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Abstract. We develop the version of the J-invariant for hermitian forms over quadratic
extensions in a similar way Alexander Vishik did it for quadratic forms. This discrete in-
variant contains information about rationality of algebraic cycles on the maximal unitary
grassmannian associated with a hermitian form over a quadratic extension. The compu-
tation of the canonical 2-dimension of this grassmannian in terms of the J-invariant is
provided, as well as a complete motivic decomposition.
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1. Introduction

Let F be an arbitrary field and K/F a quadratic separable field extension. In this
article, we define a new discrete invariant J(h) for a non-degenerate K/F -hermitian form
h : V ×V → K. This invariant is developed on the model of the J-invariant for quadratic
forms, due to Alexander Vishik, see [13], and later generalized to an arbitrary semi-simple
algebraic group of inner type by V.Petrov, N. Semenov and K. Zainoulline in [8]. Let X
denote the F -variety of maximal totally h-isotropic subspaces of V . The invariant J(h)
contains information about rationality of algebraic cycles on X over a splitting field of
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h. The same way it was obtained by Nikita A.Karpenko and Alexander S.Merkurjev
for maximal orthogonal grassmannians in the case of quadratic forms (see [1, Theorem
90.3]), the invariant J(h) notably allows one to recover the canonical 2-dimension of the
maximal unitary grassmannian X (Theorem 8.6).

In general, the J-invariant has several important applications. For example, A.Vishik
used it in his refutation of Kaplansky’s conjecture on the u-invariant of a field (see [14]),
as did N. Semenov when he answered a question by J-P. Serre about groups of type E8

(see [12]).
In the case of quadratic forms, the Chow motive of the maximal orthogonal grassman-

nian associated with a quadratic form splits as a sum of Tate motives over a splitting
field of the quadratic form, the reason being that there is a nice filtration of the maxi-
mal orthogonal grassmannian by affine bundles. Because this does not stand in the case
of hermitian forms, we use the structure Theorem [4, Theorem 15.8] by N.A.Karpenko
and the modified Chow ring ChK(X) := Ch(X)/ Im (Ch(XK)→ Ch(X)), with Ch(X)
the integral Chow ring CH(X) modulo 2. These considerations allow one to follow the
method introduced by A. Vishik for quadratic forms to describe completely the ring
ChK(X) when h is split (equivalently, when X has a rational point) and the subring
Im
(
ChK(X)→ ChK(XF (X))

)
of rational elements for arbitrary h, where F (X) is the

function field of X. We also work with the category of ChK-motives, defined from ChK ,
and provide a complete motivic decomposition of the ChK-motive MK(X) of X in terms
of the J-invariant J(h) (Theorem 9.4). The ChK-motiveMK(X) is related to the essential
motive of X (see Remark 9.7).

By a theorem of Jacobson (see [6, Corollary 9.2]), the non-degenerate K/F -hermitian
form h is entirely determined by the associated F -quadratic form q : v 7→ h(v, v), with V
considered as an F -vector space. Moreover, the F -quadratic forms arising this way from
K/F -hermitian forms can be described as the tensor product of a non-degenerate bilinear
form by the norm form ofK/F , which is an anisotropic binary quadratic from. Conversely,
an F -quadratic form defined by such a tensor product is isomorphic to the quadratic form
arising from the hermitian form induced by the bilinear form and the quadratic separable
field extension K/F given by the discriminant of the binary quadratic form. As explained
by N.A.Karpenko in the introduction of [6], although these observations show that the
study of K/F -hermitian forms is equivalent to the study of binary divisible quadratic
forms over F , this does not show that the hermitian forms are not worthy of interest.
Indeed, on the one hand, it shows that the class of binary divisible quadratic forms is
quite important. On the other hand, it provides the opportunity to use the world of
hermitian forms to study such quadratic forms, which can be more appropriate than
staying exclusively at the level of quadratic forms, as illustrated by Proposition 10.1.

The paper is organized as follows. In section 3, we use the relative cellular space
structure on X given by [4, Theorem 15.8] to get the relation of Proposition 3.4 between
Chow rings ChK (defined in section 2) associated with the maximal unitary grassmannian
of a hermitian subform of an isotropic K/F -hermitian form h. From section 4 to section 8,
we literally follow the thread of [1, §86 to §90]. In this part of the article, we first use
the previously mentioned relation to get a complete description of ChK(X) in the split
case in terms of generators and relations (Theorem 4.9 and Proposition 4.15), from which
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we deduce a description of the subring of rational elements in the general case in terms
of those generators (Theorem 5.7). The J-invariant J(h) is then defined from the latter
description. We also compute some Steenrod operations of cohomological type on Ch(X)
in the split case (Theorem 7.2). In Theorem 8.6, we obtain the canonical 2-dimension
of X in terms of J(h), on the model of [1, Theorem 90.3]. In section 9, using Rost
Nilpotence, we provide the complete motivic decomposition of MK(X) in terms of J(h)
(Theorem 9.4), in the spirit of [8, Theorem 5.13]. In the final section 10, we compare the
J-invariant J(h) of a non-degenerate K/F -hermitian form h with the J-invariant J(q) of
the associated quadratic form q (Proposition 10.1).
Acknowledgements. I am grateful to Nikita A.Karpenko for initiating me to the
geometric theory of hermitian forms. I would like to thank the anonymous referees.

2. K-Chow rings

Let F be an arbitrary field, K/F a quadratic separable field extension and X an F -
variety (i.e., a separated F -scheme of finite type). We denote by Ch(X) the integral Chow
ring CH(X) modulo 2.

We set
ChK(X) := Ch(X)/ Im (Ch(XK)→ Ch(X)) ,

where the homomorphism Ch(XK)→ Ch(X) is the push-forward of the projection XK →
X.

Note that Im (Ch(XK)→ Ch(X)) is an ideal by the Projection Formula ([1, Proposition
56.9]), called the norm ideal, so that ChK(X) inherits the ring structure of the initial Chow
ring. For example, one has ChK(Spec(F )) = Z/2Z, and for any F -variety X, the ring
ChK(XK) is trivial. We write (ϕ)K for the K-Chow group homomorphism associated
with a Chow groups homomorphism ϕ which preserves norm ideals.

Since the norm ideal is preserved by pull-backs and push-forwards, one can define the
additive category of ChK-motives the same way as the category of Chow motives (see [1,
Chapter XII]) but using the Chow rings ChK instead of the usual Chow rings CH. For a
smooth proper F -variety X, we write MK(X) for the associated ChK-motive.

Remark 2.1. For a field extension E/F and j ≥ 0, let us denote by Nj(E) the subgroup
of the Milnor group KM

j (E) generated by the norms from finite field extensions of E that
split the extension K/F . Then the cycle module E 7→ KM

∗ (E) over F gives rise to an
assignment E 7→ KM

∗ (E)/N∗(E). One can check that the latter is also a cycle module
over F , in particular, the fact that residue maps are well-defined comes from the rule [9,
R3b]. Hence, one can consider the cohomology theory associated with this cycle module
(which contained the K-Chow groups) instead of the cohomology theory of the Milnor
cycle module and thus obtain some ChK-versions of results for classical Chow groups (see
Propositions 6.5, 8.1 and 9.2).

3. Isotropic hermitian forms

3.1. Relative cellular spaces. Let F be a field.
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Definition 3.1. Let X be a smooth proper F -variety supplied with a filtration F by
closed subvarieties

∅ = X(−1) ⊂ X(0) ⊂ · · ·X(n) = X.

The varietyX is a relative cellular space over a smooth proper F -variety Y if the associated
adjoint variety

GrFX =
n∐

k=0

X(k)\X(k−1)

is a vector bundle over Y . The variety Y is called the base of X.

For V a finite dimensional F -vector space, we denote by Γ(V ) the full grassmannian of
F -subspaces of V . To an epimorphism p : V → V ′ of F -vector spaces, one can associate
the filtration

∅ = Γ(V )(−1) ⊂ Γ(V )(0) ⊂ · · ·Γ(V )(dimV ′) = Γ(V )

on Γ(V ) defined as follows: for any local commutative F -algebra R and 0 ≤ k ≤ dimV ′,
one has

Γ(V )(k)(R) = {N ∈ Γ(V )(R)|Λk+1 (pR(N)) = 0},
where pR : VR → V ′R is induced by p and Λk+1 stands for the (k + 1)-th exterior power.

Let 0 → V ′′ → V → V ′ → 0 be an exact sequence of F -vector spaces. The result [4,
Corollary 9.11] by N.A.Karpenko asserts that Γ(V ) supplied with the filtration associated
with V → V ′ is a relative cellular space over Γ(V ′′)× Γ(V ′).

Moreover, let K/F be a quadratic separable field extension. Suppose that V , V ′ and
V ′′ are K-vector spaces and that the short sequence is an exact sequence of K-vector
spaces. Then the previous relative cellular structure on Γ(V ) induces a relative cellular
structure on the Weil restriction ΓK(V ) of the full grassmannian of K-subspaces with
respect to the extension K/F : ΓK(V ) is a relative cellular space over ΓK(V ′′)× ΓK(V ′),
see [4, Theorem 10.9]. The associated filtration is the restriction of the previous one by
K-subspaces.

