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Abstract. In this article we prove a result comparing rationality of algebraic cycles over
the function field of a projective homogeneous variety under a linear algebraic group of
type F4 or E8 and over the base field, which can be of any characteristic.
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1. Introduction

The purpose of this note is to prove the following theorem dealing with rationality of
algebraic cycles over function field of some exceptional projective homogeneous varieties.

Theorem 1.1. Let G be a linear algebraic group of type F4 or E8 over a field F and let
X be a projective homogeneous G-variety. For any equidimensional variety Y , the change
of field homomorphism

Ch(Y )→ Ch(YF (X)),

where Ch is the Chow group modulo p, with p = 3 when G is of type F4 and p = 5 when
G is of type E8, is surjective in codimension < p+ 1.

It is also surjective in codimension p+1 for a given Y provided that 1 /∈ deg Ch0(XF (ζ))
for each generic point ζ ∈ Y .

In this note, a projective homogeneous G-variety is a twisted form of G0/P , where G0

is a split linear algebraic group of the same type as G and P is a parabolic subgroup. The
proof of Theorem 1.1 is given in section 5.

In previous papers ([3], [4], after the so-called Main Tool Lemma by A.Vishik, see
[19], [20]), similar issues about rationality of cycles, with quadrics instead of exceptional
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2 RAPHAEL FINO

projective homogeneous varieties, have been treated. The above statement is to put in
relation with the result [11, Theorem 4.3] by N.Karpenko and A.Merkurjev, where generic
splitting varieties have been considered.

In characteristic 0, Theorem 1.1 is contained in [11, Theorem 4.3]. In an earlier paper
(see [21, Corollary 1.4]), K. Zainoulline proved the first conclusion of Theorem 1.1 (modulo
torsion) in characteristic 0 if G is of type F4. Our result is valid in any characteristic.

The method of proof is basically the method used to prove [11, Theorem 4.3] combined
with a motivic decomposition result for generically split projective homogeneous varieties
due to V.Petrov, N. Semenov and K. Zainoulline (see [16, Theorem 5.17]) and involving
the Rost motive. This is described in section 3.

In section 4, we present some properties about Chow groups of the Rost motive of
groups of strongly inner type (e.g F4 and E8) with maximal J-invariant. Those properties
make the method particularly suitable for groups of type F4 and E8.

The method also relies on a linkage between the γ-filtration on the Grothendieck ring
of projective homogeneous varieties and Chow groups, in the spirit of [6].

In the aftermath of Theorem 1.1, we get the following statement dealing with integral
Chow groups (see [11, Theorem 4.5]).

Corollary 1.2. We use notation introduced in Theorem 1.1 and we write CH for the
integral Chow group. If p ∈ deg CH0(X), then for any equidimensional variety Y , the
change of field homomorphism

CH(Y )→ CH(YF (X))

is surjective in codimension < p+ 1.
It is also surjective in codimension p+1 for a given Y provided that 1 /∈ deg Ch0(XF (ζ))

for each generic point ζ ∈ Y .

Remark 1.3. Our method of proof for Theorem 1.1 works for groups of type G2 as
well (with p = 2). However, the case of G2 can be treated in a more elementary way if
char(F ) = 0.

Indeed, it is known that to each group G of type G2 one can associate a 3-fold Pfister
quadratic form ρ such that, denoting by Xρ the Pfister quadric associated with ρ, the
variety X has a rational point over F (Xρ) and vice-versa. Thus, for any equidimensional
variety Y , one has the commutative diagram

Ch(Y ) //

��

Ch(YF (X))

��
Ch(YF (Xρ)) // Ch(YF (Xρ×X))

where the right and the bottom maps are isomorphisms. Furthermore, as suggested in
[20, Remark on Page 665] (where the assumption char(F ) = 0 is required), the change of
field homomorphism Ch(Y )→ Ch(YF (Xρ)) is surjective in codimension < 3.

Acknowledgements. I gracefully thank Nikita Karpenko for sharing his great knowl-
edge and his valuable advice. I also would like to thank the referee for useful comments
and suggestions.
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2. Filtrations on Grothendieck ring of projective homogeneous varieties

In this section, we prove two propositions which play a crucial role in the proof of
Theorem 1.1.

