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We develop a version of the J-invariant for hermitian forms over quadratic
extensions using a similar method to Alexander Vishik’s approach using
quadratic forms. This discrete invariant contains information about ratio-
nality of algebraic cycles on the maximal unitary grassmannian associated
with a hermitian form over a quadratic extension. The computation of the
canonical 2-dimension of this grassmannian in terms of the J-invariant is
provided, as well as a complete motivic decomposition.
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1. Introduction

Let F be an arbitrary field and K/F a quadratic separable field extension. In this
article, we define a new discrete invariant J (h) for a nondegenerate K/F-hermitian
form h : V × V → K. This invariant is developed on the model of the J -invariant
for quadratic forms, due to Alexander Vishik [2005], and later generalized to an
arbitrary semisimple algebraic group of inner type by V. Petrov, N. Semenov and
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K. Zainoulline in [Petrov et al. 2008]. Let X denote the F-variety of maximal
totally h-isotropic subspaces of V. The invariant J (h) contains information about
rationality of algebraic cycles on X over a splitting field of h. In the same way as
it was obtained by Nikita A. Karpenko and Alexander S. Merkurjev for maximal
orthogonal grassmannians in the case of quadratic forms (see [Elman et al. 2008,
Theorem 90.3]), the invariant J (h) notably allows one to recover the canonical
2-dimension of the maximal unitary grassmannian X (Theorem 8.2).

In general, the J -invariant has several important applications. For example,
A. Vishik used it in his refutation of Kaplansky’s conjecture on the u-invariant
of a field (see [Vishik 2009]), as did Semenov when he answered a question by
J-P. Serre about groups of type E8 (see [Semenov 2016]).

In the case of quadratic forms, the Chow motive of the maximal orthogonal
grassmannian associated with a quadratic form splits as a sum of Tate motives over
a splitting field of the quadratic form; the reason being that there is a nice filtration
of the maximal orthogonal grassmannian by affine bundles. Because this does not
stand in the case of hermitian forms, we use [Karpenko 2000, Theorem 15.8] and
the modified Chow ring ChK (X) := Ch(X)/ Im(Ch(X K )→ Ch(X)), with Ch(X)
the integral Chow ring CH(X) modulo 2. These considerations allow one to follow
the method introduced by Vishik for quadratic forms to describe completely the ring
ChK (X) when h is split (equivalently, when X has a rational point) and the subring
Im(ChK (X)→ ChK (X F(X))) of rational elements for arbitrary h, where F(X) is
the function field of X. We also work with the category of ChK -motives, defined
from ChK , and provide a complete motivic decomposition of the ChK -motive
M K (X) of X in terms of the J -invariant J (h) (Theorem 9.4). The ChK -motive
M K (X) is related to the essential motive of X (see Remark 9.7).

By a theorem of Jacobson (see [Karpenko 2012, Corollary 9.2]), the nondegen-
erate K/F-hermitian form h is entirely determined by the associated F-quadratic
form q : v 7→ h(v, v), with V considered as an F-vector space. Moreover, the
F-quadratic forms arising this way from K/F-hermitian forms can be described
as the tensor product of a nondegenerate bilinear form by the norm form of K/F,
which is an anisotropic binary quadratic from. Conversely, an F-quadratic form
defined by such a tensor product is isomorphic to the quadratic form arising from
the hermitian form induced by the bilinear form and the quadratic separable field
extension K/F given by the discriminant of the binary quadratic form. As explained
by Karpenko in the introduction of [Karpenko 2012], although these observations
show that the study of K/F-hermitian forms is equivalent to the study of binary
divisible quadratic forms over F, this does not show that the hermitian forms are not
worthy of interest. Indeed, on one hand, it shows that the class of binary divisible
quadratic forms is quite important. On the other hand, it provides the opportunity to
use the world of hermitian forms to study such quadratic forms, which can be more
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appropriate than staying exclusively at the level of quadratic forms, as illustrated
by Proposition 10.1.

The paper is organized as follows. In Section 3, we use the relative cellular
space structure on X given by [Karpenko 2000, Theorem 15.8] to get the relation
of Proposition 3.4 between Chow rings ChK (defined in Section 2) associated
with the maximal unitary grassmannian of a hermitian subform of an isotropic
K/F-hermitian form h. From Section 4 to Section 8, we literally follow the thread
of [Elman et al. 2008, §86 to §90]. In this part of the article, we first use the
previously mentioned relation to get a complete description of ChK (X) in the split
case in terms of generators and relations (Theorem 4.9 and Proposition 4.15), from
which we deduce a description of the subring of rational elements in the general
case in terms of those generators (Theorem 5.7). The J -invariant J (h) is then
defined from the latter description. We also compute some Steenrod operations of
cohomological type on Ch(X) in the split case (Theorem 7.2). In Theorem 8.2, we
obtain the canonical 2-dimension of X in terms of J (h), on the model of [Elman
et al. 2008, Theorem 90.3]. In Section 9, using Rost nilpotence, we provide the
complete motivic decomposition of M K (X) in terms of J (h) (Theorem 9.4), in
the spirit of [Petrov et al. 2008, Theorem 5.13]. In Section 10, we compare the
J -invariant J (h) of a nondegenerate K/F-hermitian form h with the J -invariant
J (q) of the associated quadratic form q (Proposition 10.1).

2. K -Chow rings

Let F be an arbitrary field, K/F a quadratic separable field extension and X an
F-variety (i.e., a separated F-scheme of finite type). We denote by Ch(X) the
integral Chow ring CH(X) modulo 2.

We set
ChK (X) := Ch(X)/ Im(Ch(X K )→ Ch(X)),

where the homomorphism Ch(X K )→ Ch(X) is the push-forward of the projection
X K → X.

Note that Im(Ch(X K )→ Ch(X)) is an ideal by the projection formula ([Elman
et al. 2008, Proposition 56.9]), called the norm ideal, so that ChK (X) inherits the
ring structure of the initial Chow ring. For example, one has

ChK (Spec(F))= Z/2Z,

and for any F-variety X, the ring ChK (X K ) is trivial. We write (ϕ)K for the
K -Chow group homomorphism associated with a Chow group homomorphism ϕ

which preserves norm ideals.
Since the norm ideal is preserved by pull-backs and push-forwards, one can

define the additive category of ChK -motives the same way as the category of Chow
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motives (see [Elman et al. 2008, Chapter XII]) but using the Chow rings ChK

instead of the usual Chow rings CH. For a smooth proper F-variety X, we write
M K (X) for the associated ChK -motive.

Remark 2.1. For a field extension E/F and j ≥ 0, let us denote by N j (E) the
subgroup of the Milnor group K M

j (E) generated by the norms from finite field
extensions of E that split the extension K/F. Then the cycle module E 7→ K M

∗
(E)

over F gives rise to an assignment E 7→ K M
∗
(E)/N∗(E). One can check that the

latter is also a cycle module over F, in particular, the fact that residue maps are
well defined comes from the rule [Rost 1996, R3b]. Hence, one can consider the
cohomology theory associated with this cycle module (which contained the K -Chow
groups) instead of the cohomology theory of the Milnor cycle module and thus
obtain some ChK -versions of results for classical Chow groups (see Propositions 6.5,
8.1 and 9.2).

3. Isotropic hermitian forms

3A. Relative cellular spaces. Let F be a field.

Definition 3.1. Let X be a smooth proper F-variety supplied with a filtration F by
closed subvarieties

∅= X(−1) ⊂ X(0) ⊂ · · · X(n) = X.

The variety X is a relative cellular space over a smooth proper F-variety Y if the
associated adjoint variety

GrF X =
n∐

k=0

X(k)\X(k−1)

is a vector bundle over Y. The variety Y is called the base of X.

For V a finite-dimensional F-vector space, we denote by 0(V ) the full grass-
mannian of F-subspaces of V. To an epimorphism p : V → V ′ of F-vector spaces,
one can associate the filtration

∅= 0(V )(−1) ⊂ 0(V )(0) ⊂ · · ·0(V )(dim V ′) = 0(V )

on 0(V ) defined as follows: for any local commutative F-algebra R and 0≤ k ≤
dim V ′, one has

0(V )(k)(R)= {N ∈ 0(V )(R) |3k+1(pR(N ))= 0},

where pR : VR → V ′R is induced by p and 3k+1 stands for the (k+1)-th exterior
power.
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Let 0→ V ′′→ V→ V ′→ 0 be an exact sequence of F-vector spaces. The result
[Karpenko 2000, Corollary 9.11] by Karpenko asserts that 0(V ) supplied with the
filtration associated with V → V ′ is a relative cellular space over 0(V ′′)×0(V ′).

Moreover, let K/F be a quadratic separable field extension. Suppose that V, V ′

and V ′′ are K -vector spaces and that the short sequence is an exact sequence of
K -vector spaces. Then the previous relative cellular structure on 0(V ) induces a
relative cellular structure on the Weil restriction 0K (V ) of the full grassmannian
of K -subspaces with respect to the extension K/F : 0K (V ) is a relative cellular
space over 0K (V ′′)×0K (V ′); see [Karpenko 2000, Theorem 10.9]. The associated
filtration is the restriction of the previous one by K -subspaces.

Suppose that the K -vector space V is isomorphic to a sum of K -subspaces
V ′⊕ V ′′⊕ Ṽ . Using the exact sequences

0→ V ′′⊕ Ṽ → V → V ′→ 0 and 0→ V ′′→ V ′′⊕ Ṽ → Ṽ → 0,

and composing the relative structures, the variety 0K (V ) is turned into a relative
cellular space over 0K (V ′)×0K (V ′′)×0K (Ṽ ), as described in [Karpenko 2000,
Example 10.14].