Suppose that the K-vector space V is isomorphic to a sum of K-subspaces V ′⊕V ′′⊕ Ṽ .
Using the exact sequences

0→ V ′′ ⊕ Ṽ → V → V ′ → 0 and 0→ V ′′ → V ′′ ⊕ Ṽ → Ṽ → 0,

and composing the relative structures, the variety ΓK(V ) is turned into a relative cellular
space over ΓK(V ′)× ΓK(V ′′)× ΓK(Ṽ ), as described in [4, Example 10.14].

Let h : V ×V → K be a non-degenerate isotropicK/F -hermitian form on V . Denote by
L ⊂ V an isotropic line and set Ṽ = L⊥/L. Let L∗ be an arbitrary splitting of V → V/L⊥.
Applying the observation of the previous paragraph to the decomposition V ' L⊕L∗⊕Ṽ ,
one obtains that ΓK(V ) is a relative cellular space over ΓK(L)× ΓK(L∗)× ΓK(Ṽ ).

Furthermore, by [4, Theorem 15.8], the latter relative cellular structure restricts to the
h-isotropic subspaces in the following way. Let h̃ be theK/F -hermitian form on Ṽ induced
by h. Let Y and Ỹ be the F -varieties of totally isotropic subspaces of h and h̃ respectively.
Let Z be the Weil transfer of the K-variety of 2-flags of K-vector subspaces of L with
respect to the extension K/F (note that the 0-dimensional F -variety Z is the disjoint
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union of three copies of Spec(F ) and three copies of Spec(K)). Then Y is a relative cellular
space over Z × Ỹ . The associated filtration is the restriction of the filtration associated
with the relative cellular space structure of ΓK(V ) over ΓK(L) × ΓK(L∗) × ΓK(Ṽ ) by
h-isotropic subspaces.

In the same article [4], the author proves that, in general, the Chow motive of a relative
cellular space is isomorphic to the Chow motive of its base ([4, Theorem 6.5]) and he de-
scribes in [4, Corollary 6.11] how this isomorphism restricts to the irreducible components
of the relative cellular space.

Applied to the previous situation, this gives the following. Let X be the F -variety
of maximal totally isotropic subspaces in h. The dimension of such a subspace is r :=
bdim(h)/2c. Note that X is an irreducible component of Y . Besides, the unitary grass-
mannian X is a projective homogeneous variety under a projective unitary group of outer
type (see the introduction of [6]). We write X̃ for the maximal unitary grassmannian
associated with h̃. Since maximal totally isotropic subspaces of Ṽ are in one-to-one cor-
respondence with those of V containing L, one can view X̃ as a closed subvariety of X.
Let i : X̃ ↪→ X denote the closed embedding. Let β : X̃ ; X be the correspondence
given by the scheme of pairs (W/L,U), where U is a totally isotropic r-dimensional K-
subspace of V , W is a totally isotropic r-dimensional subspace of L⊥ containing L, and
dimK(U+W ) ≤ r+1 (correspondences are defined in [1, §62]). Then one has the following
Chow motivic decomposition with Z/2Z-coefficients

(3.2) M(X) 'M(X̃){d} ⊕M(X̃)⊕M,

where d = dim(X) − dim(X̃), the morphism M(X̃){d} → M(X) is given by β, the
morphism M(X̃) → M(X) is given by the class in Ch(X̃ ×X) of the graph of i and M
is a sum of shifts of M (Spec(K)).

At the level of K-Chow groups (introduced in the previous section), decomposition
(3.2) implies that

(3.3) Ch∗K(X) ' Ch∗K(X̃)⊕ Ch∗−dK (X̃),

where the injection Ch∗(X̃) ↪→ Ch∗(X) coincides with β∗ and the injection Ch∗−d(X̃) ↪→
Ch∗(X) coincides with i∗. In particular, if h is split (i.e., if the Witt index i0(h) of h is
equal to r), one deduces by induction that ChK(X) is a free Z/2Z-module of rank 2r.

We write j for the open embedding X\X̃ ↪→ X and we set

f := βt ◦ j : X\X̃ ; X̃,

with βt the transpose of β.
Since Im(i∗) = Ker(j∗) by the localization exact sequence (see [1, §52.D]), it follows

from (3.3) that
Ch∗K(X) = Im((β∗)K)⊕Ker ((j∗)K) .

Hence, since j∗ is surjective (see loc. cit.), we have obtained the following statement.

Proposition 3.4. The homomorphism

(f ∗)K : Ch∗K(X̃)→ Ch∗K(X\X̃),
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is an isomorphism.

The above proposition is crucial for the induction in the proof of Theorem 4.9 in the
next section.

3.2. Associated quadrics. We use notation introduced in Subsection 3.1. Let q : V →
F , v 7→ h(v, v) be the non-degenerate F -quadratic form associated with h, where V is
considered as an F -vector space. Note that dim(q) = 2dim(h). We denote by Q the
smooth projective quadric of q. Similarly, let q̃ : Ṽ → F be the non-degenerate F -
quadratic form associated with the hermitian form h̃ and let us denote by Q̃ the smooth
projective quadric of q̃. Note that since q̃ is also the form induced by q on P⊥/P , with P
the q-isotropic F -plane corresponding to L, it is Witt-equivalent to q.

The incidence correspondence α : Q̃ ; Q is given by the scheme of pairs (B/P,A)
of isotropic F -lines in P⊥/P and V respectively with A ⊂ B. By [1, Lemma 72.3],
for k < i0(q), one has α∗(l̃k−2) = lk and α∗(lk) = l̃k−2, where lk (resp. l̃k) is the class in
CHk(Q) (resp. CHk(Q̃)) of a k-dimensional totally q-isotropic (resp. q̃-isotropic) subspace
of PF (V ) (resp. PF (Ṽ )). If q is split, given an orientation of Q (i.e., the choice of one
of the two classes in CH(Q) of maximal isotropic subspaces), we choose an orientation of
Q̃ so that the previous formulas hold for the classes of the respective maximal isotropic
subspaces.

We write E for the vector bundle of rank 2r over X given by the closed subvariety of
the trivial bundle V 1 = V ×X consisting of pairs (u, U) such that u ∈ U (with V viewed
as an F -vector space). Let us denote as E⊥ the kernel of the natural morphism V 1→ E∨

given by the polar bilinear form associated with the quadratic form q, where E∨ is the
dual bundle of E. If the dimension of h is even, one has E⊥ = E. Otherwise, E is a
subbundle of E⊥ of corank 2. For our purpose, the vector bundle E is the appropriate
hermitian version of the vector bundle used in [1, §86] for the case of quadratic forms.

The associated projective bundle P(E) is a closed subvariety of codimension 2b(dim(h)+
1)/2c− 1 of Q×X and we denote by in the associated closed embedding. We write γ for
the class of P(E) in CH(Q×X) and view it as a correspondence Q; X. Similarly, one
can consider the analogous correspondence γ̃ : Q̃; X̃.

Lemma 3.5. One has γ ◦ α = β ◦ γ̃ and γ̃ ◦ αt = it ◦ γ.

Proof. The proof is almost the same as in the case of quadratic forms, see [1, Lemma 86.7].
By [1, Corollary 57.22], it suffices to check the required identities at the level of cycles
representing the correspondences. By definition of the composition of correspondences,
the composition γ◦α and β◦γ̃ coincide with the cycle of the subscheme of Q̃×X consisting
of all pairs (B/P,U) with dimF (B + U) ≤ 2r + 2 and the compositions γ̃ ◦ αt and it ◦ γ
coincide with the cycle of the subscheme of Q× X̃ consisting of all pairs (A,W/L) with
A ⊂ W . �

4. Split maximal unitary grassmannian

We use notation introduced in Section 3.
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In this section, we make the assumption that the non-degenerate K/F -hermitian form
h is split and we provide a description of the Chow ring ChK(X) of the maximal unitary
grassmannian in terms of generators and relations (Theorem 4.9 and Proposition 4.15).

The method is the one introduced by A.Vishik in [13] to get the description of the
Chow ring modulo 2 of the maximal orthogonal grassmannian in the split case, except
that we work with the Chow rings ChK and use Proposition 3.4 in place of the filtration
by affine bundles on the maximal orthogonal grassmannian.

The exposition below closely follows the one given in the corresponding part of [1, §86]
in the case of quadratic forms. The proofs are very akin to the original ones in [1, §86].

Let us write dim(h) = 2n + 2 or 2n + 1, with n ≥ 0. Note that since i0(q) = 2i0(h)
(see [6, Lemma 9.1]), the quadratic form q is split if and only if h is of even dimension.
In both cases, P(E) has codimension 2n+ 1 in Q×X.

If dim(h) = 2n+ 2, the cycle γ decomposes as

(4.1) γ = l2n+1 × e0 + l′2n+1 × e′0 +
2n+1∑
k=1

h2n+1−k × ek in CH2n+1(Q×X)

for some unique elements ek ∈ CHk(X), k ∈ [0, 2n + 1] and e′0 ∈ CH0(X), with l2n+1

and l′2n+1 the two different classes of (2n + 1)-dimensional totally q-isotropic subspaces
of PF (V ) and hi the i-th power of the pull-back h1 ∈ CH1(Q) of the hyperplane class
H ∈ CH1(PF (V )) under the closed embedding em : Q ↪→ PF (V ) (see [1, Propositions
64.3, 68.1 and 68.2]). The variety X is connected because the algebraic unitary group
U(h) is connected and acts transitively on it. Hence, pulling (4.1) back with respect to
the canonical morphism QF (X) → Q×X, we see that one can choose an orientation of Q
such that e0 = 1 and e′0 = 0.

