_{i=1}^{r} a_i \delta_i) = 0 \) since \(\Lambda \) is quasi-schurian and \(\beta_i, \beta_j \) do not have the same starting and ending vertices for \(i \neq j \). So, \(a_j = 0 \) for \(j = 1, 2, \ldots, r \). Therefore \(\{ \pi(\delta_i) \mid 1 \leq i \leq r \} \) is a linearly independent set and hence a \(k \)-basis since we knew that it generates all the maximal paths. \(\square \)

Lemma 14 Let \(\Lambda = kQ_\Lambda/I \) be a quasi-schurian weakly-symmetric algebra with \(I \) an admissible ideal. If \(Q_\Lambda \) has a loop then \(\Lambda \simeq k[x]/<x^2> \).

Proof: Let \(n \) be the number of vertices of \(Q_\Lambda \). If \(n = 1 \) then \(Q_\Lambda \) has only one loop since \(\Lambda \) is quasi-schurian and \(I \) is an admissible ideal. Therefore in this case \(\Lambda \simeq k[x]/<x^2> \) since \(\Lambda \) is quasi-schurian. Assume \(n > 1 \) and let \(\alpha \) be a loop. As before we have only one loop at the vertex \(o(\alpha) \). Let \(\beta \) be another arrow starting at \(o(\alpha) \) and let \(\delta \) be a supplement of \(\beta \) (see Theorem 3). Hence there exists \(c \in k - \{0\} \) such that \(\pi = c\delta\beta \) since \(\Lambda \) is quasi-schurian, a contradiction because \(I \) is admissible. So, \(n \) has to be 1 and in this case we have already proved the lemma. \(\square \)

Before giving a proof of Theorem 11, let us recall from [3] (see also in [7],[8]) the description of the ordinary quiver and relations of the trivial extension \(T(A) \) of a schurian algebra \(A \).

Let \(A = kQ_A/I \) be a schurian algebra with \(I \) an admissible ideal, and \(p_1, p_2, \ldots, p_t \) be paths in \(Q_A \) such that \(\{ \overline{p_1}, \overline{p_2}, \ldots, \overline{p_t} \} \) is a \(k \)-basis of the vector space generated by all the maximal paths in \(A \). Then the vertices of \(Q_{T(A)} \) are the vertices of \(Q_A \) and \((Q_{T(A)})_1 = (Q_A)_1 \cup \{ \beta_{p_1}, \beta_{p_2}, \ldots, \beta_{p_t} \} \), where \(\beta_{p_i} \) is an arrow starting at \(e(p_i) \), ending at \(o(p_i) \) and not belonging to \(Q_A \) for \(i = 1, 2, \ldots, t \). We observe that all arrows of \(Q_{T(A)} \) are in oriented cycles. An oriented cycle \(C \) in \(Q_{T(A)} \) is called elementary if there exists a vertex \(j \) in \(C \) with \(C(j) = q\beta_{p_i} \) for some \(i = 1, 2, \ldots, t \) and some path \(q \) maximal in \(A \) with the same starting and ending vertices as \(p_i \). We can describe now the relations of \(T(A) \) given in [3].

Theorem 15 ([3]) Let \(A = kQ_A/I \) be a schurian algebra with \(I \) an admissible ideal. Let \(I_{T(A)} \) be the ideal of \(kQ_{T(A)} \) generated by the following relations:

i) The composition of \(n + 1 \) arrows in an elementary oriented cycle of length \(n \).

ii) The composition of arrows not belonging to a same elementary oriented cycle.

iii) The elements \(q - bq' \) where \(q, q' \) are paths in \(Q_{T(A)} \) having the same ending and starting vertices, and such that one of the following conditions holds.

a) \(\overline{\pi} = b\overline{q'} \) with \(b \in k - \{0\} \) and \(q, q' \) paths in \(Q_A \).

b) There is a path \(\nu \) in \(Q_A \) such that \(\nu q = \alpha_{r-1} \cdots \alpha_2 \alpha_1 \beta_{p_1} \alpha_m \cdots \alpha_{r+1} \alpha_r \) and \(\nu q' = \alpha'_{s-1} \cdots \alpha'_2 \alpha'_1 \beta_{p'_1} \alpha'_m \cdots \alpha'_{s+1} \alpha'_s \) are elementary cycles. Then \(b \) is defined by \(b = a_1/a_2 \) for non zero \(a_1, a_2 \in k \) with \(\overline{\alpha_n} \cdots \overline{\alpha_1} = a_1 \overline{p_1} \) and \(\overline{\alpha'_m} \cdots \overline{\alpha'_1} = a_2 \overline{p'_1} \).

Then the ideal \(I_{T(A)} \) is admissible and \(T(A) \simeq kQ_{T(A)}/I_{T(A)} \).