Let h : V × V → K be a nondegenerate isotropic K/F-hermitian form on V.
Denote by L ⊂ V an isotropic line and set Ṽ = L⊥/L . Let L∗ be an arbitrary
splitting of V → V/L⊥. Applying the observation of the previous paragraph to the
decomposition V ' L⊕ L∗⊕ Ṽ , one obtains that 0K (V ) is a relative cellular space
over 0K (L)×0K (L∗)×0K (Ṽ ).

Furthermore, by [Karpenko 2000, Theorem 15.8], the latter relative cellular
structure restricts to the h-isotropic subspaces in the following way. Let h̃ be the
K/F-hermitian form on Ṽ induced by h. Let Y and Ỹ be the F-varieties of totally
isotropic subspaces of h and h̃ respectively. Let Z be the Weil transfer of the
K -variety of 2-flags of K -vector subspaces of L with respect to the extension K/F
(note that the 0-dimensional F-variety Z is the disjoint union of three copies of
Spec(F) and three copies of Spec(K )). Then Y is a relative cellular space over
Z × Ỹ . The associated filtration is the restriction of the filtration associated with
the relative cellular space structure of 0K (V ) over 0K (L)×0K (L∗)×0K (Ṽ ) by
h-isotropic subspaces.

In [Karpenko 2000], the author proves that, in general, the Chow motive of a
relative cellular space is isomorphic to the Chow motive of its base ([Karpenko
2000, Theorem 6.5]) and he describes in [Karpenko 2000, Corollary 6.11] how this
isomorphism restricts to the irreducible components of the relative cellular space.

Applied to the previous situation, this gives the following. Let X be the F-variety
of maximal totally isotropic subspaces in h. The dimension of such a subspace is
r := bdim(h)/2c. Note that X is an irreducible component of Y. Besides, the unitary
grassmannian X is a projective homogeneous variety under a projective unitary
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group of outer type (see the introduction of [Karpenko 2012]). We write X̃ for the
maximal unitary grassmannian associated with h̃. Since maximal totally isotropic
subspaces of Ṽ are in one-to-one correspondence with those of V containing L , one
can view X̃ as a closed subvariety of X. Let i : X̃ ↪→ X denote the closed embedding.
Let β : X̃  X be the correspondence given by the scheme of pairs (W/L ,U ),
where U is a totally isotropic r-dimensional K -subspace of V, W is a totally
isotropic r -dimensional subspace of L⊥ containing L , and dimK (U +W )≤ r + 1
(correspondences are defined in [Elman et al. 2008, §62]). Then one has the Chow
motivic decomposition

(3.2) M(X)' M(X̃){d}⊕M(X̃)⊕M

with Z/2Z-coefficients, where d = dim(X)− dim(X̃), the morphism M(X̃){d} →
M(X) is given by β, the morphism M(X̃) → M(X) is given by the class in
Ch(X̃ × X) of the graph of i and M is a sum of shifts of M(Spec(K )).

At the level of K -Chow groups (introduced in the previous section), decomposi-
tion (3.2) implies that

(3.3) Ch∗K (X)' Ch∗K (X̃)⊕Ch∗−d
K (X̃),

where the injection Ch∗(X̃) ↪→Ch∗(X) coincides with β∗ and Ch∗−d(X̃) ↪→Ch∗(X)
coincides with i∗. In particular, if h is split (i.e., if the Witt index i0(h) of h is equal
to r ), one deduces by induction that ChK (X) is a free Z/2Z-module of rank 2r.

We write j for the open embedding X\X̃ ↪→ X and we set

f := β t
◦ j : X\X̃  X̃ ,

with β t the transpose of β.
Since Im(i∗) = Ker( j∗) by the localization exact sequence (see [Elman et al.

2008, §52.D]), it follows from (3.3) that

Ch∗K (X)= Im((β∗)K )⊕Ker(( j∗)K ).

Hence, since j∗ is surjective (see [loc. cit.]), we have obtained the following
statement.

Proposition 3.4. The homomorphism

( f ∗)K : Ch∗K (X̃)→ Ch∗K (X\X̃)

is an isomorphism.

The above proposition is crucial for the induction in the proof of Theorem 4.9 in
the next section.
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3B. Associated quadrics. We use notation introduced in Section 3A. Let q :V→ F,
v 7→ h(v, v) be the nondegenerate F-quadratic form associated with h, where V is
considered as an F-vector space. Note that dim(q)= 2 dim(h). We denote by Q
the smooth projective quadric of q . Similarly, let q̃ : Ṽ → F be the nondegenerate
F-quadratic form associated with the hermitian form h̃ and let us denote by Q̃ the
smooth projective quadric of q̃. Note that since q̃ is also the form induced by q
on P⊥/P, with P the q-isotropic F-plane corresponding to L , it is Witt-equivalent
to q .

The incidence correspondence α : Q̃  Q is given by the scheme of pairs
(B/P, A) of isotropic F-lines in P⊥/P and V , respectively, with A⊂ B. By [Elman
et al. 2008, Lemma 72.3], for k < i0(q), one has α∗(l̃k−2)= lk and α∗(lk)= l̃k−2,
where lk (resp. l̃k) is the class in CHk(Q) (resp. CHk(Q̃)) of a k-dimensional totally
q-isotropic (resp. q̃-isotropic) subspace of PF (V ) (resp. PF (Ṽ )). If q is split, given
an orientation of Q (i.e., the choice of one of the two classes in CH(Q) of maximal
isotropic subspaces), we choose an orientation of Q̃ so that the previous formulas
hold for the classes of the respective maximal isotropic subspaces.

We write E for the vector bundle of rank 2r over X given by the closed subvariety
of the trivial bundle V1= V × X consisting of pairs (u,U ) such that u ∈U (with
V viewed as an F-vector space). Let us denote as E⊥ the kernel of the natural
morphism V1→ E∨ given by the polar bilinear form associated with the quadratic
form q, where E∨ is the dual bundle of E . If the dimension of h is even, one has
E⊥ = E . Otherwise, E is a subbundle of E⊥ of corank 2. For our purpose, the
vector bundle E is the appropriate hermitian version of the vector bundle used in
[Elman et al. 2008, §86] for the case of quadratic forms.

The associated projective bundle P(E) is a closed subvariety of codimension

2b(dim(h)+ 1)/2c− 1

of Q× X and we denote by in the associated closed embedding. We write γ for the
class of P(E) in CH(Q× X) and view it as a correspondence Q X. Similarly,
one can consider the analogous correspondence γ̃ : Q̃ X̃ .

Lemma 3.5. One has γ ◦α = β ◦ γ̃ and γ̃ ◦αt
= i t
◦ γ .

Proof. The proof is almost the same as in the case of quadratic forms; see [Elman
et al. 2008, Lemma 86.7]. By [Elman et al. 2008, Corollary 57.22], it suffices to
check the required identities at the level of cycles representing the correspondences.
By definition of the composition of correspondences, the composition γ ◦ α and
β ◦ γ̃ coincide with the cycle of the subscheme of Q̃ × X consisting of all pairs
(B/P,U ) with dimF (B +U ) ≤ 2r + 2 and the compositions γ̃ ◦ αt and i t

◦ γ

coincide with the cycle of the subscheme of Q× X̃ consisting of all pairs (A,W/L)
with A ⊂W. �
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4. Split maximal unitary grassmannian

We use notation introduced in Section 3.
In this section, we make the assumption that the nondegenerate K/F-hermitian

form h is split and we provide a description of the Chow ring ChK (X) of the
maximal unitary grassmannian in terms of generators and relations (Theorem 4.9
and Proposition 4.15).

The method is the one introduced by Vishik [2005] to get the description of the
Chow ring modulo 2 of the maximal orthogonal grassmannian in the split case,
except that we work with the Chow rings ChK and use Proposition 3.4 in place of
the filtration by affine bundles on the maximal orthogonal grassmannian.

The exposition below closely follows the one given in the corresponding part of
[Elman et al. 2008, §86] in the case of quadratic forms. The proofs are very similar
to the original ones in [Elman et al. 2008, §86].

Let us write dim(h)= 2n+2 or 2n+1, with n≥ 0. Note that since i0(q)= 2i0(h)
(see [Karpenko 2012, Lemma 9.1]), the quadratic form q is split if and only if h is
of even dimension. In both cases, P(E) has codimension 2n+ 1 in Q× X.

If dim(h)= 2n+ 2, the cycle γ decomposes as

(4.1) γ = l2n+1× e0+ l ′2n+1× e′0+
2n+1∑
k=1

h2n+1−k
× ek in CH2n+1(Q× X)

for some unique elements ek ∈ CHk(X), k ∈ [0, 2n+ 1] and e′0 ∈ CH0(X), with
l2n+1 and l ′2n+1 the two different classes of (2n+1)-dimensional totally q-isotropic
subspaces of PF (V ) and hi the i-th power of the pull-back h1

∈ CH1(Q) of the
hyperplane class H ∈ CH1(PF (V )) under the closed embedding em : Q ↪→PF (V )
(see [Elman et al. 2008, Propositions 64.3, 68.1 and 68.2]). The variety X is
connected because the algebraic unitary group U(h) is connected and acts transitively
on it. Hence, pulling (4.1) back with respect to the canonical morphism QF(X)→

Q× X, we see that one can choose an orientation of Q such that e0 = 1 and e′0 = 0.
Otherwise – if dim(h)= 2n+ 1 – the cycle γ decomposes as

(4.2) γ = γ ′+ l2n−1× e0+

2n+1∑
k=2

h2n+1−k
× ek in CH2n+1(Q× X)

for some unique elements ek ∈ CHk(X), k ∈ [2, 2n + 1] and e0 ∈ CH0(X), with
γ ′ a cycle such that, by denoting by pX the projection Q × X → X, one has
pX ∗((l2n+1−k × 1) · γ ′)= 0 for any k ∈ [2, 2n+ 1] and pX ∗((h

2n−1
× 1) · γ ′)= 0.