Otherwise – if dim(h) = 2n+ 1 – the cycle γ decomposes as

(4.2) γ = γ′ + l2n−1 × e0 +
2n+1∑
k=2

h2n+1−k × ek in CH2n+1(Q×X)

for some unique elements ek ∈ CHk(X), k ∈ [2, 2n+ 1] and e0 ∈ CH0(X), with γ′ a cycle
such that, by denoting by pX the projection Q×X → X, one has pX∗ ((l2n+1−k × 1) · γ′) =
0 for any k ∈ [2, 2n + 1] and pX∗ ((h2n−1 × 1) · γ′) = 0. Pulling (4.2) back with respect
to QF (X) → Q×X, one gets that e0 = 1.

The multiplication rules in the ring CH(Q) (see [1, Proposition 68.1]) gives that ek =
pX∗ ((l2n+1−k × 1) · γ), for k ∈ [2, 2n + 1] and also for k = 1 if dim(h) is even. In other
words, the correspondence γ satisfies γ∗(l2n+1−k) = ek for k ∈ [2, 2n + 1] and also for
k = 1 for h of even dimension. Note also that, in the even-dimensional case, one has
γ∗(h

2n+1) = 1 and that, in the odd-dimensional case, one has γ∗(h2n−1) = 1.

The relations of the previous paragraph between the correspondence γ and the elements
ek can be rewritten as

(4.3) ek = (pX ◦ in)∗ ◦ (pQ ◦ in)∗(l2n+1−k),
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for k ∈ [2, 2n + 1] and also for k = 1 for h of even dimension, with pQ the projection
Q×X → Q (see [1, Proposition 62.7]).

Lemma 4.4. One has e2n+1 = [X̃] in CH2n+1(X).

Proof. On the one hand, by (4.3) one has (pX ◦ in)∗ ◦ (pQ ◦ in)∗(l0) = e2n+1. On the other
hand, by denoting by A a closed point of Q of degree 1, the cycle (pX ◦in)∗◦(pQ◦in)∗(l0) is
identified with [{U | A ⊂ U}] = [{U | A⊗F K ⊂ U}] in CH2n+1(X). The latter algebraic
cycle is equal to [{U | L ⊂ U}] = [X̃]. �

Let us denote by ẽk ∈ CHk(X̃) the elements given by (4.1) or (4.2) for X̃. Similarly,
the correspondence γ̃ satisfies γ̃∗(l̃2n−1−k) = ẽk for the appropriate integers k with respect
to the parity of dim(h).

The following statement is a direct consequence of Lemma 3.5.

Lemma 4.5. For all k ∈ [0, 2n− 1]\{1} and also for k = 1 for h of even dimension, one
has
(i) β∗(ẽk) = ek in CH(X) ;
(ii) i∗(ek) = ẽk in CH(X̃) .

Proof. (i) For k ∈ [2, 2n− 1] and also for k = 1 for h of even dimension, one has

β∗(ẽk) = β∗ ◦ γ̃∗(l̃2n−1−k) = γ∗ ◦ α∗(l̃2n−1−k) = γ∗(l2n+1−k) = ek.

For k = 0, one can make the same computation with h̃2n−1 and h2n+1 if h is even-
dimensional and with h̃2n−3 and h2n−1 if h is odd-dimensional (the incidence correspon-
dence α also satisfies α∗(h̃i) = hi+2 for 0 ≤ i ≤ bdim(Q)/2c−2, where h̃i is the i-th power
of the hyperplane class h̃1 ∈ CH1(Q̃)).

(ii) For k ∈ [2, 2n− 1] and also for k = 1 for h of even dimension, one has

i∗(ek) = it∗(ek) = it∗ ◦ γ∗(l2n+1−k) = γ̃∗ ◦ αt
∗(l2n+1−k) = γ̃∗ ◦ α∗(l2n+1−k)

= γ̃∗(l̃2n−1−k) = ẽk.

�

For I ⊂ [0, 2n + 1] or I ⊂ [0, 2n + 1]\{1}, depending on whether the dimension of h
is respectively even or odd, we write eI for the product of ek for all k ∈ I. Similarly, one
defines the elements ẽJ for J ⊂ [0, 2n−1] or J ⊂ [0, 2n−1]\{1}. The following statement
is obtained by combining Lemma 4.5(ii) with the Projection Formula and Lemma 4.4.

Corollary 4.6. One has i∗(ẽJ) = eJ · e2n+1 = eJ∪{2n+1} for every J ⊂ [0, 2n− 1] or for
every J ⊂ [0, 2n− 1]\{1}, depending on whether the dimension of h is respectively even
or odd.

Let us denote by Iod the odd part of a set of integers I.

Corollary 4.7. For h of even dimension, the monomial e[1, 2n+1]od = e1e3 · · · e2n+1 is the
class of a rational point in CH0(X). For h of odd dimension, the monomial e[3, 2n+1]od

=
e3e5 · · · e2n+1 is the class of a rational point in CH0(X).
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Proof. We induct on n. If dim(h) = 1, one has X = Spec(F ). If dim(h) = 2, the cycle
e1 is the class of a rational point on the curve X, see Lemma 4.4. The conclusion follows
from the formulas e[1, 2n+1]od = i∗(ẽ[1, 2n−1]od) for h of even dimension and e[3, 2n+1]od

=
i∗(ẽ[3, 2n−1]od

) for h of odd dimension, see Corollary 4.6. �

Lemma 4.8. One has (f ∗)K(ẽJ) = (j∗)K(eJ) for any J ⊂ [0, 2n − 1] or for any J ⊂
[0, 2n− 1]\{1}, depending on whether the dimension of h is respectively even or odd.

Proof. By Lemma 4.5(i), it suffices to prove that (f ∗)K preserves products to get the
conclusion. Since the composition of correspondences it ◦ β coincides with the class of
the diagonal in CH(X̃2), one has i∗ ◦ β∗ = IdCH(X̃). Let π denote the quotient map
ChK(X) → ChK(X)/Im ((i∗)K) and let (i∗)K and (j∗)K be the homomorphisms such
that (i∗)K ◦ π = (i∗)K and (j∗)K ◦ π = (j∗)K (note that (i∗)K ◦ (i∗)K = 0 so (i∗)K is well
defined). One has

(i∗)K ◦
(

(j∗)K

)−1

◦ (j∗)K ◦ (β∗)K = (i∗)K ◦ π ◦ (β∗)K = IdChK(X̃),

that is, the morphism (i∗)K ◦
(

(j∗)K

)−1

is the left inverse of (f ∗)K . Let x, y ∈ ChK(X̃)

and let z be the element of ChK(X̃) such that
(f ∗)K(z) = (f ∗)K(x) · (f ∗)K(y).

Then, composing the previous identity by (i∗)K ◦
(

(j∗)K

)−1

, one gets

z = (i∗)K ◦
(

(j∗)K

)−1

◦ (j∗)K ((β∗)K(x) · (β∗)K(y)) ,

that is
z = (i∗)K ◦ (β∗)K(x) · (i∗)K ◦ (β∗)K(y),

i.e., z = x · y. Therefore, the morphism (f ∗)K preserves products. The lemma is proven.
�

Now, one can prove the K/F -hermitian analogue of [13, Proposition 2.4(1)] the same
way [1, Theorem 86.12] has been proven for the case of quadratic forms. We still write eI
for the class of eI in ChK(X).

Theorem 4.9. Let K/F be a quadratic separable field extension and h a split non-
degenerate K/F -hermitian form. Let X be the variety of maximal totally isotropic sub-
spaces in h. If h is of even dimension 2n+ 2 then the set of all 2n+1 monomials eI for all
subsets I ⊂ [0, 2n + 1]od is a basis of the Z/2Z-module ChK(X). Otherwise – if h is of
odd dimension 2n+1 – the set of all 2n monomials eI for all subsets I ⊂ [0, 2n+1]od\{1}
is a basis of the Z/2Z-module ChK(X).

Proof. We use an induction on n. If dim(h) = 2, the Z/2Z-module Ch1
K(X) is generated

by the class e1 of a rational point (see decomposition (3.3) and Lemma 4.4). If dim(h) = 1,
the statement is obviously true since X = Spec(F ).

Consider the following exact sequence

0 // ChK(X̃)
(i∗)K // ChK(X)

(j∗)K// ChK(X\X̃) // 0 ,
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associated with the localization exact sequence for classical Chow groups. In both cases,
the induction hypothesis and Corollary 4.6 imply that the set of monomials eI for all
I containing 2n + 1 is a basis of the image of (i∗)K . On the other hand, Lemma 4.8,
Proposition 3.4 and the induction hypothesis imply that, in both cases, the set of all the
elements (j∗)K(eI) with 2n+ 1 /∈ I is a basis of ChK(X\X̃). The conclusion follows. �

Also, one has e2k = 0 in ChK(X) for all k ≥ 2 and also for k = 1 if dim(h) is even, see
(4.13) and Corollary 4.14.

Proposition 4.10. In CH(X), one has ck(V 1/E) = 2ek for all k ∈ [2, 2n + 1],
c2n+2(V 1/E) = 0 and c1(V 1/E) = 2e1 if the dimension of h is even.

Proof. We apply (em × IdX)∗ to the cycle γ. Assume first that dim(h) = 2n + 2. Since
em∗(h

k) = 2Hk+1 for all k ≥ 0, decomposition (4.1) gives that

[P(E)] = em∗(l2n+1)× 1 +
2n+1∑
k=1

2H2n+2−k × ek in CH2n+2(PF (V )×X).

