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In this note, we are interested in [2, Theorem SC.1] due to Nikita Karpenko and Alexan-
der Merkurjev. We deal with the case of equality of this theorem. We refer to [2, Appen-
dix SC. Special correspondences] for notation and vocabulary. The proof of the following
proposition is widely inspired by the proof of [2, Theorem SC.1]. Note that, in a way, the
following proposition is a generalization of [1, Proposition 2.1] (which deal with the case
p = 2) to any prime integer p.

Proposition 1. Let X be an A-trivial F -variety for Fp equivalent to an A-trivial F -variety

of dimension pn− 1 possessing a special correspondence. Then for any smooth irreducible

F -variety Y , any m ∈ Z, and any y ∈ Chm(YF (X)), there exists a polynomial P of degree

≤ p − 1 with rational coe�cients in Ch(YF (X)) such that the element Ss(y) + P (y) ∈
Chm+s(YF (X)), with s = (m−b)(p−1), is rational up to the class modulo p of an exponent

p element of CHm+s(YF (X)).

Proof. We make the assumption that dim(Y ) > 0 (otherwise, the conclusion is immedi-
ate). We use the same notation as those introduced during the proof of [2, Theorem SC.1].
According to the proof of [2, Theorem SC.1], one can �nd an element x ∈ Chm(X × Y )
such that x decomposes over F (X) as

(1) xF (X) = 1× y +H × x1 + · · ·+Hp−1 × xp−1

with some x1, ..., xp−1 ∈ Ch(YF (X)). By the same reasoning as those done in the beginning
of [2, Proposition SC.12] and since Sd+s(x) = xp, we get that p divides the element
A+ pr∗(x̃

p) in CH(Y ), where

A =
∑

i+j+k+l1+···+lp−1=d+s
i>0; j,k,l1,...,lp−1≥0

pr∗(bj · (pr∗(bi · Sl1σ · ... · Slp−1
σ )) · Skx),

and where x̃ ∈ CHm(X × Y ) is an integral representative of x ∈ Chm(X × Y ).

Furthermore, according to the proof of [2, Proposition SC.12], there exist a cycle β ∈
CH(YF (X)), a cycle γ ∈ CH(Y ), and a prime to p integer q such that

AF (X) = p2β + pγF (X) + qdeg(bd)S
s
y.

Therefore, modifying β and γ, one can write

(2) qdeg(bd)S
s
y + pr∗(x̃

p
F (X)) = p2β + pγF (X).

Moreover, according to the decompositon (1), there exists a cycle α ∈ CHm(X × Y )F (X)

such that
x̃F (X) = 1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1 + pα,
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where the cycles ỹ, x̃1, ..., x̃p−1 are some integral representatives of the cycles y, x1, ..., xp−1.
Thus, we have

x̃pF (X) =

p∑
k=0

(
p

k

)
(pα)p−k · (1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1)

k.

In the lattest expression, each summand, except the one corresponding to k = p, is
divisible by p2. Thus, modifying β, we deduce from the equation (2) the following identity

(3) qdeg(bd)S
s
y + pr∗((1× ỹ +H × x̃1 + · · ·+Hp−1 × x̃p−1)

p) = p2β + pγF (X).

Furthermore, by the multinomial Theorem, the cycle pr∗((1 × ỹ + H × x̃1 + · · · +
Hp−1 × x̃p−1)

p) is equal to∑
k0+k1+···+kp−1=p

k1+2k2+···+(p−1)kp−1=p−1

(
p

k0, k1, ..., kp−1

)
ỹk0 · x̃1k1 · · · x̃

kp−1

p−1 .

Since for any i = 0, ..., p − 1, one has ki < p, each multinomial coe�cient appearing in
the previous sum is a multiple of p. Thus, the sum can be rewritten as

p

p−1∑
k=1

ak · ỹk,

where

ak :=
∑

k1+k2+···+kp−1=p−k
k1+2k2+···+(p−1)kp−1=p−1

(
p− 1

k, k1, ..., kp−1

)
x̃1

k1 · x̃2k2 · · · x̃
kp−1

p−1 ∈ CH(YF (X)).

Therefore, since the integer deg(bd) is divisible by p but not by p2 (see proof of [2,
Proposition SC.12]), we deduce from the equation (3) that the element

(4) Ss(y) +

p−1∑
k=1

ak · yk

is rational up to the class modulo p of an exponent p element of CHm+s(YF (X)) (for
k = 1, ..., p− 1, we still write ak for the class in Ch(YF (X)), and we replace the coe�cient
in F?p near Ss(y) by 1). From now on, we work with Chow groups modulo p. For any
k = 1, ..., p− 1, one has (we use the Projection Formula to get the last identity)

ak =

(
p− 1

k − 1

)
k−1pr∗((H × x1 +H2 × x2 + ...+Hp−1 × xp−1)

p−k)

= (−1)k−1k−1pr∗((xF (X) − 1× y)p−k)

= (−1)k−1k−1

k∑
i=0

(
p− k
i

)
(−1)ipr∗(xF (X)

p−k−i · (1× yi))

= (−1)k−1k−1

k∑
i=0

(
p− k
i

)
(−1)iyi · pr∗(xF (X)

p−k−i).
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Therefore, setting for every j = 1, ..., p− 1,

ej :=

(
j∑
l=1

l−1

(
p− l
j − l

))
(−1)j−1pr∗(x

p−j) ∈ Ch(Y ),

we get that

(5)

p−1∑
k=1

ak · yk = P (y),

where P is the polynomial in variable Z with coe�cient in Ch(YF (X)) such that P (Z) =∑p−1
j=1 ejF (X) · Z

j (there is no coe�cient ep because pr∗(1) = 0). We get the desired result

by combining (4) and (5). �
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