Pulling (4.2) back with respect to QF(X)→ Q× X, one gets that e0 = 1.
The multiplication rules in the ring CH(Q) (see [Elman et al. 2008, Proposi-

tion 68.1]) gives that ek= pX ∗((l2n+1−k×1)·γ ), for k ∈[2, 2n+1] and also for k=1
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if dim(h) is even. In other words, the correspondence γ satisfies γ∗(l2n+1−k)= ek

for k ∈ [2, 2n+ 1] and also for k = 1 for h of even dimension. Note also that, in
the even-dimensional case, one has γ∗(h2n+1)= 1 and that, in the odd-dimensional
case, one has γ∗(h2n−1)= 1.

The relations of the previous paragraph between the correspondence γ and the
elements ek can be rewritten as

(4.3) ek = (pX ◦ in)∗ ◦ (pQ ◦ in)∗(l2n+1−k),

for k ∈ [2, 2n+1] and also for k= 1 for h of even dimension, with pQ the projection
Q× X→ Q (see [Elman et al. 2008, Proposition 62.7]).

Lemma 4.4. One has e2n+1 = [X̃ ] in CH2n+1(X).

Proof. On the one hand, by (4.3) one has (pX ◦ in)∗ ◦ (pQ ◦ in)∗(l0) = e2n+1.
On the other hand, by denoting by A a closed point of Q of degree 1, the cycle
(pX ◦ in)∗ ◦ (pQ ◦ in)∗(l0) is identified with [{U | A ⊂U }] = [{U | A⊗F K ⊂U }]
in CH2n+1(X). The latter algebraic cycle is equal to [{U | L ⊂U }] = [X̃ ]. �

Let us denote by ẽk ∈CHk(X̃) the elements given by (4.1) or (4.2) for X̃ . Similarly,
the correspondence γ̃ satisfies γ̃∗(l̃2n−1−k)= ẽk for the appropriate integers k with
respect to the parity of dim(h).

The following statement is a direct consequence of Lemma 3.5.

Lemma 4.5. For all k ∈ [0, 2n−1]\{1} and also for k = 1 for h of even dimension,
one has

(i) β∗(ẽk)= ek in CH(X);

(ii) i∗(ek)= ẽk in CH(X̃).

Proof. (i) For k ∈ [2, 2n− 1] and also for k = 1 for h of even dimension, one has

β∗(ẽk)= β∗ ◦ γ̃∗(l̃2n−1−k)= γ∗ ◦α∗(l̃2n−1−k)= γ∗(l2n+1−k)= ek .

For k = 0, one can make the same computation with h̃2n−1 and h2n+1 if h is
even-dimensional and with h̃2n−3 and h2n−1 if h is odd-dimensional (the incidence
correspondence α also satisfies α∗(h̃i )= hi+2 for 0≤ i ≤ bdim(Q)/2c− 2, where
h̃i is the i-th power of the hyperplane class h̃1

∈ CH1(Q̃)).

(ii) For k ∈ [2, 2n− 1] and also for k = 1 for h of even dimension, one has

i∗(ek)= i t
∗
(ek)= i t

∗
◦ γ∗(l2n+1−k)= γ̃∗ ◦α

t
∗
(l2n+1−k)=γ̃∗ ◦α

∗(l2n+1−k)

=γ̃∗(l̃2n−1−k)= ẽk . �

For I ⊂ [0, 2n+ 1] or I ⊂ [0, 2n+ 1]\{1}, depending on whether the dimension
of h is respectively even or odd, we write eI for the product of ek for all k ∈ I.
Similarly, one defines the elements ẽJ for J ⊂ [0, 2n− 1] or J ⊂ [0, 2n− 1]\{1}.



384 RAPHAËL FINO

The following statement is obtained by combining Lemma 4.5(ii) with the projection
formula and Lemma 4.4.

Corollary 4.6. One has i∗(ẽJ )= eJ · e2n+1 = eJ∪{2n+1} for every J ⊂ [0, 2n− 1]
or for every J ⊂ [0, 2n − 1]\{1}, depending on whether the dimension of h is,
respectively, even or odd.

Let us denote by Iod the odd part of a set of integers I.

Corollary 4.7. For h of even dimension, the monomial e[1,2n+1]od = e1e3 · · · e2n+1

is the class of a rational point in CH0(X). For h of odd dimension, the monomial
e[3,2n+1]od = e3e5 · · · e2n+1 is the class of a rational point in CH0(X).

Proof. We induct on n. If dim(h) = 1, one has X = Spec(F). If dim(h) = 2, the
cycle e1 is the class of a rational point on the curve X; see Lemma 4.4. The conclu-
sion follows from the formulas e[1,2n+1]od = i∗(ẽ[1,2n−1]od) for h of even dimension
and e[3,2n+1]od = i∗(ẽ[3,2n−1]od) for h of odd dimension; see Corollary 4.6. �

Lemma 4.8. One has ( f ∗)K (ẽJ ) = ( j∗)K (eJ ) for any J ⊂ [0, 2n− 1] or for any
J ⊂ [0, 2n− 1]\{1}, depending on whether the dimension of h is, respectively, even
or odd.

Proof. By Lemma 4.5(i), it suffices to prove that ( f ∗)K preserves products to
get the conclusion. Since the composition of correspondences i t

◦ β coincides
with the class of the diagonal in CH(X̃2), one has i∗ ◦β∗ = IdCH(X̃). Let π denote
the quotient map ChK (X)→ ChK (X)/ Im((i∗)K ) and let (i∗)K and ( j∗)K be the
homomorphisms such that (i∗)K ◦ π = (i∗)K and ( j∗)K ◦ π = ( j∗)K (note that
(i∗)K ◦ (i∗)K = 0 so (i∗)K is well defined). One has

(i∗)K ◦ (( j∗)K )
−1
◦ ( j∗)K ◦ (β∗)K = (i∗)K ◦π ◦ (β∗)K = IdChK (X̃);

that is, the morphism (i∗)K ◦ (( j∗)K )
−1 is the left inverse of ( f ∗)K . Let x, y ∈

ChK (X̃) and let z be the element of ChK (X̃) such that

( f ∗)K (z)= ( f ∗)K (x) · ( f ∗)K (y).

Then, composing the previous identity by (i∗)K ◦ (( j∗)K )
−1, one gets

z = (i∗)K ◦ (( j∗)K )
−1
◦ ( j∗)K ((β∗)K (x) · (β∗)K (y)),

that is,
z = (i∗)K ◦ (β∗)K (x) · (i∗)K ◦ (β∗)K (y),

i.e., z = x · y. Therefore, the morphism ( f ∗)K preserves products. The lemma is
proven. �
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Now, one can prove the K/F-hermitian analogue of [Vishik 2005, Proposi-
tion 2.4(1)] the same way [Elman et al. 2008, Theorem 86.12] has been proven for
the case of quadratic forms. We still write eI for the class of eI in ChK (X).

Theorem 4.9. Let K/F be a quadratic separable field extension and h a split
nondegenerate K/F-hermitian form. Let X be the variety of maximal totally
isotropic subspaces in h. If h is of even dimension 2n+ 2 then the set of all 2n+1

monomials eI for all subsets I ⊂ [0, 2n + 1]od is a basis of the Z/2Z-module
ChK (X). Otherwise — if h is of odd dimension 2n+1 — the set of all 2n monomials
eI for all subsets I ⊂ [0, 2n+ 1]od\{1} is a basis of the Z/2Z-module ChK (X).

Proof. We use an induction on n. If dim(h) = 2, the Z/2Z-module Ch1
K (X) is

generated by the class e1 of a rational point (see decomposition (3.3) and Lemma 4.4).
If dim(h)= 1, the statement is obviously true since X = Spec(F).

Consider the exact sequence

0→ ChK (X̃)
(i∗)K−−−→ChK (X)

( j∗)K
−−−→ChK (X\X̃)→ 0

associated with the localization exact sequence for classical Chow groups. In both
cases, the induction hypothesis and Corollary 4.6 imply that the set of monomials
eI for all I containing 2n+ 1 is a basis of the image of (i∗)K . On the other hand,
Lemma 4.8, Proposition 3.4 and the induction hypothesis imply that, in both cases,
the set of all the elements ( j∗)K (eI ) with 2n+ 1 /∈ I is a basis of ChK (X\X̃). The
conclusion follows. �

Also, one has e2k = 0 in ChK (X) for all k ≥ 2 and also for k = 1 if dim(h) is
even; see (4.13) and Corollary 4.14.

Proposition 4.10. In CH(X), one has ck(V1/E) = 2ek for all k ∈ [2, 2n + 1],
c2n+2(V1/E)= 0 and c1(V1/E)= 2e1 if the dimension of h is even.

