20. Rectas y puntos notables

Lugares geométricos

En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad.

Ejemplo 1. El lugar geométrico de todos los puntos que están a distancia r de un punto M es la circunferencia con centro M y radio r.

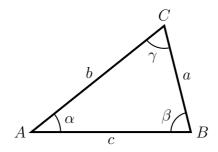
Ejemplo 2. El lugar geométrico de todos los puntos que están a distancia r de una recta g es un par de rectas paralelas a g.

Ejemplo 3. Si A y B son dos puntos dados, entonces el lugar geométrico de todos los puntos P tal que |PA| = |PB| es una recta que es perpendicular al segmento AB y pasa por el punto medio de AB. Esta recta se llama mediatriz de A y B.

Ejemplo 4. Si g y h son dos rectas que se intersectan en el punto A entonces el conjunto de todos los puntos P tal que la distancia de P a g es la misma que de P a h es un par de rectas, perpendiculares entre si, con punto de intersección A y tal que cortan dos de los 4 ángulos formados por g y h en P a la mitad. Estas rectas se llaman bisectrices.

Rectas notables

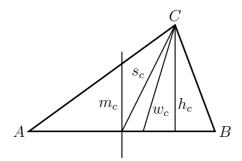
Fue Leonhard Euler (1707-1783) quien introdujo la siguiente convención para denotar las partes de un triángulo. En un triángulo ΔABC se denotan los lados opuestos a A, B y C con las mismas letras pero en minúscula: a, b y c, respectivmente. Los ángulos se denotan con la misma letra pero en griego: $\alpha, \beta y \gamma$ respectivamente.



En un triángulo hay cuatro triples de rectas notables:

- Las **mediatrices** m_a , m_b y m_c de los segmentos a = BC, b = CA y c = AB, respectivamente.
- Las **bisectrices** w_a , w_b y w_c de los ángulos α , β y γ , respectivamente.
- Las alturas h_a , h_b y h_c son las perpendiculares a los lados a, b y c y pasan por A, B y C, respectivamente.
- Las **medianas** s_a , s_b y s_c son las rectas que unen una esquina con el punto medio del lado opuesto. Por ejemplo s_a une A con el punto medio de a = BC.

La siguiente ilustración muestra m_c , w_c , h_c y s_c en un caso particular.



Puntos notables

Si damos tres rectas en el plano tal que no hay paralelas entre ellas, entonces se forma un triángulo o estas tres rectas *inciden* en un punto. Lo segundo sucede en el caso de las rectas notables. A cada uno de los cuatro triples de rectas notables le corresponde un *teorema*: las tres rectas del triple se intersectan en un punto.

- \blacksquare Las mediatrices se intersectan en el **circuncentro** M.
- \blacksquare Las bisectrices se intersectan en el **incentro** W.
- \blacksquare Las alturas se intersectan en el **ortocentro** H.
- Las medianas se intersectan en el **baricentro** S.

Veamos por qué esto es así. Es decir, vamos a dar un argumento, una demostración.

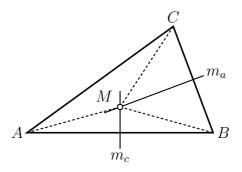
Intersección de mediatrices

Sea M el punto de intersección de m_a y m_c . Como M se encuentra en m_c está a la misma distancia de A que de B:

$$|MA| = |MB|. \tag{20.1}$$

Como M se encuentra en m_a está a la misma distancia de B que de C:

$$|MB| = |MC|. (20.2)$$



Si combinamos (20.1) con (20.2) obtenemos

$$|MA| = |MB| = |MC|,$$

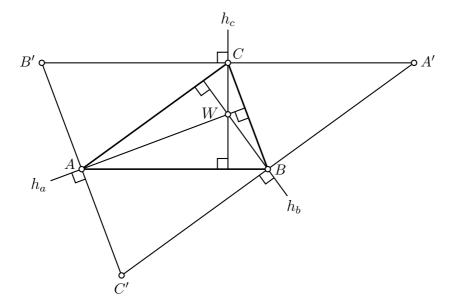
y esto significa que M se encuentra en la mediatriz de AC, es decir, en m_b . En otras palabras m_b pasa por M también.

Intersección de las bisectrices

Esto se hace muy similar a la demostración de que las mediatrices se intersectan y se deja como Ejercicio ②.

Intersección de las alturas

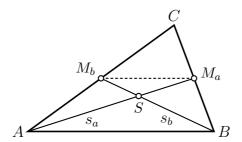
Para ver que las alturas se intersectan en un punto trazamos las paralelas a los lados por las esquinas opuestos. Así obtenemos un triángulo $\Delta A'$, B', C' con lados a', b' y c', ver la siguiente ilustración. Como h_a es perpendicular al lado a = BC también es perpendicular al lado a' = B'C'. Además, h_a pasa por el punto A que el punto medio del segmento B'C'. Por ello h_a es la mediatriz de B'C'. De igual manera se ve que h_b es la mediatriz de C'A' y h_c es la mediatriz de A'B'.



Ahora podemos concluir. Sabemos que las tres mediatrices de cualquier triángulo se intersectan en un punto. Como h_a , h_b y h_c son las mediatrices del triángulo $\Delta A'B'C'$ entonces h_a , h_b y h_c se intersectan.

Intersección de las medianas

Denotamos por M_a , M_b y M_c el punto medio del segmento a = BC, b = CA y c = AB, respectivamente.



Por semejanza tenemos

$$\frac{|M_a M_b|}{|CM_a|} = \frac{|BA|}{|CB|} = \frac{|BA|}{2|CM_a|}$$

Por ello tenemos

$$2|M_a M_b| = |BA|. (20.3)$$

Sea S el punto de intersección de las medianas s_a y s_b . Entonces $\not \subset M_a M_b B = \not \subset ABM_b$ por ser ángulos a paralelas y claramente $\not \subset M_b SM_a = \not \subset ASB$. Por ello los dos triángulos ΔASB y $\Delta M_b SM_a$ son semejantes. Entonces sigue que de (20.3) que

$$2|SM_a| = |SA|$$
 y $2|SM_b| = |SB|$. (20.4)

Eso quiere decir que la mediana s_b corta a s_a de tal manera que los dos segmentos en la proporción

$$|AS|: |SM_a| = 2:1.$$

Si repetimos el mismo argumento con s_a y s_c obtenemos que el punto de intersección S' (entre s_a y s_c) divide a s_a en dos segmentos en la misma proporción:

$$|AS'|: |S'M_a| = 2:1.$$

Esto implica que S = S', es decir s_c corta a s_a en el mismo punto que s_b . En otras palabras, las tres medianas se intersectan en S.

Ejercicios

- ① Dados dos puntos A y B determina el lugar geométrico de todos los puntos P tal que $\not \subset APB = 90^\circ$.
- 2 Demuestra que las tres bisectrices de un triángulo se intersectan en un punto.
- ③ Demuestra que existe una circunferencia con centro M (el circuncentro del triángulo $\triangle ABC$) que pasa por los tres esquinas A, B y C.
- 4 Demuestra: si en un triángulo la mediatriz m_a coincide con alguna de las otras tres rectas notables h_a , w_a o s_a entonces el triángulo es isócseles.