First of all, we recall that for any smooth variety X over a field F (in this paper, an
F -variety is a separated scheme of finite type over F ), one can consider two particular
filtrations on the Grothendieck ring K(X) (see [6, §1.A]), namely the γ-filtration and the
topological filtration, whose respective terms of codimension i are given by

γi(X) = 〈cn1(a1) · · · cnm(am) |n1 + · · ·+ nm ≥ i and a1, . . . , am ∈ K(X)〉
and

τ i(X) = 〈[OZ ] |Z ↪→ X and codim(Z) ≥ i〉,
where cn is the n-th Chern Class with values in K(X) and [OZ ] is the class in K(X) of
the structure sheaf of a closed subvariety Z. For any i, one has γi(X) ⊂ τ i(X) and one
even has γi(X) = τ i(X) for i ≤ 2. We write γi/i+1(X) and τ i/i+1(X) for the respective
quotients. We denote by pri the canonical surjection

CHi(X) −� τ i/i+1(X)
[Z] 7−→ [OZ ]

.

Note that for any prime p, one can also consider the γ-filtration γp and the topological
filtration τp on the ringK(X)/pK(X) by replacingK(X) byK(X)/pK(X) in the previous
definitions.

The method of proof of the following proposition is largely inspired by the proof of [10,
Theorem 6.4 (2)].

Proposition 2.1. Let G0 be a split connected semisimple linear algebraic group over a
field F and let B be a Borel subgroup of G0. There exist an extension E/F and a cocycle
ξ ∈ H1(E,G0) such that the topological filtration and the γ-filtration on K(ξ(G0/B))
coincide.

Proof. Let n be an integer such that G0 ⊂ GLn and let us set S := GLn and E :=
F (S/G0). We denote by T the E-variety S ×S/G0 Spec(E) given by the generic fiber of
the projection S → S/G0. Note that since T is clearly a G0-torsor over E, there exists a
cocycle ξ ∈ H1(E,G0) such that the smooth projective variety X := T/BE is isomorphic
to ξ(G0/B). We claim that the Chow ring CH(X) is generated by Chern classes.

Indeed, the morphism h : X → S/B induced by the canonical G0-equivariant morphism
T→ S being a localization, the associated pull-back

h∗ : CH(S/B) −→ CH(X)

is surjective. Furthermore, the ring CH(S/B) itself is generated by Chern classes: by [10,
§6,7] there exists a morphism
(2.2) S(T ∗) −→ CH(S/B),

(where S(T ∗) is the symmetric algebra of the group of characters T ∗ of a split maximal
torus T ⊂ B) with its image generated by Chern classes. Moreover, the morphism (2.2)
is surjective by [10, Proposition 6.2]. Since h∗ is surjective and Chern classes commute
with pull-backs, the claim is proved.
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We show now that the two filtrations on K(X) coincide by induction on codimension.
Let i ≥ 0 and assume that τ i+1(X) = γi+1(X). Since for any j ≥ 0, one has γj(X) ⊂
τ j(X), the induction hypothesis implies that

γi/i+1(X) ⊂ τ i/i+1(X).

Thus, the ring CH(X) being generated by Chern classes, one has γi/i+1(X) = τ i/i+1(X)
by [9, Lemma 2.16]. Therefore one has τ i(X) = γi(X) and the proposition is proved. �

Note that this result remains true when one consider a special parabolic subgroup P
instead of B.

Now, we prove a result which will be used in section 5 to get the second conclusion of
Theorem 1.1.

We recall that for any smooth variety X over a field, for any prime p, and for any
i < p + 1, the canonical surjection prip : Chi(X) � τ

i/i+1
p (X) is an isomorphism by the

Riemann-Roch Theorem without denominators (see [6, §1.A] for example). The following
proposition extends this fact to i = p + 1 provided that X is a projective homogeneous
variety under a certain class of linear algebraic group (containing F4 and E8) and p > 2.

Proposition 2.3. Let X be a projective homogeneous variety under a semisimple adjoint
algebraic group G of inner type whose Tits algebras are trivial, then for any prime p > 2
the canonical surjection

Chp+1(X) � τ p+1/p+2
p (X),

is injective.

That proposition is obtained by combining the two following lemmas.

Lemma 2.4. Let X be a smooth variety and p > 2 be a prime. If the inclusion E1,−2
∞ (X) ⊂

E1,−2
2 (X) given by the Brown-Gersten-Quillen spectral sequence is an equality, then the

epimorphism Chp+1(X) � τ
p+1/p+2
p (X) is an isomorphism.