Proof. We apply (em× IdX )∗ to the cycle γ . Assume first that dim(h) = 2n+ 2.
Since em∗(hk)= 2H k+1 for all k ≥ 0, decomposition (4.1) gives that

[P(E)] = em∗(l2n+1)× 1+
2n+1∑
k=1

2H 2n+2−k
× ek in CH2n+2(PF (V )× X).

On the other hand, by [Elman et al. 2008, Proposition 58.10], one has

[P(E)] =
2n+2∑
k=0

H 2n+2−k
× ck(V1/E).

Hence, it follows from the projective bundle theorem (see [Elman et al. 2008,
Theorem 53.10]) that ck(V1/E)= 2ek for all k ∈ [1, 2n+1] and c2n+2(V1/E)= 0
in CH(X).
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Assume that dim(h)= 2n+ 1. Decomposition (4.2) gives the identity

[P(E)] = (em× IdX )∗(γ
′)+ em∗(l2n−1)× 1+

2n+1∑
k=1

2H 2n+2−k
× ek

in CH2n+2(PF (V )× X). Moreover, it follows from the conditions defining the
cycle γ ′ in (4.2) that (em×IdX )∗(γ

′) has the form H 2n+1
×a for some a ∈CH1(X).

Consequently, by using [Elman et al. 2008, Proposition 58.10] and the projective
bundle theorem as has been done in the even case, one gets that ck(V1/E)= 2ek

for all k ∈ [2, 2n+ 1] and c2n+2(V1/E)= 0 in CH(X). �

Remark 4.11. The above proposition shows in particular that for any nondegenerate
K/F- hermitian form h, the algebraic cycles 2ek , for k ∈ [2, 2n+ 1] and also for
k = 1 if dim(h) is even, are defined over F, i.e., these are always rational cycles
(the cycles ek are defined over any splitting field of h).

Remark 4.12. Suppose dim(h)= 2n+ 2. Let Y be the maximal orthogonal grass-
mannian of q. Since a totally h-isotropic K -subspace is also a totally q-isotropic
F-subspace, we have a natural closed embedding im : X ↪→ Y. Let us denote by
zk ∈CHk(Y ), 1≤ k ≤ 2n+1, the generators of CH(Y ) introduced by Vishik [2005],
quadratic analogues of the elements ek (recall that q is split). We write E for the
subbundle of the trivial bundle V ×Y over Y given by pairs (u,U ) such that u ∈U.
Note that one has E = im∗(E). Hence, since zk is half the k-th Chern class of the
vector bundle (V × Y )/E (see [Elman et al. 2008, Proposition 86.13] or [Vishik
2009, Proposition 2.1]) and CH(X) is torsion-free (since the K/F- hermitian form
h is split; see [Köck 1991] for example), it follows from Proposition 4.10 that

ek = im∗(zk)

in CH(X) for all 1 ≤ k ≤ 2n + 1 (this can also be obtained by comparing the
decompositions (4.1) and [Elman et al. 2008, (86.4)]). In the odd-dimensional case,
the variety X is naturally a closed subvariety of the second to last grassmannian of q .

We set ek = 0 for k > 2n+ 1 (which makes sense since by Proposition 4.10 the
vector bundle V1/E is in both cases of rank 2n+ 2 with trivial top Chern class).
By duality, one has V1/E⊥ ' E∨. Hence, in the Grothendieck ring K (X), one has

[E⊥/E] = [E⊥] − [E] = −[E∨] − [E] = [(V1/E)∨] + [V1/E]

modulo the trivial bundles. Therefore, by the Whitney sum formula ([Elman et al.
2008, Proposition 54.7]), one has c(E⊥/E)= c((V1/E)∨)◦c(V1/E). Thus, since
CH(X) is torsion-free, it follows from Proposition 4.10 that, for even-dimensional h,
one has

e2
k − 2ek−1ek+1+ 2ek−2ek+2− · · ·+ (−1)k−12e1e2k−1+ (−1)ke2k = 0
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in CH(X), for all k ≥ 1, and for odd-dimensional h, one has

e2
k − 2ek−1ek+1+ 2ek−2ek+2− · · ·+ (−1)k−1c1(V1/E) · e2k−1+ (−1)ke2k = 0

in CH(X), for all k ≥ 2 (recall that E⊥= E if dim(h) is even and E⊥/E has rank 2
otherwise). Moreover, by using decomposition (3.3) and an induction on n, one
obtains that, for odd-dimensional h, the group Ch1

K (X) is trivial. Consequently, in
both even and odd situations, one has

(4.13) e2
k = e2k

in ChK (X), for all k ≥ 2, and also for k = 1 if dim(h) is even. The relations (4.13)
are also a consequence of the respective result for the zk’s, see Remark 4.12 and
[Elman et al. 2008, (86.15)].

Corollary 4.14. One has e2
k = 0 in ChK (X) for all k ≥ 2, and also for k = 1 if

dim(h) is even.

Proof. We proceed by induction on n. For n = 0, the conclusion is true by
dimensional reasons. By (4.13), the conclusion is true for k > n. Let 1 ≤ k ≤ n
(or 2 ≤ k ≤ n if dim(h) is odd). By codimensional reasons, it suffices to prove
that ( j∗)K (e2

k) = 0 in Ch2k
K (X\X̃) to get that e2

k = 0 in Ch2k
K (X) (see the exact

sequence in the proof of Theorem 4.9). Moreover, one has ( j∗)K (e2
k)= ( f ∗)K (ẽ2

k)

(see Lemma 4.8 and its proof). Since ẽ2
k = 0 in ChK (X̃) by the induction hypothesis,

the proof is complete. �

We have obtained that e2k = 0 in ChK (X) for all k ≥ 2 and also for k = 1 if
dim(h) is even. We are now able to determine the multiplicative structure for the
ring ChK (X) the same way it has been done for the case of quadratic forms.

Proposition 4.15. There is a ring isomorphism

ChK (X)'
⊗

m≤k≤n

(Z/2Z[e2k+1] / (e2
2k+1)),

with m = 0 if the dimension of h is even and m = 1 otherwise.

Proof. Assume first that h is of even dimension. Let us denote by R the factor ring of
the polynomial ring Z/2Z[t0, t1, . . . , tn] by the ideal generated by the monomials t2

k ,
for 0≤ k ≤ n. Then, by Corollary 4.14, the ring homomorphism

ϕ :R→ ChK (X), tk 7→ e2k+1

is well defined. Furthermore, it follows from Theorem 4.9 that ϕ is surjective. Since
the classes of the monomials tr0

0 tr1
1 · · · t

rn
n , with rk = 0 or 1 for every k, generate R,

the ring homomorphism ϕ is also injective by Theorem 4.9. One proceeds the same
way for h of odd dimension, except there is no variable t0. �
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5. General maximal unitary grassmannian

In this section, we use notation introduced in the previous sections. We do not make
any assumption on the isotropy of the nondegenerate K/F-hermitian form h.

For any scheme Y over F, we write Y for Y × Spec F(X), where F(X) is the
function field of the maximal unitary grassmannian X (note that K ⊗F F(X) is still
a field). Following the path set by Vishik [2005], we describe the subring

ChK (X) := Im(ChK (X)→ ChK (X))

of rational elements; see Theorem 5.7 (actually, this description does not depend on
the choice of a splitting field of h which does not split K ). We use similar notation
and vocabulary for classical Chow rings and certain products of F-varieties.

The exposition in this section follows the thread of [Elman et al. 2008, §87].
The proofs are sometimes very similar (the proof of Theorem 5.7 compared to the
original [Elman et al. 2008, Theorem 87.7], for example).

We consider the elements ek ∈ CHk(X) introduced in the previous section.

Proposition 5.1. If dim(h)= 2n+2 then the elements (ek×1)+(1×ek) in CH(X2)

are rational for all k ∈ [1, 2n+ 1].
If dim(h)= 2n+1 then the elements (ek×1)+ (1×ek) in ChK (X2) are rational

for all k ∈ [2, 2n+ 1].

Proof. Suppose first that dim(h) = 2n + 2. Here we use notation and material
introduced in Remark 4.12. Let k∈[1, 2n+1]. Since the element (zk×1)+(1×zk)∈

CH(Y 2) is rational (see [Elman et al. 2008, Proposition 86.17 and Corollary 87.3])
and one has im∗(zk)= ek , the element (ek×1)+ (1×ek) ∈CH(X2) is also rational.

Suppose now that dim(h)= 2n+ 1. In that case, let us denote by im the natural
closed embedding X ↪→ Y2n of the variety X into the second to last grassmannian
of q. Let us denote by z−1

k ∈ CHk(Y 2n), 1 ≤ k ≤ 2n + 1, the Z -type generators
of CHk(Y 2n) (see [Vishik 2009, §2]). Note that it follows from [Vishik 2009,
Proposition 2.1] and Proposition 4.10 that, for any 2≤ k ≤ 2n+ 1, one has

im∗(z−1
k )= ek

in CH(X). Moreover, we write Y for the maximal grassmannian of q and zk ∈

CHk(Y ), 1 ≤ k ≤ 2n, for the generators of CH(Y ) introduced by Vishik [2005].
We consider the diagram

Y2n
f
←− Y2n,2n+1

g
−→ Y,

where Y2n,2n+1 is the partial orthogonal flag variety of totally q-isotropic F-vector
subspaces of dimension 2n and 2n+ 1, and the morphisms f and g are the natural
projections. By [Vishik 2009, Lemma 2.1], there is an element c1 ∈ CH1(Y2n,2n+1)
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such that, for any 2≤ k ≤ 2n+ 1, one has

f ∗(z−1
k )= c1 · g∗(zk−1)+ g∗(zk)

(with z2n+1 = 0). Let e ∈ CH(Y2n,2n+1) be the class of a generic point. Using the
previous identity and the projection formula, one get that

(5.2) z−1
k = f∗(e · c1 · g∗(zk−1))+ f∗(e · g∗(zk))

for any 2≤ k ≤ 2n+ 1. Since the element (zk × 1)+ (1× zk) ∈ CH(Y 2) is rational
for any 1≤ k ≤ 2n+ 1, the element

( f∗)×2((e× e) · (c1× 1+ 1× c1) · (g∗)×2((zk−1× 1)+ (1× zk−1)
))

+ ( f∗)×2((e× e) · (g∗)×2((zk × 1)+ (1× zk)))

is rational for any 2 ≤ k ≤ 2n+ 1. Furthermore, by (5.2), the latter cycle can be
rewritten as

(5.3) (z−1
k ×1)+(1×z−1

k )+ f∗(e·g∗(zk−1))× f∗(e·c1)+ f∗(e·c1)× f∗(e·g∗(zk−1)).