\(\square \)
Now recall the well known isomorphism of $T(A) - T(A)$ bimodules $\psi : T(A) \to D(T(A))$ given by $\psi(x_1, f)(x_2, f_2) = f_1(x_2) + f_2(x_1)$, and consider the linear map $F = \psi(1,0) : T(A) \to k$. This functional is handy to describe the constants of ψ in the above theorem. We start by giving an explicit description of it. Let $\{\overline{p_1}, \overline{p_2}, \ldots, \overline{p_i}, \overline{p_{i+1}}, \overline{p_{i+2}}, \ldots, \overline{p_s}\}$ be a basis of A, extending the chosen basis $\{\overline{1}, \overline{p_2}, \ldots, \overline{p_i}\}$ of the vector space generating by all the maximal paths in A, we will denote by $\{\overline{p_1^*, \overline{p_2^*}, \ldots, \overline{p_s^*}}\}$ the basis of $D(A)$ dual to $\{\overline{p_1}, \overline{p_2}, \ldots, \overline{p_s}\}$. Let $\phi : kQ_T(A) \to T(A)$ be the map defined by $\phi(\alpha) = (\overline{\alpha}, 0)$ for $\alpha \in (Q_A)_1$ and $\phi(\beta_p) = (0, \overline{p^*})$. It is not difficult to see that the induced linear functional $f : kQ_T(A) \to k$ defined by the composition $F\phi$ satisfies the following condition: f is constant and non zero on the support C of each minimal oriented cycle C non zero in $T(A)$ (see Lemma 7 and its remark). Moreover, for the elementary oriented cycle $q\beta_p$, we have that $\overline{q} = f(q\beta_p)\overline{p_i}$. Therefore the condition $iii)$ in Theorem 15 can be changed by $iii)'$ The elements $\delta_1 - f(\delta_1\nu)/(f(\delta_2\nu))^{-1}\delta_2$, where δ_1, δ_2 are paths in $Q_T(A)$ having the same ending and starting vertices and such that there exists a path ν with $\delta_1\nu$ and $\delta_2\nu$ elementary oriented cycles.

This last condition will be used in the proof of Theorem 11.

Proof of Theorem 11: Let $\Lambda = Q_A/I$ where I is an admissible ideal and denote by $\overline{\gamma}$ the congruence class $\gamma + I$ in Λ. If Q_A has a loop we get by Lemma 14 that $\Lambda/I_c \simeq k$ and hence $\Lambda \simeq T(\Lambda/I_c)$.

Assume that Q_A has no loops and let $\mathcal{C}(\Lambda) = \{\beta_1, \beta_2, \ldots, \beta_t\}$. Let $A = \Lambda/I_c$, then by Lemma 12 we have that A is schurian and its ordinary quiver is Q_c. Now, for each $i = 1, 2, \ldots, t$ we choose a path p_i in $\text{Supp}(\beta_i)$. So, By Lemma 13 the set $\{\pi(\overline{p_i})\} 1 \leq i \leq t$ is a k-basis of the vector space generated by all the maximal paths in A where $\pi : \Lambda \to A = \Lambda/I_c$ is the canonical epimorphism. By Theorem 15 we have that $Q_T(A) = Q_A \cup \mathcal{C}(\Lambda) = Q_A$. Hence $\psi : kQ_T(A) \to A$ where $\psi(\gamma) = \overline{\gamma}$ is an epimorphism of k-algebras. So, we have to check that $\text{Ker} \psi = I_{T(A)}$ to obtain $T(A) \simeq \Lambda$. We will need the following Lemmas:

Lemma (A): Let C be an oriented minimal cycle in $Q_T(A)$. Then C is non zero in $T(A)$ if and only if it is non zero in Λ.

Proof:

(\Rightarrow) : Assume C is non zero in $T(A)$. Then by Theorem 15 there is an elementary oriented cycle $q\beta_i$ such that $C(j) = q\beta_i$ for some vertex j in C. Therefore $C(j)$ is non zero in Λ and by Lemma 7, C is non zero in Λ.

(\Leftarrow) : Suppose that C is non zero in Λ. Then by the definition of $\mathcal{C}(\Lambda)$ we get that C contains an arrow from $\mathcal{C}(\Lambda)$. So, C is an elementary oriented cycle and therefore it is non zero in $T(A)$.

Let $\{\overline{C}_1, \ldots, \overline{C}_n\}$ be the set of supports of the non zero minimal oriented cycles in Λ. Since Λ is symmetric we have by Lemma 7 (see also its remark) a linear functional $\varphi : \Lambda \to k$ non zero on the supports \overline{C}_i for all $i = 1, 2, \ldots, m$. Making a change of variables $\beta_i \mapsto a_i\beta_i$ with adequate $a_i \in k - \{0\}$ for all $i = 1, 2, \ldots, t$ we may assume that $\varphi(\overline{p_i}) = 1$ for all $i = 1, 2, \ldots, t$. Now, this functional satisfies the following property.

Lemma(B): Let q be a path in Q_A such that $\varphi(\overline{q}) = c_q\pi(\overline{p_i})$ with $c_q \in k - \{0\}$ and
some $i = 1, 2, \cdots, t$. Then $c_q = \varphi(q\beta_i)$.