Proof. For any smooth variety X and any i ≥ 1, the epimorphism pri coincides with the
edge homomorphism of the spectral Brown-Gersten-Quillen structure Ei,−i

2 (X)⇒ K(X)
(see [17, §7]), that is to say

pri : CHi(X) ' Ei,−i
2 (X) � · · ·� Ei,−i

i+1 (X) = τ i/i+1(X).

In particular, for any prime p, the map prp+1
p is the composite of the surjections

qr : Ep+1,−p−1
r (X) (mod p) �

Ep+1,−p−1
r (X)

Im(δr)
(mod p),

for r from 2 to p+ 1, where δr is the differential starting from Ep+1−r,−p−2+r
r (X).

Moreover, by [13, Theorem 3.4], every prime divisor l of the order of δr is such that
l − 1 divides r − 1. Hence, for r ≤ p− 1, the order of δr is coprime to p and this implies
that qr is an isomorphism. For r = p + 1, one has l = 2 ou l = p + 1 and in both cases l
is coprime to p (since p > 2).
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Therefore, we have shown that prp+1
p is injective if and only if qp is an isomorphism.

Let us consider the following inclusions given by the BGQ-structure

E1,−2
∞ (X) ⊂ · · · ⊂ E1,−2

3 (X) ⊂ E1,−2
2 (X).

By the very definition, one has E1,−2
∞ (X) = E1,−2

2 (X) if and only if for any r ≥ 2 the dif-
ferential starting from E1,−2

r (X) is zero. In particular, the equality E1,−2
∞ (X) = E1,−2

2 (X)
implies that δp = 0 and the lemma is proved. �

Lemma 2.5. Let G be a semisimple adjoint algebraic group of inner type whose Tits
algebras are trivial. Then for any projective homogeneous G-variety X, the inclusion
E1,−2
∞ (X) ⊂ E1,−2

2 (X) given by the Brown-Gersten-Quillen spectral sequence is an equality.

Proof. On the one hand, by the very defintion, the group E1,−2
∞ (X) is the first quotient

K
(1/2)
1 (X) of the topological filtration on K1(X). On the other hand, one has E1,−2

2 (X) =
H1(X,K2) (for any integers p and q, one has Ep,q

2 (X) = Hp(X,K−q)).
First, we claim that the natural map

(2.6) H0(X,K1)⊗ CH1(X)→ H1(X,K2)

is an isomorphism. Indeed, since G has only trivial Tits algebras, by [12, Theorem], one
has

H1(X,K2) ' H1(Xsep, K2)Γ,

where Γ is the absolute Galois group of F . Moreover, since the variety Xsep is cellular, by
[12, Proposition 1], one has

H1(Xsep, K2) ' K1Fsep ⊗ CH1(Xsep).

Note that since X is smooth, the Picard group Pic(Xsep) is identified with CH1(Xsep).
Furthermore, any projective homogeneous variety under a semisimple adjoint group of
inner type whose Tits algebras are trivial has a rational Picard group (see [14]). There-
fore one has CH1(X) ' CH1(Xsep) and since (K1Fsep)Γ = K1F = H0(X,K1), one has
H0(X,K1)⊗ CH1(X) ' H1(X,K2) and the claim is proved.

Now, it is known that CH1(Xsep) is a free abelian group of finite rank (see [18, §2] for
example) and it follows that there exists an integer k ≥ 0 such that CH1(X) = Z⊕k. Let
us denote by ϕ the isomorphism

(F×)⊕k −→ H1(X,K2)

such that for any a ∈ (F×)⊕k the element ϕ(a) corresponds by (2.6) to
∑k

i=0 πi(a)⊗ ei in
H0(X,K1)⊗CH1(X), where (ei)1≤i≤k is the canonical basis of Z⊕k and πi : (F×)⊕k → F×

is the standard projection.
Then it suffices to find a homomorphism ψ : (F×)⊕k → K

(1/2)
1 (X) such that the diagram

(see [8, §4])

K
(1/2)
1 (X) �

� // H1(X,K2)

(F×)⊕k
ψ

ee

ϕ

88
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is commutative to get the conclusion. The homomorphism ψ defined as follow is suitable
(and ψ is necessarily defined this way). For every i = 0, . . . , k, let ji : Zi ⊂ X be a
subvariety of codimension 1 such that [Zi] = ei in CH1(X) and let pi be the structure
morphism Zi → Spec(F ). Then we set ψ =

∑k
i=1 ψi, with

ψi : (F×)⊕k
πi // F×

pi
∗
// K1(Zi)

ji
∗
// K1

1(X) // K
1/2
1 (X).