Since f∗(e · c1) ∈ CH1(Y2n) and Ch1
K (X) is trivial (see paragraph right before

Corollary 4.14), the conclusion is obtained by taking the image of the rational cycle
(5.3) under im∗ and then projecting to ChK (X). �

For every subset I ⊂ [1, 2n+ 1]od, with 1 /∈ I if dim(h)= 2n+ 1, we set

(5.4) x I :=
∏
k∈I

((ek × 1)+ (1× ek)) ∈ ChK (X2).

Lemma 5.5. For any subsets I, J ⊂ [1, 2n+1]od, with 1 /∈ I ∪ J if dim(h)= 2n+1,
one has in ChK (X),

(x J )∗(eI )=


eI∩J if I ∪ J = [1, 2n+ 1]od,

or I ∪ J = [3, 2n+ 1]od for odd-dimensional h;
0 otherwise.

Proof. Assume that dim(h)= 2n+ 2. Since

x J =
∑
J1⊂J

eJ1 × eJ\J1,

one has
(x J )∗(eI )=

∑
J1⊂J

deg(eI · eJ1)eJ\J1,

in ChK (X), where deg :ChK (X)→ChK (Spec F(X))= Z/2Z is the degree homo-
morphism associated with the push-forward of the structure morphism. Therefore,
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it suffices to show that for any subsets I, J1 ⊂ [1, 2n+ 1]od, one has

(5.6) deg(eI · eJ1)=

{
1 mod 2 if J1 = [1, 2n+ 1]od\I ;
0 mod 2 otherwise,

to get the conclusion. For J1 = [1, 2n+1]od\I, this follows from Corollary 4.7. For
J1 6= [1, 2n+ 1]od\I, using Corollary 4.14 (or Theorem 4.9), one gets that eI · eJ1

is either zero or the monomial eL for some L different from [1, 2n + 1]od, thus
deg(eI · eJ1)= 0 mod 2. The proof in the odd case is similar. �

We are now able to prove the K/F-hermitian analogue of [Vishik 2005, Main
Theorem 5.8].

Theorem 5.7. Let K/F be a quadratic separable field extension and h a nonde-
generate K/F-hermitian form of dimension 2n+ 2 or 2n+ 1. Let X be the variety
of maximal totally isotropic subspaces in h. Then the ring ChK (X) is generated
by all ek , k ∈ [3, 2n + 1]od and also k = 1 for h of even dimension, such that
ek ∈ ChK (X).

Proof. Assume that dim(h)= 2n+ 2. By Theorem 4.9, one has to show that if an
element

α =
∑

aI eI ∈ ChK (X)

(with I ⊂ [1, 2n+1]od and aI ∈Z/2Z) is rational, then for every I satisfying aI = 1
and any k ∈ I, the element ek ∈ ChK (X) is rational.

One may assume that α is homogeneous. We induct on the number of nonzero
coefficients of α.

Let I be a subset with largest |I | such that aI = 1. Let k ∈ I and set

J = ([1, 2n+ 1]od\I )∪ {k}.

We claim that (x J )∗(α)= ek . By Lemma 5.5, it suffices to prove that if I ′ is a subset
such that aI ′ = 1 and I ′∪ J = [1, 2n+1]od then I ′= I. Since I ′∪ J = [1, 2n+1]od,
one has

I ′ = ([1, 2n+ 1]od\J )∪ (J ∩ I ′).

By maximality of |I |, the subset J ∩ I ′ is either empty or consists of a single
element. Hence, it follows from the homogeneity of α that J ∩ I ′ = {k}, that is
I ′ = I. The claim is proven.

Thus, since x J is rational, the cycle ek is also rational, for all k ∈ I. Consequently,
the elements eI and α− eI are rational. By the induction hypothesis, every element
ek appearing in the decomposition of α− eI is rational and it is therefore so for α.
This concludes the even case and the odd case can be treated similarly. �
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6. The invariant J(h)

In this section, we define a new invariant of nondegenerate K/F-hermitian forms
on the model of the J -invariant for nondegenerate quadratic forms defined by Vishik
[2005] (although this section follows the thread of [Elman et al. 2008, §88], where
the latter is defined in the “opposite way”).

Let h be a nondegenerate K/F-hermitian form of dimension 2n+ 2 or 2n+ 1
and X the variety of maximal totally isotropic subspaces in h. We use notation
introduced in the previous sections. We still denote by ek the generators of ChK (X).
The discrete J -invariant J (h) is defined as follows:

J (h)=
{
{k ∈ [1, 2n+ 1]od with ek ∈ ChK (X)} if dim(h)= 2n+ 2;
{k ∈ [3, 2n+ 1]od with ek ∈ ChK (X)} if dim(h)= 2n+ 1.

For a subset I ⊂ [1, 2n+ 1] let us denote by ‖I‖ the sum of all k ∈ I.

Proposition 6.1. The biggest codimension i such that Ch
i
K (X) 6= 0 is equal to

‖J (h)‖.

Proof. The element
∏

k∈J (h) ek ∈ ChK (X) is nontrivial by Theorem 4.9 and has the
biggest codimension among the nontrivial elements of ChK (X) by Theorem 5.7. �

Proposition 6.2. A nondegenerate K/F-hermitian form h is split if and only if
J (h) is maximal.

Proof. If h is split then the fact that J (h) is maximal follows from the definition. If
J (h) is maximal then, by Corollary 4.7, the class of a rational point of X belongs
to ChK (X). Consequently, the variety X admits a closed point x of odd degree
(recall that the degree map is well defined on ChK ). Combining the fact that the
residue field F(x) is a splitting field of h with Springer’s theorem for quadrics, one
gets the identities

bdim(h)/2c = i0(hF(x))= i0(qF(x))/2= i0(q)/2= i0(h).

Therefore h is split. �

Lemma 6.3. Let h = h̃⊥H. Then J (h)= J (h̃)∪ {2n+ 1}.

Proof. Since e2n+1 = [X̃ ] (see Lemma 4.4), one has 2n+ 1 ∈ J (h). Let i ≤ 2n− 1.
From decomposition (3.3) (where d = 2n+ 1), one gets Chi

K (X)' Chi
K (X̃) with

ei corresponding to ẽi by Lemma 4.5(i). The conclusion follows. �

Corollary 6.4. Let h and h′ be Witt-equivalent K/F-hermitian forms with h '
h′⊥ jH. Then J (h)= J (h′)∪ {2n+ 1, 2n− 1, . . . , 2n+ 1− 2( j − 1)}.

The following statement is the ChK -version of [Elman et al. 2008, Lemma 88.5]
of Karpenko and Merkurjev for classical Chow groups (see Remark 2.1).
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Proposition 6.5. Let Z be a smooth F-variety and Y an equidimensional F-variety.
Given an integer m such that for any nonnegative integer i and any point y ∈ Y of
codimension i the change of field homomorphism

Chm−i
K (Z)−→ Chm−i

K (Z F(y))

is surjective, the change of field homomorphism

Chm
K (Y )−→ Chm

K (YF(Z))

is also surjective.

For any integer k, let us denote by Xk the F-variety of k-dimensional totally
isotropic subspaces in h (so Xbdim(h)/2c = X and Xk =∅ for k /∈ [0, bdim(h)/2c]).
By the result [Karpenko 2012, Corollary 7.3] (which is also a consequence of
[Karpenko 2000, Theorem 15.8]), for any integer k, there is a Chow motivic
decomposition with Z/2Z-coefficients

(6.6) M(Xk)' Mk ⊕M,

where M is a sum of shifts of M(Spec(K )) and Mk splits as a sum of Tate motives
over any splitting field of h. The motive Mk is defined by Xk uniquely up to an
isomorphism and is called the essential motive of Xk .

Lemma 6.7. The change of field homomorphism Chi
K (X)→ Chi

K (X F(X1)) is sur-
jective for any i ≤ 2n if dim(h)= 2n+2 and for any i ≤ 2n−1 if dim(h)= 2n+1.

Proof. By Proposition 6.5, it is sufficient to prove that for any x ∈ X the change
of field homomorphism Chi

K (X1)→ Chi
K (X1 F(x)) is surjective, for any i ≤ 2n if

dim(h)= 2n+ 2 and for any i ≤ 2n− 1 if dim(h)= 2n+ 1, to get the conclusion.
It follows from decomposition (6.6) that

(6.8) ChK (X1)' ChK (M1).