Proof: Since $\overline{q} - c_q\overline{p} \in Ker\pi = I_C$ we get by Lemma 13 a) that $\overline{q} = c_q\overline{p}$. Therefore $c_q = \varphi(q\beta_i)$ since $\varphi(p_i\beta_i) = 1$. □

Remark: Let C be a minimal oriented cycle non zero in $T(A)$. Then this lemma give us that $\varphi(C) = f(C)$ where $f : kQ_{T(A)} \to k$ is the linear functional defined above. □

Let us prove that $Ker\psi \supseteq I_{T(A)}$: By Lemma(A) and Lemma 2 we obtain that the relations i) and ii) in Theorem 15 are zero in Λ. Using Lemma(B) and its remark we obtain that the above relations iii) are zero in Λ because it is quasi-schurian. So, $Ker\psi \supseteq I_{T(A)}$.

Finally, we will check that $Ker\psi \subseteq I_{T(A)}$: Let $\gamma \in Ker\psi$. Then γ is zero in A and therefore γ is zero in $T(A)$ since A is a sub algebra of $T(A)$. So, $\gamma \in I_{T(A)}$ because $kQ_{T(A)}/I_{T(A)} \simeq T(A)$. Hence $Ker\psi \subseteq I_{T(A)}$. □

Now it is easy to obtain the main result of this section.

Theorem 16 Let Λ be basic connected finite dimensional k-algebra. The following statements are equivalent

1) There exists a schurian basic triangular algebra Λ' such that $\Lambda \simeq T(\Lambda')$.

2) Λ is symmetric quasi-schurian, and we can choose a set $\mathcal{C}(\Lambda)$ such that the quiver Q_C has non oriented cycles.

If these conditions hold, then $\Lambda' \simeq \Lambda/I_C$ where I_C is the ideal generated by $\mathcal{C}(\Lambda)$ in Λ.

Proof: Follows from Theorems 11 and 15. □

Another application of Theorem 11 is the following result.

Theorem 17 Let Q be a quiver without oriented cycles, and Λ an iterated tilted algebra of type Q. If $\Gamma = T(\Lambda)$ is quasi-schurian then, for each choice $\mathcal{C}(\Gamma)$ as above and such that the quiver Q_C has non oriented cycles, Γ/I_C is an iterated tilted algebra of type Q.

Proof: It follows immediately from Theorem 11 and the next lemma. □

Lemma 18 Let Q be a quiver without oriented cycles, and Λ an iterated tilted algebra of type Q. Let Λ' be a basic finite dimensional k-algebra.

If $T(\Lambda) \simeq T(\Lambda')$ and Λ' has finite global dimension then Λ' is iterated tilted of type Q.

Proof: The proof is based on known results about derived categories and repetitive algebras (see [2],[5] and [6]). Since $T(\Lambda) \simeq T(\Lambda')$ we get that the repetitive algebra $\hat{\Lambda}$ of Λ is isomorphic to the repetitive algebra $\hat{\Lambda}'$ of Λ'. In particular, we obtain that the triangulated category $\text{mod}\hat{\Lambda}$ is triangle equivalent to $\text{mod}\hat{\Lambda}'$. Since Λ and Λ' have finite global dimension we have the diagram

$$D^b(\Lambda) \sim \text{mod}\hat{\Lambda} \sim \text{mod}\hat{\Lambda}' \sim D^b(\Lambda')$$

where \sim denotes a triangle equivalence. Thus $D^b(\Lambda)$ is triangle equivalent to $D^b(\Lambda')$, and therefore Λ' is an iterated tilted algebra of type Q (see [5] or [6]). □

We get now a useful approach to obtain iterated tilted algebras of a given tree class, generalizing an analogous result proven in [3] for Dynkin quivers.
Corollary 19 Let Q be an oriented tree and $\Gamma = T(kQ)$. For each choice $C(\Gamma)$ as above with Q_C without oriented cycles we have that Γ/I_C is an iterated tilted algebra of type Q.

Proof: It follows immediately from Theorem 17. \square

Example: Let Q be the following oriented tree

and $\Gamma = T(kQ)$ be the trivial extension of kQ. Considering the maximal paths $p_1 = \alpha_3\alpha_2\alpha_1$, $p_2 = \alpha_4\alpha_1$, and $p_3 = \alpha_5\alpha_1$ we obtain by Theorem 15 that Q_Γ is

Let $C(\Gamma) = \{\alpha_3, \alpha_4, \alpha_5\}$, and $\Lambda = \Gamma/I_C$. By Lemma 12 we get that Q_Λ is

So, by Corollary 19 we have that $\Lambda \simeq kQ_\Lambda/\langle \alpha_2\alpha_1\beta_{p_2}, \alpha_2\alpha_1\beta_{p_3} \rangle$ is an iterated tilted algebra of type Q.

ACKNOWLEDGMENTS
I would like to thank Prof. María Inés Platzeck for her many, very helpful comments and suggestions, and for a careful reading of this paper. Finally, I also thank the referee for the comments about the paper.

References

E-mail: omendoza@criba.edu.ar