On the other hand, by [1, Proposition 58.10], one has

[P(E)] =
2n+2∑
k=0

H2n+2−k × ck(V 1/E).

Hence, it follows from the Projective Bundle Theorem (see [1, Theorem 53.10]) that
ck(V 1/E) = 2ek for all k ∈ [1, 2n+ 1] and c2n+2(V 1/E) = 0 in CH(X).

Assume that dim(h) = 2n+ 1. Decomposition (4.2) gives the identity

[P(E)] = (em× IdX)∗(γ
′) + em∗(l2n−1)× 1 +

2n+1∑
k=1

2H2n+2−k × ek

in CH2n+2(PF (V )×X). Moreover, it follows from the conditions defining the cycle γ′ in
(4.2) that (em× IdX)∗(γ

′) has the form H2n+1 × a for some a ∈ CH1(X). Consequently,
by using [1, Proposition 58.10] and the Projective Bundle Theorem as has been done in
the even case, one gets that ck(V 1/E) = 2ek for all k ∈ [2, 2n+ 1] and c2n+2(V 1/E) = 0
in CH(X). �

Remark 4.11. The above proposition shows in particular that for any non-degenerate
K/F - hermitian form h, the algebraic cycles 2ek, for k ∈ [2, 2n+ 1] and also for k = 1 if
dim(h) is even, are defined over F , i.e., these are always rational cycles (the cycles ek are
defined over any splitting field of h).

Remark 4.12. Suppose dim(h) = 2n+2. Let Y be the maximal orthogonal grassmannian
of q. Since a totally h-isotropic K-subspace is also a totally q-isotropic F -subspace,
we have a natural closed embedding im : X ↪→ Y . Let us denote by zk ∈ CHk(Y ),
1 ≤ k ≤ 2n + 1, the generators of CH(Y ) introduced by A.Vishik in [13], quadratic
analogues of the elements ek (recall that q is split). We write E for the subbundle of the
trivial bundle V × Y over Y given by pairs (u, U) such that u ∈ U . Note that one has
E = im∗(E). Hence, since zk is half the k-th Chern class of the vector bundle (V × Y )/E
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(see [1, Proposition 86.13] or [14, Proposition 2.1]) and CH(X) is torsion-free (since the
K/F - hermitian form h is split, see [7] for example), it follows from Proposition 4.10 that

ek = im∗(zk)

in CH(X) for all 1 ≤ k ≤ 2n + 1 (this can also be obtained by comparing the decompo-
sitions (4.1) and [1, (86.4)]). In the odd-dimensional case, the variety X is naturally a
closed subvariety of the second to last grassmannian of q.

We set ek = 0 for k > 2n + 1 (which makes sense since by Proposition 4.10 the vector
bundle V 1/E is in both cases of rank 2n + 2 with trivial top Chern class). By duality,
one has V 1/E⊥ ' E∨. Hence, in the Grothendieck ring K(X), one has

[E⊥/E] = [E⊥]− [E] = −[E∨]− [E] = [(V 1/E)∨] + [V 1/E]

modulo the trivial bundles. Therefore, by the Whitney Sum Formula ([1, Proposition
54.7]), one has c(E⊥/E) = c

(
(V 1/E)∨

)
◦ c(V 1/E). Thus, since CH(X) is torsion-free, it

follows from Proposition 4.10 that, for even-dimensional h, one has
e2
k − 2ek−1ek+1 + 2ek−2ek+2 − · · ·+ (−1)k−12e1e2k−1 + (−1)ke2k = 0

in CH(X), for all k ≥ 1, and for odd-dimensional h, one has

e2
k − 2ek−1ek+1 + 2ek−2ek+2 − · · ·+ (−1)k−1c1(V 1/E) · e2k−1 + (−1)ke2k = 0

in CH(X), for all k ≥ 2 (recall that E⊥ = E if dim(h) is even and E⊥/E has rank 2
otherwise). Moreover, by using decomposition (3.3) and an induction on n, one obtains
that, for odd-dimensional h, the group Ch1

K(X) is trivial. Consequently, in both even and
odd situations, one has
(4.13) e2

k = e2k

in ChK(X), for all k ≥ 2, and also for k = 1 if dim(h) is even. The relations (4.13) are
also a consequence of the respective result for the zk’s, see Remark 4.12 and [1, (86.15)].

Corollary 4.14. One has e2
k = 0 in ChK(X) for all k ≥ 2, and also for k = 1 if dim(h)

is even.

Proof. We proceed by induction on n. For n = 0, the conclusion is true by dimensional
reasons. By (4.13), the conclusion is true for k > n. Let 1 ≤ k ≤ n (or 2 ≤ k ≤ n if dim(h)
is odd). By codimensional reasons, it suffices to prove that (j∗)K(e2

k) = 0 in Ch2k
K (X\X̃)

to get that e2
k = 0 in Ch2k

K (X) (see the exact sequence in the proof of Theorem 4.9).
Moreover, one has (j∗)K(e2

k) = (f ∗)K(ẽ2
k) (see Lemma 4.8 and its proof). Since ẽ2

k = 0 in
ChK(X̃) by the induction hypothesis, the proof is complete. �

We have obtained that e2k = 0 in ChK(X) for all k ≥ 2 and also for k = 1 if dim(h)
is even. We are now able to determine the multiplicative structure for the ring ChK(X)
the same way it has been done for the case of quadratic forms.

Proposition 4.15. There is a ring isomorphism

ChK(X) '
⊗

m≤k≤n

(
Z/2Z[e2k+1]

/
(e2

2k+1)

)
,

with m = 0 if the dimension of h is even and m = 1 otherwise.
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Proof. Assume first that h is of even dimension. Let us denote by R the factor ring of
the polynomial ring Z/2Z[t0, t1, . . . , tn] by the ideal generated by the monomials t2k, for
0 ≤ k ≤ n. Then, by Corollary 4.14, the ring homomorphism

ϕ : R → ChK(X)
tk 7→ e2k+1

is well defined. Furthermore, it follows from Theorem 4.9 that ϕ is surjective. Since the
classes of the monomials tr00 t

r1
1 · · · trnn , with rk = 0 or 1 for every k, generate R, the ring

homomorphism ϕ is also injective by Theorem 4.9. One proceeds the same way for h of
odd dimension, except there is no variable t0. �

5. General maximal unitary grassmannian

In this section, we use notation introduced in the previous sections. We do not make
any assumption on the isotropy of the non-degenerate K/F -hermitian form h.

For any scheme Y over F , we write Ȳ for Y × SpecF (X), where F (X) is the function
field of the maximal unitary grassmannian X (note that K ⊗F F (X) is still a field).
Following the path set by A.Vishik in [13], we describe the subring,

ChK(X) := Im
(
ChK(X)→ ChK(X̄)

)
.

of rational elements, see Theorem 5.7 (actually, this description does not depend on the
choice of a splitting field of h which does not split K). We use similar notation and
vocabulary for classical Chow rings and certain products of F -varieties.

The exposition in this section follows the thread of [1, §87]. The proofs are sometimes
very similar (the proof of Theorem 5.7 compared to the original [1, Theorem 87.7] for
example).

We consider the elements ek ∈ CHk(X̄) introduced in the previous section.

Proposition 5.1. – If dim(h) = 2n+ 2 then the elements (ek × 1) + (1× ek) in CH(X̄2)
are rational for all k ∈ [1, 2n+ 1];

– If dim(h) = 2n+ 1 then the elements (ek× 1) + (1× ek) in ChK(X̄2) are rational for
all k ∈ [2, 2n+ 1].

Proof. Suppose first that dim(h) = 2n+ 2. Here we use notation and material introduced
in Remark 4.12. Let k ∈ [1, 2n + 1]. Since the element (zk × 1) + (1 × zk) ∈ CH(Ȳ 2)
is rational (see [1, Proposition 86.17 and Corollary 87.3]) and one has im∗(zk) = ek, the
element (ek × 1) + (1× ek) ∈ CH(X̄2) is also rational.

Suppose now that dim(h) = 2n+1. In that case, let us denote by im the natural closed
embedding X ↪→ Y2n of the variety X into the second to last grassmannian of q. Let us
denote by z−1

k ∈ CHk
(
Ȳ2n

)
, 1 ≤ k ≤ 2n+ 1, the Z-type generators of CHk

(
Ȳ2n

)
(see [14,

§2]). Note that it follows from [14, Proposition 2.1] and Proposition 4.10 that, for any
2 ≤ k ≤ 2n+ 1, one has

im∗(z−1
k ) = ek

in CH(X̄). Moreover, we write Y for the maximal grassmannian of q and zk ∈ CHk(Y ),
1 ≤ k ≤ 2n, for the generators of CH(Ȳ ) introduced by A.Vishik in [13]. We consider
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the diagram

Y2n Y2n,2n+1
foo g // Y,

where Y2n,2n+1 is the partial orthogonal flag variety of totally q-isotropic F -vector sub-
spaces of dimension 2n and 2n + 1, and the morphisms f and g are the natural projec-
tions. By [14, Lemma 2.1], there is an element c1 ∈ CH1(Y2n,2n+1) such that, for any
2 ≤ k ≤ 2n+ 1, one has

f ∗(z−1
k ) = c1 · g∗(zk−1) + g∗(zk)

(with z2n+1 = 0). Let e ∈ CH(Y2n,2n+1) be the class of a generic point. Using the previous
identity and the Projection Formula, one gets that

(5.2) z−1
k = f∗ (e · c1 · g∗(zk−1)) + f∗ (e · g∗(zk))

for any 2 ≤ k ≤ 2n + 1. Since the element (zk × 1) + (1 × zk) ∈ CH(Ȳ 2) is rational for
any 1 ≤ k ≤ 2n+ 1, the element

(f∗)
×2
(
(e× e) · (c1 × 1 + 1× c1) · (g∗)×2 ((zk−1 × 1) + (1× zk−1))

)
+ (f∗)

×2 ((e× e) · (g∗)×2 ((zk × 1) + (1× zk))
)

is rational for any 2 ≤ k ≤ 2n+1. Furthermore, by (5.2), the latter cycle can be rewritten
as

(5.3) (z−1
k × 1) + (1× z−1

k ) + f∗ (e · g∗(zk−1))× f∗(e · c1) + f∗(e · c1)× f∗ (e · g∗(zk−1)) .