Furthermore, by [Karpenko 2012, Corollary 9.6], one has the following Chow
motivic decomposition with Z/2Z-coefficients

(6.9) M(Q)' M1⊕M1{1}

(where Q is the smooth projective quadric associated with the nondegenerate
quadratic form q : V → F, v 7→ h(v, v)).

Combining (6.8) with (6.9), we see that it suffices to show that for any x ∈ X
the change of field homomorphism

(6.10) Chi
K (Q)→ Chi

K (Q F(x))

is surjective, for any i ≤ 2n if dim(h)= 2n+ 2 and for any i ≤ 2n− 1 if dim(h)=
2n + 1, to get the conclusion. In fact, (6.10) is already surjective at the level
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of integral Chow groups. Indeed, since F(x) is a splitting field of the hermitian
form h, one has i0(q F(x)) is equal to 2n+ 2 or 2n depending on whether dim(h)
is respectively even or odd. Therefore, the group CHi (QF(x)) is generated by
hi (always rational) for i ≤ 2n or i ≤ 2n − 1 depending on whether dim(h) is
respectively even or odd (see [Fino 2013, §1] for example). �

Corollary 6.11. J (h)⊂ J (h F(X1))⊂ J (h)∪ {2n+ 1}.

The following proposition relates the set J (h) and the absolute Witt indices of h.
It follows from Corollaries 6.4 and 6.11.

Proposition 6.12. Let h be a nondegenerate K/F-hermitian form of dimension
2n+2 or 2n+1 with height h(h). Then J (h) contains the complementary of the set

{2n+ 1− 2 j0(h), 2n+ 1− 2 j1(h), . . . , 2n+ 1− 2 jh(h)−1(h)}

in [1, 2n+1]od, excluding 1 for h of odd dimension. In particular, |J (h)| ≥ n−h(h)
and the inequality is strict for h of even dimension.

7. Steenrod operations

Let h be a nondegenerate K/F-hermitian form on V of dimension 2n+2 or 2n+1
and let X be the variety of maximal totally isotropic subspaces in h. This section is
the hermitian replica of [Elman et al. 2008, §89], where we compute the Steenrod
operations on Ch(X).

We use notation introduced in the previous sections and we write πX and πQ

for the respective compositions pX ◦ in and pQ ◦ in. Let L be the canonical line
bundle over P(E) and T the relative tangent bundle of πX . By [Elman et al. 2008,
Example 104.20], there is an exact sequence of vector bundles over P(E):

0→ 1→ L⊗π∗X (E)→ T → 0.

Hence, since ci (E) = 0 in Ch(X) for all i > 1 and c1(E) = 0 in Ch(X) for even-
dimensional h and c1(E) = 0 in ChK (X) for odd-dimensional h (follows from
Proposition 4.10 and the fact that Ch1

K (X) is trivial in the odd case), one deduces
from the Whitney sum formula and [Fulton 1984, Remark 3.2.3 (b)] that

c(T )= c(L⊗π∗X (E))= c(L⊗12r )= c(L)2r

in Ch(X) if dim(h) is even and in ChK (X) otherwise, with r = bdim(h)/2c (recall
that E has rank 2r ). Furthermore, since L coincides with the pull-back with respect
to πQ of the canonical line bundle over Q, one has c(L)= 1+π∗Q(h

1) in CH(Q).
Consequently, one has

(7.1) c(T )= (1+π∗Q(h
1))2r

in Ch(X) if dim(h) is even, and in ChK (X) otherwise.
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The following statement is the K/F-hermitian analogue of the result [Vishik
2005, Theorem 4.1] for quadratic forms.

Theorem 7.2. Assume char(F) 6= 2. Let h be a nondegenerate K/F-hermitian
form of dimension 2n+ 2 or 2n+ 1 and X the variety of maximal totally isotropic
subspaces in h. Let SX : Ch(X)→ Ch(X) denote the Steenrod operation of coho-
mological type on X. Then one has

Si
X
(ek)=

(
k
i

)
ek+i

in Ch(X) if dim(h) is even, and in ChK (X) otherwise, for all i and k ∈ [2, 2n+ 1]
and also for i = k = 1 if dim(h) is even.

Proof. By [Elman et al. 2008, Corollary 78.5], one has

SQ(l2n+1−k)= (1+ h1)2r+k
· l2n+1−k .

It follows from (4.3), (7.1) and [Elman et al. 2008, Theorem 61.9 and Proposi-
tion 61.10] that one has

SX (ek)= SX ◦πX ∗ ◦π
∗

Q(l2n+1−k)

= πX ∗ ◦ c(−T ) ◦ SP(E) ◦π
∗

Q(l2n+1−k)

= πX ∗((1+π∗Q(h
1))−2r

·π∗Q ◦ SQ(l2n+1−k))

= πX ∗ ◦π
∗

Q((1+ h1)−2r
· (1+ h1)2r+k

· l2n+1−k)

= πX ∗ ◦π
∗

Q((1+ h1)k · l2n+1−k)

=

∑
i≥0

(
k
i

)
πX ∗ ◦π

∗

Q(l2n+1−k−i )=
∑
i≥0

(
k
i

)
ek+i

in Ch(X) if dim(h) is even, and in ChK (X) otherwise. �

Note that Theorem 7.2 is also a direct consequence of the quadratic case [Vishik
2005, Theorem 4.1]; see Remark 4.12.

8. Canonical dimension

In this section, we compute the canonical 2-dimension cdim2(X) of the maximal
unitary grassmannian X associated with a nondegenerate K/F-hermitian form h in
terms of the J -invariant J (h).

We recall the definition of the canonical 2-dimension of a variety (see [Karpenko
2010] for an introduction on canonical dimension and for a more geometric defini-
tion).
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Let X be an F-variety. An isotropy field L of X is an extension L/F such that
X (L) 6=∅ (note that if X is a maximal unitary grassmannian then this is the same
thing as a splitting field of the corresponding hermitian form h).

An isotropy field E is called 2-generic if for any isotropy field L there is an
F-place E ⇀ L ′ for some finite extension L ′/L of odd degree (see [Elman et al.
2008, §103] for an introduction to F-places). For example, the function field F(X)
is 2-generic (because it is generic).

The canonical 2-dimension cdim2(X) of X is the minimum of the transcendence
degree tr.degF (E) over all 2-generic field extensions E/F. If X is smooth then
cdim2(X)≤ dim(X). One says that X is 2-incompressible if cdim2(X)= dim(X).

The proof of the theorem below is a very slight modification of the corresponding
one for quadratic forms; see [Elman et al. 2008, Theorem 90.3]. Namely, at some
point, one just has to consider the Chow rings ChK . Nevertheless, we write down
this modified version.

The two following facts about F-places are used in the proof (contained in
[Elman et al. 2008, §103]).

One can compose F-places. In particular, any F-place E ⇀ L can be restricted
to a subfield E ′ of E containing F (since field extensions over F are F-places).

For any proper F-variety Y equipped with an F-place π : F(Y ) ⇀ L , there is a
morphism Spec(L)→ Y.

The following ChK -version of the result [Elman et al. 2008, Proposition 58.18]
for classical Chow groups will also be needed (see Remark 2.1).

Proposition 8.1. Let Z be a smooth F-scheme and Y a Z-scheme. Suppose there
is a flat morphism of F-schemes f : Y → Y ′. If for every y′ ∈ Y ′, the pull-back
homomorphism ChK (Z)→ ChK (Y ×Y ′ Spec(F(y′))) is surjective then the homo-
morphism

ChK (Y ′)⊗ChK (Z)→ ChK (Y ), α⊗β 7→ ( f )∗K (α) ·β

is surjective.

Theorem 8.2. Let h be a nondegenerate K/F-hermitian form and X the associated
maximal unitary grassmannian. Then

cdim2(X)= dim(X)−J (h).

Proof. Let E be a 2-generic isotropy field of X with minimum transcendence degree
cdim2(X) and Y be the closure of the F-morphism Spec(E)→ X. Since F(Y ) is
a subfield of E , one has

(8.3) tr.degF (E)≥ dim(Y ).

Moreover, since E is 2-generic, there is an F-place E ⇀ L , with L a field
extension of F(X) of odd degree. Restricting E ⇀ L to F(Y ), one gets an F-place
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π : F(Y ) ⇀ L , and thus the existence of a morphism f : Spec(L) → Y. Let
g : Spec(L)→ X be the morphism induced by the extension L/F(X) and let Z be
the closure of the image of ( f, g) : Spec(L)→ Y × X. Then [F(Z) : F(X)] is odd
since it divides [L : F(X)]. Thus, the image of [Z ] under the composition

Ch(Y × X) (i×1)∗
−−−−→Ch(X2)

p2
−−−→∗ Ch(X),

where i : Y → X is the closed embedding and p2 is the second projection, is equal
to [X ]. It follows that (i × 1)∗([Z ])F(X) 6= 0 in ChK (X2)⊂ ChK (X2).

We claim that the homomorphism

(8.4) ChK (Y )⊗ChK (X2)→ ChK (Y × X), α⊗β 7→ (pY )
∗

K (α) · (i × 1)∗K (β),

where pY is the projection Y × X→ Y, is surjective. By Proposition 8.1, it suffices
to show that for any y ∈ Y the homomorphism ChK (X2)→ChK (X F(y)) associated
with the pull-back of the induced morphism Spec(F(y))× X → X2 (where the
second factor is the identity) is surjective to prove the claim. The pull-back homo-
morphism Ch(X2)→ Ch(X F(y)) sends an element in the fiber of the rational cycle
x I ∈ Ch(X2) (introduced in (5.4)) under restriction to eI ∈ Ch(X F(y)) ' Ch(X).
Therefore, since the classes eI generate ChK (X) (Theorem 4.9), one deduces that
the composition

Ch(X2)→ Ch(X F(y))→ ChK (X F(y))

is surjective. Therefore the homomorphism ChK (X2)→ ChK (X F(y)) is also sur-
jective and the claim is proven.