�

Remark 2.7. Assume that G0 is of strongly inner type (e.g F4 and E8, see [6, §3] for
instance) and consider an extension E/F and a cocycle ξ ∈ H1(E,G0). By the result [15,
Theorem 2.2.(2)] of I. Panin, the change of field homomorphism

K(ξ(G0/B)E)→ K(ξ(G0/B)E) ' K(G0/B),

with E an algebraic closure of E, is an isomorphism. Therefore, since the γ-filtration is
defined in terms of Chern classes and the latter commute with pull-backs, the quotients
of the γ-filtration on K(ξ(G0/B)E) do not depend nor on the extension E/F neither on
the choice of ξ ∈ H1(E,G0).

3. Generically split projective homogeneous varieties

In this section, we introduce in a more general context the basis of the method we will
use in section 5 to prove Theorem 1.1.

The method of proof largely relies on the following proposition, which is a version of
the result [2, Lemma 88.5] slightly altered to fit our situation (see also the proof of [11,
Proposition 2.8]).

Proposition 3.1 (Karpenko, Merkurjev). Let X be a smooth variety over a field F and
Y an equidimensional F -variety. Given an integer k such that for any i and any point
y ∈ Y of codimension i the change of field homomorphism

CHk−i(X) −→ CHk−i(XF (y))

is surjective, the change of field homomorphism

CHk(Y ) −→ CHk(YF (X))

is also surjective.

Note that this statement remains true for any prime p when one considers the group
Ch with Z/pZ-coefficients instead of CH.

Now let X be a projective homogeneous variety under a semisimple linear algebraic
group G of inner type. Assume furthermore that the F -variety X is generically split, i.e
the group G splits over the generic point of X (e.g any projective homogeneous variety X
under a group G of type F4 or E8 admitting a splitting field of degree 3 or 5 respectively).
Then one can apply the motivic decomposition result [16, Theorem 5.17] to X and get
that for any prime p, the Chow motiveM(X,Z/pZ) decomposes as a sum of twists of an
indecomposable motive Rp(G) (in the same way as (4.3)), called Rost motive. Note that
the quantity and the value of those twists do not depend on the base field. In particular,
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we get that for any extension L/F and any integer k, the group Chk(XL) is isomorphic
to a direct sum of groups Chk−i(Rp(G)L) with 0 ≤ i ≤ k.

Consequently, combining this with Proposition 3.1, one get the following statement.

Proposition 3.2. Let G be a semisimple linear algebraic group of inner type over a field
F . Let p be a prime and Rp(G) the associated Rost motive of G. If for any extension
L/F , the change of field

Ch(Rp(G)) −→ Ch(Rp(G)L)

is surjective in codimension < k then for any equidimensional variety Y and for any
generically split projective homogeneous G-variety X, the change of field

Ch(Y )→ Ch(YF (X))

is surjective in codimension < k.

4. Maximal J-invariant

In this section, G is a simple linear algebraic group of strongly inner type. Let G0

be a split connected linear algebraic group of the same type as the type of G and let
ξ ∈ H1(F,G0) be a cocycle such that G is isomorphic to the twisted form ξG0. We write
B for the Borel variety of G (one has B ' ξ(G0/B), where B is a Borel subgroup of G0).

For any torsion prime p of G, we write Jp(G) = (j1, . . . , jr) for the J-invariant modulo
p of G and we say that Jp(G) is maximal if for every i = 1, . . . , r, one has ji = ki, where
ki is the p-primary power of the ith p-exceptional degree of G0 (see [16, §4]). Note that
for any extension L/F , one has Jp(GL) ≤ Jp(G) by [16, Example 4.7].

In this section, we present some properties about Chow groups of the Rost motive of
simple linear algebraic groups of strongly inner type (e.g F4 and E8) with maximal J-
invariant modulo some torsion prime. In the next section, we will combine those properties
with the method described in §3 to prove Theorem 1.1.

Lemma 4.1. Let G be a simple linear algebraic group of strongly inner type such that its
J-invariant Jp(G) is maximal. Then one has

(i) p = 3 or 5 ;
(ii) Ch2(Rp(G)) = Z/pZ and Ch3(Rp(G)) = 0.