Since f∗(e · c1) ∈ CH1(Y2n) and Ch1
K(X̄) is trivial (see paragraph right before Corol-

lary 4.14), the conclusion is obtained by taking the image of the rational cycle (5.3) under
im∗ and then projecting to ChK(X̄). �

For every subset I ⊂ [1, 2n+ 1]od, with 1 /∈ I if dim(h) = 2n+ 1, we set

(5.4) xI :=
∏
k∈I

((ek × 1) + (1× ek)) ∈ ChK(X2).

Lemma 5.5. For any subsets I, J ⊂ [1, 2n + 1]od, with 1 /∈ I ∪ J if dim(h) = 2n + 1,
one has in ChK(X̄)

(xJ)∗(eI) =

 eI∩J if I ∪ J = [1, 2n+ 1]od , or I ∪ J = [3, 2n+ 1]od
for odd-dimensional h;

0 otherwise.

Proof. Assume that dim(h) = 2n+ 2. Since

xJ =
∑
J1⊂J

eJ1 × eJ\J1 ,

one has
(xJ)∗(eI) =

∑
J1⊂J

deg(eI · eJ1)eJ\J1 ,
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in ChK(X̄), where deg : ChK(X̄) → ChK(SpecF (X)) = Z/2Z is the degree homomor-
phism associated with the push-forward of the structure morphism. Therefore, it suffices
to show that for any subsets I, J1 ⊂ [1, 2n+ 1]od, one has

(5.6) deg(eI · eJ1) =

{
1 mod 2 if J1 = [1, 2n+ 1]od\I;
0 mod 2 otherwise,

to get the conclusion. For J1 = [1, 2n+ 1]od\I, this follows from Corollary 4.7. For J1 6=
[1, 2n+ 1]od\I, using Corollary 4.14 (or Theorem 4.9), one gets that eI · eJ1 is either zero
or the monomial eL for some L different from [1, 2n+ 1]od, thus deg(eI · eJ1) = 0 mod 2.
The proof in the odd case is similar. �

We are now able to prove the K/F -hermitian analogue of [13, Main Theorem 5.8].

Theorem 5.7. Let K/F be a quadratic separable field extension and h a non-degenerate
K/F -hermitian form of dimension 2n+2 or 2n+1. Let X be the variety of maximal totally
isotropic subspaces in h. Then the ring ChK(X) is generated by all ek, k ∈ [3, 2n + 1]od

and also k = 1 for h of even dimension, such that ek ∈ ChK(X).

Proof. Assume that dim(h) = 2n+2. By Theorem 4.9, one has to show that if an element
α =

∑
aIeI ∈ ChK(X̄) (with I ⊂ [1, 2n+ 1]od and aI ∈ Z/2Z) is rational then for every

I satisfying aI = 1 and any k ∈ I, the element ek ∈ ChK(X̄) is rational.
One may assume that α is homogeneous. We induct on the number of nonzero coeffi-

cients of α.
Let I be a subset with largest |I| such that aI = 1. Let k ∈ I and set

J = ([1, 2n+ 1]od\I) ∪ {k}.

We claim that (xJ)∗(α) = ek. By Lemma 5.5, it suffices to prove that if I ′ is a subset such
that aI′ = 1 and I ′ ∪ J = [1, 2n+ 1]od then I ′ = I. Since I ′ ∪ J = [1, 2n+ 1]od, one has

I ′ = ([1, 2n+ 1]od\J) ∪ (J ∩ I ′).

By maximality of |I|, the subset J ∩ I ′ is either empty or consists of a single element.
Hence, it follows from the homogeneity of α that J ∩ I ′ = {k}, that is I ′ = I. The claim
is proven.

Thus, since xJ is rational, the cycle ek is also rational, for all k ∈ I. Consequently,
the elements eI and α − eI are rational. By the induction hypothesis, every element ek
appearing in the decomposition of α − eI is rational and it is therefore so for α. This
concludes the even case and the odd case can be treated similarly. �

6. The invariant J(h)

In this section, we define a new invariant of non-degenerate K/F -hermitian forms on
the model of the J-invariant for non-degenerate quadratic forms defined by A.Vishik in
[13] (although this section follows the thread of [1, §88], where the latter is defined in the
"opposite way").

Let h be a non-degenerate K/F -hermitian form of dimension 2n + 2 or 2n + 1 and
X the variety of maximal totally isotropic subspaces in h. We use notation introduced
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in the previous sections. We still denote by ek the generators of ChK(X̄). The discrete
J-invariant J(h) is defined as follows:

J(h) =

{ {
k ∈ [1, 2n+ 1]od with ek ∈ ChK(X)

}
if dim(h) = 2n+ 2;{

k ∈ [3, 2n+ 1]od with ek ∈ ChK(X)
}

if dim(h) = 2n+ 1.

For a subset I ⊂ [1, 2n+ 1] let us denote by ||I|| the sum of all k ∈ I.

Proposition 6.1. The biggest codimension i such that Chi

K(X) 6= 0 is equal to ||J(h)||.

Proof. The element
∏

k∈J(h) ek ∈ ChK(X) is non-trivial by Theorem 4.9 and has the
biggest codimension amongst the non-trivial elements of ChK(X) by Theorem 5.7. �

Proposition 6.2. A non-degenerate K/F -hermitian form h is split if and only if J(h) is
maximal.

Proof. If h is split then the fact that J(h) is maximal follows from the definition. If J(h)
is maximal then, by Corollary 4.7, the class of a rational point of X̄ belongs to ChK(X).
Consequently, the variety X admits a closed point x of odd degree (recall that the degree
map is well defined on ChK). Combining the fact that the residue field F (x) is a splitting
field of h with Springer’s Theorem for quadrics, one gets the identities

bdim(h)/2c = i0(hF (x)) = i0(qF (x))/2 = i0(q)/2 = i0(h).

Therefore h is split. �

Lemma 6.3. Let h = h̃⊥H. Then J(h) = J(h̃) ∪ {2n+ 1}.

Proof. Since e2n+1 = [X̃] (see Lemma 4.4), one has 2n + 1 ∈ J(h). Let i ≤ 2n − 1.
From decomposition (3.3) (where d = 2n + 1), one gets Chi

K(X) ' Chi
K(X̃) with ei

corresponding to ẽi by Lemma 4.5(i). The conclusion follows. �

Corollary 6.4. Let h and h′ be Witt-equivalent K/F -hermitian forms with h ' h′⊥ jH.
Then J(h) = J(h′) ∪ {2n+ 1, 2n− 1, . . . , 2n+ 1− 2(j − 1)}.

The following statement is the ChK-version of the result [1, Lemma 88.5] of N.A.Karpenko
and A. S. Merkurjev for classical Chow groups (see Remark 2.1).

Proposition 6.5. Let Z be a smooth F -variety and Y an equidimensional F -variety.
Given an integer m such that for any nonnegative integer i and any point y ∈ Y of
codimension i the change of field homomorphism

Chm−i
K (Z) −→ Chm−i

K (ZF (y))

is surjective, the change of field homomorphism

Chm
K(Y ) −→ Chm

K(YF (Z))

is also surjective.
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For any integer k, let us denote by Xk the F -variety of k-dimensional totally isotropic
subspaces in h (so Xbdim(h)/2c = X and Xk = ∅ for k /∈ [0, bdim(h)/2c]). By the result [6,
Corollary 7.3] (which is also a consequence of [4, Theorem 15.8]), for any integer k, there
is a Chow motivic decomposition with Z/2Z-coefficients

(6.6) M(Xk) 'Mk ⊕M,

where M is a sum of shifts of M (Spec(K)) and Mk splits as a sum of Tate motives over
any splitting field of h. The motive Mk is defined by Xk uniquely up to an isomorphism
and is called the essential motive of Xk.

Lemma 6.7. The change of field homomorphism Chi
K(X) → Chi

K(XF (X1)) is surjective
for any i ≤ 2n if dim(h) = 2n+ 2 and for any i ≤ 2n− 1 if dim(h) = 2n+ 1.

Proof. By Proposition 6.5, it is sufficient to prove that for any x ∈ X the change of field
homomorphism Chi

K(X1)→ Chi
K(X1 F (x)) is surjective, for any i ≤ 2n if dim(h) = 2n+ 2

and for any i ≤ 2n− 1 if dim(h) = 2n+ 1, to get the conclusion.
It follows from decomposition (6.6) that

(6.8) ChK(X1) ' ChK(M1).