As a consequence of [Elman et al. 2008, Proposition 49.20 and 58.17], one gets
that the diagram

ChK (Y )⊗ChK (X2) //

i∗K⊗1
��

ChK (Y × X)

(i×1)∗K
��

ChK (X)⊗ChK (X2) //

��

ChK (X2)

��
ChK (X)⊗ChK (X2) // ChK (X2)

,

where the horizontal arrows are defined as in (8.4), is commutative. Using the
fact that (i × 1)∗([Z ])F(X) 6= 0 in ChK (X2) and the claim, one obtains that the
composition

ChK (Y )→ ChK (X)→ ChK (X)

is nontrivial. Therefore, by Proposition 6.1 one has dim(Y )≥ dim(X)− J (h). Thus,
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combining with inequality (8.3), one gets

cdim2(X)≥ dim(X)− J (h).

By Proposition 6.1, there is a closed subvariety Y ⊂ X of dimension dim(X)−J (h)
such that [Y ] 6= 0 in ChK (X). In particular, one has [Y ] 6= 0 in Ch(X). From this
moment on, the remaining of the proof of the second inequality is strictly the same
as the one in the orthogonal case; see [Elman et al. 2008, Theorem 90.3]. �

We recall that if dim(h)= 2n+ 1 then

dim(X)= n(n+ 2)= 3+ 5+ · · ·+ (2n− 1)+ (2n+ 1)

and if dim(h)= 2n+ 2 then

dim(X)= (n+ 1)2 = 1+ 3+ 5+ · · ·+ (2n− 1)+ (2n+ 1).

Corollary 8.5. The variety X is 2-incompressible if and only if J (h) is empty.

Remark 8.6. We call the generic hermitian form of dimension d (for the fixed
separable extension K/F) the diagonal K (t1, . . . , td)/F(t1, . . . , td)-hermitian form
〈t1, . . . , td〉, where t1, . . . , td are variables. Since any hermitian form can be di-
agonalized (see [Scharlau 1985, Theorem 6.3 of Chapter 7]), any d-dimensional
K/F-hermitian form is a specialization of the generic hermitian form of dimension d .
In the case of a generic hermitian form, the maximal unitary grassmannian is 2-
incompressible by [Karpenko 2012, Theorem 8.1]. Therefore, by Corollary 8.5, the
J -invariant of a generic hermitian form is empty.

9. Motivic decomposition

In this section, we determine the complete motivic decomposition of the ChK -
motive M K (X) (see Section 2) of the maximal unitary grassmannian X associated
with a nondegenerate K/F-hermitian form h in terms of the J -invariant J (h)
(Theorem 9.4).

For I ⊂[1, 2n+1]od or [3, 2n+1]od depending on whether dim(h) is, respectively,
equal to 2n+ 2 or 2n+ 1, let I denote the complementary set. We set J = J (h).
One always has ‖J‖ + ‖J‖ = dim(X). We also use notation introduced in the
previous sections. By the very definition of the J -invariant and Proposition 5.1, for
any S ⊂ J and L , L ′ ⊂ J, the cycle

θS,L ,L ′ := xS · (eL × eJ\L ′),

where xS is defined in (5.4), belongs to ChK (X2). Note that θS,L ,L ′ can be rewritten
as ∑

M⊂S

eMtL × e(S\M)t(J\L ′),

where t is the disjoint union of sets.
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We write θL for θJ ,L ,L and θL ,L ′ for θJ ,L ,L ′ . Let 1X denote the class of the
diagonal in ChK (X2).

Lemma 9.1. (i) The set B = {θS,L ,L ′ | S ⊂ J ; L , L ′ ⊂ J } is a Z/2Z-basis of
ChK (X2).

(ii) One has

θS2,L2,L ′2 ◦ θS1,L1,L ′1 = δL2,L ′1 · δS1∪S2,J · θS1∩S2,L1,L ′2 .

(iii) As correspondences of degree 0, the elements of {θL | L ⊂ J } are pairwise
orthogonal projectors such that

∑
L⊂J θL =1X .

Proof. The set B is a free family. Indeed, assume that
∑

S,L ,L ′ αS,L ,L ′ · θS,L ,L ′ = 0
for some αS,L ,L ′ in Z/2Z. Choose L0 ⊂ J. By multiplying the latter equation by
eJt(J\L0)

× 1, one gets∑
S,L ,L ′

αS,L ,L ′ ·

(∑
M⊂S

eJt(J\L0)
· eMtL × e(S\M)t(J\L ′)

)
= 0.

By using (5.6), taking the image of the previous equation under the homomorphism
(p2∗)K associated with the push-forward of the second projection X× X→ X , one
gets ∑

S,L ′
αS,L0,L ′ · eSt(J\L ′) = 0.

Hence, since the family {eI } is free (it is even a basis of ChK (X); see Theorem 4.9),
one obtains that αS,L0,L ′ = 0 for any S ⊂ J and any L ′ ⊂ J. Therefore, the family
B is free.

Moreover, since the ChK -motive M K (X) is split, by the analogue of [Elman
et al. 2008, Proposition 64.3] for ChK -motives, the map

ChK (X)⊗ChK (X)→ ChK (X × X)

(given by the external product) is an isomorphism. Thus, by Theorem 4.9, any
element of ChK (X × X) can be written as

∑
I1,I2

αI1,I2 · (eI1 × eI2) where the
sum runs over all subsets I1, I2 ⊂ [1, 2n + 1]od or [3, 2n + 1]od depending on
whether dim(h) is, respectively, equal to 2n+ 2 or 2n+ 1, and αI1,I2 ∈ Z/2Z. Let
a =

∑
I1,I2

αI1,I2 · (eI1 × eI2) ∈ ChK (X2). Then, for any subset I2, the element

p1∗(x Ī2
· a)=

∑
I1,M; M⊂ Ī1∩ Ī2

αI1,I2tM · eI1tM

is rational. Hence, by Theorem 5.7, for any subset I 6⊂ J, one has∑
M⊂ Ī2∩I

αI\M,I2tM = 0.
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Furthermore, the above relations are linearly independent because, for any subset
I2 and I 6⊂ J, the sum rI2,I :=

∑
M⊂ Ī2∩I αI\M,I2tM contains αI,I2 and for any

(I ′2, I ′) 6= (I2, I ) such that αI,I2 ∈ rI ′2,I
′ , one has |I ′2|< |I2|. It follows that

rankZ/2Z ChK (X2)≤ 2r
· 2r
− 2r
· (2r
− 2|J |)= 2r+|J |

= |B|

(recall that rankZ/2Z ChK (X)= 2r, with r =bdim(h)/2c). Consequently, the family
B is a Z/2Z-basis of ChK (X2).

For any subsets S1, S2 ⊂ J and L1, L ′1, L2, L ′2 ⊂ J, the composition of corre-
spondences θS2,L2,L ′2 ◦ θS1,L1,L ′1 is equal to∑

M1,M2⊂J

(p13∗)K
(
eM1tL1 × (e((S1\M1)t(J\L ′1)) · eM2tL2)× e(S2\M2)t(J\L ′2)

)
.

Hence, the assertion (ii) follows from (5.6).
By (ii), the elements of {θL | L ⊂ J } are pairwise orthogonal projectors. Further-

more, one has the identity ∑
L⊂J

θL =
∑

I⊂[1,2n+1]od

eI × eI .

Therefore, for any I ⊂ [1, 2n+ 1]od (or [3, 2n+ 1]od for odd-dimensional h), one
has

(∑
L⊂J θL

)∗
(eI ) = eI . Since the elements eI generate the ring ChK (X), one

deduces that
∑

L⊂J θL =1X and (iii) is proven. �

The next proposition is the ChK -version of the Rost lemma (see [Rost 1998,
Proposition 1] or [Elman et al. 2008, Theorem 67.1] and Remark 2.1).

Proposition 9.2. Let Y and Z be smooth proper F-varieties. If a correspondence
α ∈ ChK (Y × Y ) is such that α ◦ChK (YF(z))= 0 for every z ∈ Z then

αdim(Z)+1
◦ChK (Z × Y )= 0.

For any smooth proper variety Y, by the very definition of the category of
ChK -motives, one has End j (M K (Y ))= Chdim(Y )+ j

K (Y × Y ) for any j, with the
composition of endomorphisms given by the composition of correspondences. If h
is a nondegenerate K/F-hermitian form and x is a point of the associated maximal
unitary grassmannian X then h splits over F(x), so ChK (X F(x))=ChK (X). Hence,
Proposition 9.2 (applied with Y = Z = X ) implies the statement below, which says
that Rost nilpotence holds for X at the level of K -Chow rings.

Corollary 9.3. Let X be the maximal unitary grassmannian associated with a non-
degenerate K/F-hermitian form. The kernel of the restriction ring homomorphism

End∗(M K (X))→ End∗(M K (X))

consists of nilpotent elements.
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We are now able to prove the following ChK -motivic decomposition (in the spirit
of [Petrov et al. 2008, Theorem 5.13]).