Furthermore, by [6, Corollary 9.6], one has the following Chow motivic decomposition
with Z/2Z-coefficients

(6.9) M(Q) 'M1 ⊕M1{1}
(where Q is the smooth projective quadric associated with the non-degenerate quadratic
form q : V → F , v 7→ h(v, v)).

Combining (6.8) with (6.9), we see that it suffices to show that for any x ∈ X the
change of field homomorphism

(6.10) Chi
K(Q)→ Chi

K(QF (x))

is surjective, for any i ≤ 2n if dim(h) = 2n+2 and for any i ≤ 2n−1 if dim(h) = 2n+1, to
get the conclusion. In fact, (6.10) is already surjective at the level of integral Chow groups.
Indeed, since F (x) is a splitting field of the hermitian form h, one has i0(qF (x)) = 2n+ 2
or 2n depending on whether dim(h) is respectively even or odd. Therefore, the group
CHi(QF (x)) is generated by hi (always rational) for i ≤ 2n or i ≤ 2n − 1 depending on
whether dim(h) is respectively even or odd (see [2, §1] for example).

This completes the proof. �

Corollary 6.11. J(h) ⊂ J(hF (X1)) ⊂ J(h) ∪ {2n+ 1}.

The following proposition relates the set J(h) and the absolute Witt indices of h. It
follows from Corollaries 6.4 and 6.11.

Proposition 6.12. Let h be a non-degenerate K/F -hermitian form of dimension 2n+ 2
or 2n+ 1 with height h(h). Then J(h) contains the complementary of the set

{2n+ 1− 2j0(h), 2n+ 1− 2j1(h), . . . , 2n+ 1− 2jh(h)−1(h)}
in [1, 2n+ 1]od, excluding 1 for h of odd dimension. In particular, |J(h)| ≥ n− h(h) and
the inequality is strict for h of even dimension.
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7. Steenrod operations

Let h be a non-degenerate K/F -hermitian form on V of dimension 2n + 2 or 2n + 1
and let X be the variety of maximal totally isotropic subspaces in h. This section is the
hermitian replica of [1, §89], where we compute the Steenrod operations on Ch(X̄).

We use notation introduced in the previous sections and we write πX and πQ for the
respective compositions pX ◦ in and pQ ◦ in. Let L be the canonical line bundle over
P(E) and T the relative tangent bundle of πX . By [1, Example 104.20], there is an exact
sequence of vector bundles over P(E):

0→ 1→ L⊗ π∗X(E)→ T → 0.

Hence, since ci(E) = 0 in Ch(X̄) for all i > 1, c1(E) = 0 in Ch(X̄) for even-dimensional h
and c1(E) = 0 in ChK(X̄) for odd-dimensional h (follows from Proposition 4.10 and the
fact that Ch1

K(X̄) is trivial in the odd case), one deduces from the Whitney Sum Formula
and [3, Remark 3.2.3 (b)] that

c(T ) = c (L ⊗ π∗X(E)) = c
(
L ⊗ 1

2r
)

= c(L)2r

in Ch(X̄) if dim(h) is even, in ChK(X̄) otherwise, with r = bdim(h)/2c (recall that E
has rank 2r). Furthermore, since L coincides with the pull-back with respect to πQ of the
canonical line bundle over Q, one has c(L) = 1 + π∗Q(h1) in CH(Q). Consequently, one
has

(7.1) c(T ) =
(
1 + π∗Q(h1)

)2r

in Ch(X̄) if dim(h) is even, and in ChK(X̄) otherwise.

The following statement is the K/F -hermitian analogue of the result [13, Theorem 4.1]
for quadratic forms.

Theorem 7.2. Assume char(F ) 6= 2. Let h be a non-degenerate K/F -hermitian form of
dimension 2n + 2 or 2n + 1 and X the variety of maximal totally isotropic subspaces in
h. Let SX̄ : Ch(X̄)→ Ch(X̄) denote the Steenrod operation of cohomological type on X̄.
Then one has

Si
X̄(ek) =

(
k

i

)
ek+i

in Ch(X̄) if dim(h) is even, and in ChK(X̄) otherwise, for all i and k ∈ [2, 2n+ 1] and
also for i = k = 1 if dim(h) is even.
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Proof. By [1, Corollary 78.5], one has SQ(l2n+1−k) = (1 + h1)2r+k · l2n+1−k. It follows from
(4.3), (7.1) and [1, Theorem 61.9 and Proposition 61.10] that one has

SX̄(ek) = SX ◦ πX∗ ◦ π∗Q(l2n+1−k)
= πX∗ ◦ c(−T ) ◦ SP(E) ◦ π∗Q(l2n+1−k)

= πX∗

((
1 + π∗Q(h1)

)−2r · π∗Q ◦ SQ(l2n+1−k)
)

= πX∗ ◦ π∗Q
(
(1 + h1)−2r · (1 + h1)2r+k · l2n+1−k

)
= πX∗ ◦ π∗Q

(
(1 + h1)k · l2n+1−k

)
=
∑

i≥0

(
k
i

)
πX∗ ◦ π∗Q(l2n+1−k−i)

=
∑

i≥0

(
k
i

)
ek+i

in Ch(X̄) if dim(h) is even, and in ChK(X̄) otherwise. �

Note that Theorem 7.2 is also a direct consequence of the quadratic case [13, Theorem
4.1], see Remark 4.12.

8. Canonical dimension

In this section, we compute the canonical 2-dimension cdim2(X) of the maximal unitary
grassmannian X associated with a non-degenerate K/F -hermitian form h in terms of the
J-invariant J(h).

We recall the definition of the canonical 2-dimension of a variety (see [5] for an intro-
duction on canonical dimension and for a more geometric definition).

Let X be an F -variety. An isotropy field L of X is an extension L/F such that
X(L) 6= ∅ (note that if X is a maximal unitary grassmannian then this is the same thing
as a splitting field of the corresponding hermitian form h).

An isotropy field E is called 2-generic if for any isotropy field L there is an F -place
E ⇀ L′ for some finite extension L′/L of odd degree (see [1, §103] for an introduction to
F -places). For example, the function field F (X) is 2-generic (because it is generic).

The canonical 2-dimension cdim2(X) of X is the minimum of the transcendence degree
tr.degF (E) over all 2-generic field extensions E/F . If X is smooth then cdim2(X) ≤
dim(X). One says that X is 2-incompressible if cdim2(X) = dim(X).

The proof of the theorem below is a very slight modification of the corresponding one
for quadratic forms, see [1, Theorem 90.3]. Namely, at some point, one just has to consider
the Chow rings ChK . Nevertheless, we write down this modified version.

The two following facts about F -places are used in the proof (contained in [1, §103]).
One can compose F -places. In particular, any F -place E ⇀ L can be restricted to a

subfield E ′ of E containing F (since field extensions over F are F -places).
For any proper F -variety Y equipped with an F -place π : F (Y ) ⇀ L, there is a

morphism Spec(L)→ Y .

The following ChK-version of the result [1, Proposition 58.18] for classical Chow groups
will also be needed (see Remark 2.1).
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Proposition 8.1. Let Z be a smooth F -scheme and Y a Z-scheme. Suppose there is a flat
morphism of F -schemes f : Y → Y ′. If for every y′ ∈ Y ′, the pull-back homomorphism
ChK(Z)→ ChK (Y ×Y ′ Spec (F (y′))) is surjective then the homomorphism

ChK(Y ′)⊗ ChK(Z) → ChK(Y )
α⊗ β 7→ (f)∗K(α) · β

is surjective.

Theorem 8.2. Let h be a non-degenerate K/F -hermitian form and X the associated
maximal unitary grassmannian. Then

cdim2(X) = dim(X)− ||J(h)||.

Proof. Let E be a 2-generic isotropy field of X with minimum transcendence degree
cdim2(X) and Y be the closure of the F -morphism Spec(E) → X. Since F (Y ) is a
subfield of E, one has

(8.3) tr.degF (E) ≥ dim(Y ).

Moreover, since E is 2-generic, there is an F -place E ⇀ L, with L a field extension of
F (X) of odd degree. Restricting E ⇀ L to F (Y ), one gets an F -place π : F (Y ) ⇀ L,
thus the existence of a morphism f : Spec(L) → Y . Let g : Spec(L) → X be the
morphism induced by the extension L/F (X) and let Z be the closure of the image of
(f, g) : Spec(L)→ Y ×X. Then [F (Z) : F (X)] is odd since it divides [L : F (X)]. Thus,
the image of [Z] under the composition

Ch(Y ×X)
(i×1)∗ // Ch(X2)

p2∗ // Ch(X) ,

where i : Y → X is the closed embedding and p2 is the second projection, is equal to [X].
It follows that (i× 1)∗([Z])F (X) 6= 0 in ChK(X2) ⊂ ChK(X̄2).

We claim that the homomorphism

(8.4) ChK(Y )⊗ ChK(X2) → ChK(Y ×X)
α⊗ β 7→ (pY )∗K(α) · (i× 1)∗K(β)

,

where pY is the projection Y × X → Y , is surjective. By Proposition 8.1, it suffices
to show that for any y ∈ Y the homomorphism ChK(X2) → ChK(XF (y)) associated
with the pull-back of the induced morphism Spec(F (y)) × X → X2 (where the second
factor is the identity) is surjective to prove the claim. The pull-back homomorphism
Ch(X2) → Ch(XF (y)) sends an element in the fiber of the rational cycle xI ∈ Ch(X̄2)
(introduced in (5.4)) under restriction to eI ∈ Ch(XF (y)) ' Ch(X̄). Therefore, since the
classes eI generate ChK(X̄) (Theorem 4.9), one deduces that the composition

Ch(X2) // Ch(XF (y)) // ChK(XF (y))

is surjective. Therefore the homomorphism ChK(X2) → ChK(XF (y)) is also surjective
and the claim is proven.
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As a consequence of [1, Proposition 49.20 and 58.17], one gets that the diagram

ChK(Y )⊗ ChK(X2) //

i∗K⊗1
��

ChK(Y ×X)

(i×1)∗K
��

ChK(X)⊗ ChK(X2) //

��

ChK(X2)

��
ChK(X)⊗ ChK(X2) // ChK(X̄2)

,

where the horizontal arrows are defined as in (8.4), is commutative. Using the fact that
(i× 1)∗([Z])F (X) 6= 0 in ChK(X2) and the claim, one obtains that the composition

ChK(Y ) // ChK(X) // ChK(X̄)

is non-trivial. Therefore, by Proposition 6.1 one has dim(Y ) ≥ dim(X)− ||J(h)||. Thus,
combining with inequality (8.3), one gets

cdim2(X) ≥ dim(X)− ||J(h)||.
By Proposition 6.1, there is a closed subvariety Y ⊂ X of dimension dim(X)− ||J(h)||

such that [Y ] 6= 0 in ChK(X). In particular, one has [Y ] 6= 0 in Ch(X). From this
moment on, the remaining of the proof of the second inequality is strictly the same as the
one in the orthogonal case, see [1, Theorem 90.3]. �

We recall that if dim(h) = 2n+1 then dim(X) = n(n+2) = 3+5+· · ·+(2n−1)+(2n+1)
and if dim(h) = 2n+ 2 then dim(X) = (n+ 1)2 = 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1).

Corollary 8.5. The variety X is 2-incompressible if and only if J(h) is empty.

Remark 8.6. We call the generic hermitian form of dimension d (for the fixed separable
extension K/F ) the diagonal K(t1, . . . , td)/F (t1, . . . , td)-hermitian form < t1, . . . , td >,
where t1, . . . , td are variables. Since any hermitian form can be diagonalized (see [11,
Theorem 6.3 of Chapter 7]), any d-dimensional K/F -hermitian form is a specialization
of the generic hermitian form of dimension d. In the case of a generic hermitian form,
the maximal unitary grassmannian is 2-incompressible by [6, Theorem 8.1]. Therefore,
by Corollary 8.5, the J-invariant of a generic hermitian form is empty.

9. Motivic decomposition

In this section, we determine the complete motivic decomposition of the ChK-motive
MK(X) (see § 2) of the maximal unitary grassmannianX associated with a non-degenerate
K/F -hermitian form h in terms of the J-invariant J(h) (Theorem 9.4).

For I ⊂ [1, 2n+ 1]od or [3, 2n+ 1]od depending on whether dim(h) is respectively equal
to 2n + 2 or 2n + 1, let Ī denote the complementary set. We set J = J(h). One always
has ||J ||+ ||J̄ || = dim(X). We also use notation introduced in the previous sections. By
the very definition of the J-invariant and Proposition 5.1, for any S ⊂ J̄ and L,L′ ⊂ J ,
the cycle

θS,L,L′ := xS · (eL × eJ\L′),
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where xS is defined in (5.4), belongs to ChK(X2). Note that θS,L,L′ can be rewritten as∑
M⊂S

eMtL × e(S\M)t(J\L′),

where t is the disjoint union of sets.
We write θL for θJ̄ ,L,L and θL,L′ for θJ̄ ,L,L′ . Let ∆X̄ denote the class of the diagonal in

ChK(X̄2).

Lemma 9.1. (i) The set B = {θS,L,L′ | S ⊂ J̄ ;L,L′ ⊂ J} is a Z/2Z-basis of ChK(X2).
(ii) One has

θS2,L2,L′2
◦ θS1,L1,L′1

= δL2,L′1
· δS1∪S2,J̄ · θS1∩S2,L1,L′2

.

(iii) As correspondences of degree 0, the elements of {θL | L ⊂ J} are pairwise orthogonal
projectors such that

∑
L⊂J θL = ∆X̄ .

Proof. The set B is a free family. Indeed, assume that
∑

S,L,L′ αS,L,L′ · θS,L,L′ = 0 for some
αS,L,L′ in Z/2Z. Choose L0 ⊂ J . By multiplying the latter equation by eJ̄t(J\L0) × 1, one
gets ∑

S,L,L′

αS,L,L′ ·

(∑
M⊂S

eJ̄t(J\L0) · eMtL × e(S\M)t(J\L′)

)
= 0.

By using (5.6), taking the image of the previous equation under the homomorphism (p2∗)K
associated with the push-forward of the second projection X̄ × X̄ → X̄, one gets∑

S,L′

αS,L0,L′ · eSt(J\L′) = 0.

Hence, since the family {eI} is free (it is even a basis of ChK(X̄), see Theorem 4.9), one
obtains that αS,L0,L′ = 0 for any S ⊂ J̄ and any L′ ⊂ J . Therefore, the family B is free.

Moreover, since the ChK-motive MK(X̄) is split, by the analogue of [1, Proposition
64.3] for ChK-motives, the map

ChK(X̄)⊗ ChK(X̄)→ ChK(X̄ × X̄)

(given by the external product) is an isomorphism. Thus, by Theorem 4.9, any element
of ChK(X̄ × X̄) can be written as

∑
I1,I2

αI1,I2 · (eI1 × eI2) where the sum runs over all
subsets I1, I2 ⊂ [1, 2n+ 1]od or [3, 2n+ 1]od depending on whether dim(h) is respectively
equal to 2n+ 2 or 2n+ 1, and αI1,I2 ∈ Z/2Z. Let a =

∑
I1,I2

αI1,I2 · (eI1 × eI2) ∈ ChK(X2).
Then, for any subset I2, the element

p1∗ (xĪ2 · a) =
∑
I1,M

M⊂Ī1∩Ī2

αI1,I2tM · eI1tM

is rational. Hence, by Theorem 5.7, for any subset I 6⊂ J , one has∑
M⊂Ī2∩I

αI\M,I2tM = 0.
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Furthermore, the above relations are linearly independent because, for any subset I2 and
I 6⊂ J , the sum rI2,I :=

∑
M⊂Ī2∩I αI\M,I2tM contains αI,I2 and for any (I ′2, I

′) 6= (I2, I)
such that αI,I2 ∈ rI′2,I′ , one has |I ′2| < |I2|. It follows that

rankZ/2Z ChK(X2) ≤ 2r · 2r − 2r · (2r − 2|J |) = 2r+|J | = |B|

(recall that rankZ/2Z ChK(X̄) = 2r, with r = bdim(h)/2c). Consequently, the family B is
a Z/2Z-basis of ChK(X2).

For any subsets S1, S2 ⊂ J̄ and L1, L
′
1, L2, L

′
2 ⊂ J , the composition of correspondences

θS2,L2,L′2
◦ θS1,L1,L′1

is equal to∑
M1,M2⊂J̄

(p13∗)K

(
eM1tL1 × (e((S1\M1)t(J\L′1)) · eM2tL2)× e(S2\M2)t(J\L′2)

)
.

Hence, the assertion (ii) follows from (5.6).
By (ii), the elements of {θL | L ⊂ J} are pairwise orthogonal projectors. Furthermore,

one has the following identity ∑
L⊂J

θL =
∑

I⊂[1, 2n+1]od

eI × eĪ .

Therefore, for any I ⊂ [1, 2n + 1]od (or [3, 2n + 1]od for odd-dimensional h), one has(∑
L⊂J θL

)∗
(eI) = eI . Since the elements eI generate the ring ChK(X̄), one deduces that∑

L⊂J θL = ∆X̄ and (iii) is proven. �

The next proposition is the ChK-version of the Rost Lemma (see [10, Proposition 1] or
[1, Theorem 67.1] and Remark 2.1).

Proposition 9.2. Let Y and Z be smooth proper F -varieties. If a correspondence α ∈
ChK(Y × Y ) is such that α ◦ ChK(YF (z)) = 0 for every z ∈ Z then

αdim(Z)+1 ◦ ChK(Z × Y ) = 0.

For any smooth proper variety Y , by the very definition of the category of ChK-motives,
one has Endj

(
MK(Y )

)
= Chdim(Y )+j

K (Y × Y ) for any j, with the composition of endo-
morphisms given by the composition of correspondences. If h is a non-degenerate K/F -
hermitian form and x is a point of the associated maximal unitary grassmannian X then
h splits over F (x), so ChK(XF (x)) = ChK(X̄). Hence, Proposition 9.2 (applied with
Y = Z = X) implies the statement below, which says that Rost Nilpotence holds for X
at the level of K-Chow rings.

Corollary 9.3. Let X be the maximal unitary grassmannian associated with a non-
degenerate K/F -hermitian form. The kernel of the restriction ring homomorphism

End∗
(
MK(X)

)
→ End∗

(
MK(X̄)

)
consists of nilpotent elements.