Theorem 9.4. Let h be a nondegenerate K/F-hermitian form and X the associated
maximal unitary grassmannian. Then the ChK -motive of X decomposes as

M K (X)'
⊕

L⊂J (h)

R(h){‖L‖},

where R(h) is an indecomposable motive.
Moreover, over a splitting field of h, the ChK -motive R(h) decomposes as a sum

of shifts of the Tate motive. More precisely, one has

R(h)'
⊕

M⊂J (h)

Z/2Z{‖M‖}.

Proof. By Lemma 9.1(ii), one has

θL ,N ◦ θL ′,N ′ = δL ,N ′ · θL ′,N .

In particular, this implies that for any L , L ′ ⊂ J, the projectors θL and θL ′ are
isomorphic (in the sense of [Petrov et al. 2008, §2.1]); the isomorphism being given
by θL ,L ′ and θL ′,L .

We claim that the projectors θL are indecomposable. For any integers 0≤ k≤‖J‖
and 0≤ l ≤ dim(X), we write

Ch
k,l
K (X

2)

for the subspace of ChK (X2) spanned by the elements θS,L ,L ′ with ‖S‖ ≤ k and
codimension ≤ l. For any correspondences α, α′ ∈ ChK (X2) one has

codim(α ◦α′)= codim(α)+ codim(α′)− dim(X).

Thus, by Lemma 9.1(i) (or Lemma 9.1(ii)), the space Ch
‖J‖,dim(X)
K (X2) equipped

with the composition of correspondences is a ring. Furthermore, using the same
codimensional considerations and the formula of Lemma 9.1(ii), one sees that, for
any 0≤ k ≤ ‖J‖ and 0≤ l ≤ dim(X), the subspace Ch

k,l
K (X

2) is an ideal of

Ch
‖J‖,dim(X)
K (X2).

We denote by A the factor ring of Ch
‖J‖,dim(X)
K (X2) by the sum of ideals Ch

k,l
K (X

2)

for all (k, l) ∈ ([0, ‖J‖] × [0, dim(X)])\{(‖J‖, dim(X))}. By Lemma 9.1(i), a
Z/2Z-basis of A is given by the classes of the elements θL ,L ′ with ‖L‖ = ‖L ′‖.
Hence, since θ∗L ,L ′(eN ) = δN ,L ′ · eL for any N ⊂ J (by (5.6)), it follows from
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Lemma 9.1(ii) that the assignment θL ,L ′ 7→ θ∗L ,L ′ for all θL ,L ′ with ‖L‖ = ‖L ′‖
gives rise to an anti-isomorphism between A and the product of matrix rings

dim(X)∏
k=0

End(Ek),

where Ek is the subspace of ChK (X) spanned by the elements eN with ‖N‖ = k.
Under this identification, for any L ⊂ J, the class of θL in A corresponds to an
idempotent element of rank 1 and therefore is indecomposable. Moreover, by
Lemma 9.1(ii) and codimensional reasons (for any correspondence α ∈ ChK (X2)

of codimension < dim(X), one has codim(α◦i ) > codim(α◦(i+1))), the kernel of
the projection

π : Ch
‖J‖,dim(X)
K (X2)→A

is nilpotent. Thus, the projectors θL are indecomposable in ChK (X2). The claim is
proven.

Consequently, combining this result with Lemma 9.1(iii) and Rost nilpotence
(Corollary 9.3), one gets that there exists a family {ψL | L ⊂ J } of pairwise
orthogonal projectors in Chdim(X)

K (X × X), satisfying ψL = θL , all isomorphic
to ψJ (with respect to the correspondences θL ,J ), and such that

∑
L⊂J ψL =1X

(see [Petrov et al. 2008, Proposition 2.6]). Note that Rost nilpotence implies that
the projectors ψL are also indecomposable. Let R(h) denote the indecomposable
ChK -motive (X, ψ∅)

K. Thus, for any L⊂ J, one has (X, ψL)
K
=R(h){‖L‖} (since

codim(θL ,J )= dim(X)−‖J\L‖). In other words, one has the desired ChK -motivic
decomposition of M K (X).

We prove now the last assertion of the theorem. Over a splitting field, one
has R(h)= (X , θ∅)K. Moreover, θ∅ =

∑
M⊂J eM × e(J\M)tJ is a decomposition

as a sum of pairwise orthogonal projectors in ChK (X × X). These projectors are all
isomorphic to 1× eJtJ with (X , eM × e(J\M)tJ )

K
' (X , 1× eJtJ )

K
{‖M‖} (recall

that eJtJ is the class of a rational point). Furthermore, one easily checks that the
ChK -motive (X , 1× eJtJ )

K is isomorphic to the Tate motive Z/2Z in the category
of ChK -motives. �

The following statement can be viewed as the ChK -version of the Krull–Schmidt
principle for the F-variety X.

Corollary 9.5. Any direct summand of M K (X) is isomorphic to a sum of shifts of
the motive R(h).

Proof. We use notation and material introduced in the proof of Theorem 9.4. Any
idempotent in the ring A is isomorphic (in the sense of [Petrov et al. 2008, §2.1])
to a sum of classes of θL for some L ⊂ J. Moreover, since Ker(π) is nilpotent, the
projection π lifts isomorphisms; see [Petrov et al. 2008, Proposition 2.6]. �
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Remark 9.6. It follows from Theorem 9.4 that M K (X) is indecomposable if and
only if J (h) is empty, i.e., if and only if X is 2-incompressible. In particular, this
applies to generic hermitian forms.

Remark 9.7. It follows from (6.6) that there is a group isomorphism

Ch(Me⊗Me)→ ChK (X × X),

with Me the essential Chow motive of X. Moreover, let ϕ ∈ Ch(X × X) be the
projector giving Me. Then the group Ch(Me⊗Me)= ϕ◦Ch(X×X)◦ϕ is equipped
with the ring structure given by the composition of correspondences (the neutral
element being ϕ). Since the above isomorphism is the restriction to ϕ◦Ch(X×X)◦ϕ
of the projection Ch(X × X) → ChK (X × X), it is a ring isomorphism (with
ChK (X × X) equipped with the composition of ChK -correspondences). Hence,
the essential motive Me is decomposable if and only if the ChK -motive M K (X) is
decomposable.

10. Comparison with quadratic forms

Let h be a nondegenerate K/F-hermitian form and q the associated nondegenerate
F-quadratic form. In this section, we compare the J -invariant J (h) with the J -
invariant J (q) as defined by Vishik [2005]. We recall that if dim(h)= 2n+ 2 then
J (q) is a subset of [0, 2n+ 1], otherwise, if dim(h)= 2n+ 1 then it is a subset of
[0, 2n] and in both cases J (h) is a subset of [1, 2n+ 1]od.

Let X be the maximal hermitian grassmannian of h and Y the maximal orthogonal
grassmannian of q. For even-dimensional h, let im denote the natural closed
embedding X ↪→ Y (see Remark 4.12).

Proposition 10.1. One has

J (q)=
{

J (h)∪ [0, 2n]ev if dim(h)= 2n+ 2;
[1, 2n] if dim(h)= 2n+ 1,

where [0, 2n]ev stands for the even part of the set [0, 2n].

Proof. Assume that dim(h)= 2n+ 2. We use notation and material introduced in
Remark 4.12. Since im∗(zk)= ek in Ch(X) for any 1≤ k≤ 2n+1 (see Remark 4.12)
and the generators zk of the ring Ch(Y ) define J (q) the same way the elements
ek ∈ ChK (X), for k odd, define J (h) (see [Vishik 2005] or [Elman et al. 2008]),
one has J (q)od ⊂ J (h). Moreover, since the quadratic form q is obtained from a
K/F-hermitian form, the absolute Witt indices of q are even. Hence, by [Elman
et al. 2008, Proposition 88.8] (this is the quadratic equivalent of Proposition 6.12,
with the J -invariant defined in the opposite way), the set [0, 2n]ev is contained
in J (q). Furthermore, by [Karpenko 2012, Corollary 9.3], the varieties X and Y
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have the same canonical 2-dimension. Thus, by [Elman et al. 2008, Theorem 90.3]
and Theorem 8.2, one has

‖J (q)‖−‖J (h)‖ = dim(Y )− dim(X)= 0+ 2+ · · ·+ (2n− 2)+ 2n.

Consequently, one has J (q)= J (h)∪ [0, 2n]ev.
Assume that dim(h)= 2n+1. In this case, one has cdim2(Y )= 0 (see [Karpenko

2012, Corollary 9.3]). Therefore, by [Elman et al. 2008, Theorem 90.3], one has

‖J (q)‖ = dim(Y )=
2n(2n+ 1)

2
.

Moreover 0 /∈ J (q) because the discriminant of q is not trivial. Consequently, one
has J (q)= [1, 2n]. �

Remark 10.2. Proposition 10.1 allows one to recover the smallest value of the
J -invariant of a nondegenerate quadratic form q associated with a hermitian form h
of even dimension 2n+2 over a quadratic separable field extension of the base field,
i.e., q is given by the tensor product of a (2n+2)-dimensional bilinear form by a
binary quadratic form. Namely, this value is [0, 2n]ev and it is obtained for h generic.
This was originally proven by Karpenko; see [Karpenko 2012, Corollary 9.4].

Remark 10.3. For even-dimensional nondegenerate K/F-hermitian forms, com-
bined with Theorem 5.7, Proposition 10.1 and its proof provide another argument
for the surjectivity of the homomorphism

Ch(Y )→ ChK (X),

associated with the pull-back im∗. This was originally observed by Maksim
Zhykhovich; see [Karpenko 2012, Lemma 9.8].
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