We are now able to prove the following ChK-motivic decomposition (in the spirit of [8,
Theorem 5.13]).
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Theorem 9.4. Let h be a non-degenerate K/F -hermitian form and X the associated
maximal unitary grassmannian. Then the ChK-motive of X decomposes as

MK(X) '
⊕

L⊂J(h)

R(h){||L||},

where R(h) is an indecomposable motive.
Moreover, over a splitting field of h, the ChK-motive R(h) decomposes as a sum of

shifts of the Tate motive. More precisely, one has

R(h) '
⊕

M⊂J(h)

Z/2Z{||M ||}.

Proof. By Lemma 9.1(ii), one has

θL,N ◦ θL′,N ′ = δL,N ′ · θL′,N .

In particular, this implies that for any L,L′ ⊂ J , the projectors θL and θL′ are isomorphic
(in the sense of [8, §2.1]), the isomorphism being given by θL,L′ and θL′,L.

We claim that the projectors θL are indecomposable. For any integers 0 ≤ k ≤ ||J̄ ||
and 0 ≤ l ≤ dim(X), we write

Chk,l

K (X2)

for the subspace of ChK(X2) spanned by the elements θS,L,L′ with ||S|| ≤ k and codimen-
sion ≤ l. For any correspondences α, α′ ∈ ChK(X̄2) one has

codim(α ◦ α′) = codim(α) + codim(α′)− dim(X).

Thus, by Lemma 9.1(i) (or Lemma 9.1(ii)), the space Ch||J̄ ||,dim(X)

K (X2) equipped with the
composition of correspondences is a ring. Furthermore, using the same codimensional
considerations and the formula of Lemma 9.1(ii), one sees that, for any 0 ≤ k ≤ ||J̄ ||
and 0 ≤ l ≤ dim(X), the subspace Chk,l

K (X2) is an ideal of Ch||J̄ ||,dim(X)

K (X2). We denote
by A the factor ring of Ch||J̄ ||,dim(X)

K (X2) by the sum of ideals Chk,l

K (X2) for all (k, l) ∈(
[0, ||J̄ ||]× [0, dim(X)]

)
\{(||J̄ ||, dim(X))}. By Lemma 9.1(i), a Z/2Z-basis of A is given

by the classes of the elements θL,L′ with ||L|| = ||L′||. Hence, since θ∗L,L′(eN) = δN,L′ ·eL for
any N ⊂ J (by (5.6)), it follows from Lemma 9.1(ii) that the assignment θL,L′ 7→ θ∗L,L′ for
all θL,L′ with ||L|| = ||L′|| gives rise to an anti-isomorphism between A and the product
of matrix rings

dim(X)∏
k=0

End (Ek) ,

where Ek is the subspace of ChK(X) spanned by the elements eN with ||N || = k. Under
this identification, for any L ⊂ J , the class of θL in A corresponds to an idempotent
element of rank 1 and therefore is indecomposable. Moreover, by Lemma 9.1(ii) and
codimensional reasons (for any correspondence α ∈ ChK(X̄2) of codimension < dim(X),
one has codim (α◦i) > codim

(
α◦(i+1)

)
), the kernel of the projection

π : Ch||J̄ ||,dim(X)

K (X2)→ A
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is nilpotent. Thus, the projectors θL are indecomposable in ChK(X2). The claim is
proven.

Consequently, combining with Lemma 9.1(iii) and Rost Nilpotence Corollary 9.3, one
gets that there exists a family {ψL | L ⊂ J} of pairwise orthogonal projectors in
Chdim(X)

K (X × X), satisfying ψL = θL, all isomorphic to ψJ (with respect to the cor-
respondences θL,J), and such that

∑
L⊂J ψL = ∆X (see [8, Proposition 2.6]). Note that

Rost Nilpotence implies that the projectors ψL are also indecomposable. Let R(h) denote
the indecomposable ChK-motive (X,ψ∅)

K . Thus, for any L ⊂ J , one has (X,ψL)K =
R(h){||L||} (since codim(θL,J) = dim(X)− ||J\L||). In other words, one has the desired
ChK-motivic decomposition of MK(X).

We prove now the last assertion of the theorem. Over a splitting field, one has R(h) =
(X̄, θ∅)

K . Moreover the writing θ∅ =
∑

M⊂J̄ eM × e(J̄\M)tJ is a decomposition as a sum
of pairwise orthogonal projectors in ChK(X̄ × X̄). These projectors are all isomorphic to
1× eJ̄tJ with (X̄, eM × e(J̄\M)tJ)K ' (X̄, 1× eJ̄tJ)K{||M ||} (recall that eJ̄tJ is the class
of a rational point). Furthermore, one easily checks that the ChK-motive (X̄, 1× eJ̄tJ)K

is isomorphic to the Tate motive Z/2Z in the category of ChK-motives.
The theorem is proven. �

The following statement can be viewed as the ChK-version of the Krull-Schmidt prin-
ciple for the F -variety X.

Corollary 9.5. Any direct summand of MK(X) is isomorphic to a sum of shifts of the
motive R(h).

Proof. We use notation and material introduced in the proof of Theorem 9.4. Any idem-
potent in the ring A is isomorphic (in the sense of [8, §2.1]) to a sum of classes of θL for
some L ⊂ J . Moreover, since Ker (π) is nilpotent, the projection π lifts isomorphisms,
see [8, Proposition 2.6]. �

Remark 9.6. It follows from Theorem 9.4 that MK(X) is indecomposable if and only
if J(h) is empty, i.e., if and only if X is 2-incompressible. In particular, this applies to
generic hermitian forms.

Remark 9.7. It follows from (6.6) that there is a group isomorphism

Ch(Me ⊗Me)→ ChK(X ×X),

with Me the essential Chow motive of X. Moreover, let ϕ ∈ Ch(X ×X) be the projector
giving Me. Then the group Ch(Me ⊗Me) = ϕ ◦ Ch(X × X) ◦ ϕ is equipped with the
ring structure given by the composition of correspondences (the neutral element being
ϕ). Since the above isomorphism is the restriction to ϕ ◦Ch(X ×X) ◦ϕ of the projection
Ch(X×X)→ ChK(X×X), it is a ring isomorphism (with ChK(X×X) equipped with the
composition of ChK-correspondences). Hence, the essential motive Me is decomposable if
and only if the ChK-motive MK(X) is decomposable.

10. Comparison with quadratic forms

Let h be a non-degenerate K/F -hermitian form and q the associated non-degenerate
F -quadratic form. In this section, we compare the J-invariant J(h) with the J-invariant
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J(q) as defined by A. Vishik in [13]. We recall that if dim(h) = 2n + 2 then J(q) is a
subset of [0, 2n + 1], otherwise – if dim(h) = 2n + 1 then it is a subset of [0, 2n] and in
both cases J(h) is a subset of [1, 2n+ 1]od.

Let X be the maximal hermitian grassmannian of h and Y the maximal orthogonal
grassmannian of q. For even-dimensional h, let im denote the natural closed embedding
X ↪→ Y (see Remark 4.12).

Proposition 10.1. One has

J(q) =

 J(h) ∪ [0, 2n]ev if dim(h) = 2n+ 2;

[1, 2n] if dim(h) = 2n+ 1,

where [0, 2n]ev stands for the even part of the set [0, 2n].

Proof. Assume that dim(h) = 2n + 2. We use notation and material introduced in Re-
mark 4.12. Since im∗(zk) = ek in Ch(X̄) for any 1 ≤ k ≤ 2n + 1 (see Remark 4.12) and
the generators zk of the ring Ch(Ȳ ) define J(q) the same way the elements ek ∈ ChK(X̄),
for k odd, define J(h) (see [13] or [1]), one has J(q)od ⊂ J(h). Moreover, since the
quadratic form q is obtained from a K/F -hermitian form, the absolute Witt indices of
q are even. Hence, by [1, Proposition 88.8] (this is the quadratic equivalent of Proposi-
tion 6.12, with the J-invariant defined in the opposite way), the set [0, 2n]ev is contained
in J(q). Furthermore, by [6, Corollary 9.3], the varieties X and Y have the same canonical
2-dimension. Thus, by [1, Theorem 90.3] and Theorem 8.6, one has

||J(q)|| − ||J(h)|| = dim(Y )− dim(X) = 0 + 2 + · · ·+ (2n− 2) + 2n.

Consequently, one has J(q) = J(h) ∪ [0, 2n]ev.
Assume that dim(h) = 2n + 1. In this case, one has cdim2(Y ) = 0 (see [6, Corollary

9.3]). Therefore, by [1, Theorem 90.3], one has

||J(q)|| = dim(Y ) =
2n(2n+ 1)

2
.

Moreover 0 /∈ J(q) because the discriminant of q is not trivial. Consequently, one has
J(q) = [1, 2n]. �

Remark 10.2. Proposition 10.1 allows one to recover the smallest value of the J-invariant
of a non-degenerate quadratic form q associated with a hermitian form h of even dimension
2n + 2 over a quadratic separable field extension of the base field, i.e., q is given by
the tensor product of a (2n + 2)-dimensional bilinear form by a binary quadratic form.
Namely, this value is [0, 2n]ev and it is obtained for h generic. This was originally proven
by N.A.Karpenko, see [6, Corollary 9.4].

Remark 10.3. For even-dimensional non-degenerate K/F -hermitian forms, Proposi-
tion 10.1 and its proof, combined with Theorem 5.7, provide another argument for the
surjectivity of the homomorphism

Ch(Y )→ ChK(X),

associated with the pull-back im∗. This was originally observed by Maksim Zhykhovich,
see [6, Lemma 9.8].
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