Proof. Since Jp(G) is maximal, by [7, Example 5.3], the cocycle ξ ∈ H1(F,G0) corresponds
to a generic G0-torsor in the sense of [7]. Thus, by [6, Proposition 3.2] and [5, pp. 31,
133], one has TorspCH2(B) 6= 0 (we need the assumption strongly inner to use material
from [6, §3]). The conclusion is given by [6, Proposition 5.4]. �

Lemma 4.2. Let G be a simple linear algebraic group of strongly inner type such that its
J-invariant Jp(G) is maximal and let L/F be an extension such that Jp(GL) = Jp(G).
Then one has

(i) Ch2(Rp(G)L) = Z/pZ and Ch3(Rp(G)L) = 0 ;
(ii) the change of field Ch2(B)→ Ch2(BL) is an isomorphism.



8 RAPHAEL FINO

Proof. Since Jp(GL) is maximal then by Lemma 4.1 one has Ch2(Rp(GL)) = Z/pZ and
Ch3(Rp(GL)) = 0. Moreover, since Jp(GL) = Jp(G), one has Rp(GL) ' Rp(G)L (see [16,
Proposition 5.18 (i)]) and (i) is proved.

We show now that the change of field Ch2(B)→ Ch2(BL) is an isomorphism. We use
material and notation introduced in section 2. Since Jp(G) = Jp(GL) is maximal, the
cocycles ξ and ξL correspond to generic G0-torsors and one consequently has γ3(B) =
τ 3(B) and γ3(BL) = τ 3(BL) (see [6, Theorem 3.1(ii)]). In particular, it follows that

γ2/3
p (B) = τ 2/3

p (B) and γ2/3
p (BL) = τ 2/3

p (BL).

Therefore, since 2 < p+ 1, the homomorphism Ch2(B)→ Ch2(BL) coincides with

Ch2(B) ' γ2/3
p (B)→ γ2/3

p (BL) ' Ch2(BL)

and the center arrow is an isomorphism by Remark 2.7. �

Recall that by [16, Theorem 5.13], one has the motivic decomposition

(4.3) M(B,Z/pZ) '
⊕
i≥0

Rp(G)(i)⊕ai ,

where Σi≥0ait
i = P (CH(B), t)/P (CH(Rp(G)), t), with P (−, t) the Poincaré polynomial.

Thus, for any integer k and any extension L/F , we get the following decomposition
concerning Chow groups

(4.4) Chk(BL) '
⊕
i≥0

Chk−i(Rp(G)L)⊕ai .

Lemma 4.5. In this statement, one has p=5. Let G be a simple linear algebraic group of
strongly inner type such that its J-invariant J5(G) is maximal and let L/F be an extension
such that J5(GL) = J5(G). Then one has

Ch4(R5(G)L) = 0 and Ch5(R5(G)L) = 0.

Proof. Since J5(GL) = J5(G) one has R5(G)L = R5(GL) and it suffices to prove that
Ch4(R5(G)) = Ch5(R5(G)) = 0.

By Proposition 2.1 there exist an extension E/F and a cocycle ξ′ ∈ H1(E,G0) such that
the topological filtration and the γ-filtration on K(B′), with B′ = ξ′(G0/B), coincide.
Let us set G′ = ξ′G0.

We claim that J5(G′) 6= (0, . . . , 0). Indeed, assume that J5(G′) = (0, . . . , 0). In that
case, one has R5(G′) = Z/5Z (Tate motive) by [16, Corollary 6.7] and the isomorphism
(4.4) gives that Ch2(B′) = Z/5Z⊕a2 . Since 2 < p+ 1, it implies that γ2/3

5 (B′) = Z/5Z⊕a2 ,
and consecutively γ

2/3
5 (B) = Z/5Z⊕a2 by Remark 2.7. However, we have γ2/3

5 (B) =

τ
2/3
5 (B) (because γ3(B) = τ 3(B) since ξ ∈ H1(F,G0) is generic). Thus, we have
Ch2(B) = Z/5Z⊕a2 which contradicts Ch2(R5(G)) = Z/5Z and the claim is proved (we
recall that for any i < 6 = p+ 1, one has τ i/i+1

5 (X) ' Chi(X)).

We now compute the groups γi/i+1
5 (B′) for i = 3, 4, 5. Note that since G is of strongly

inner type one has K(B′) ' K(G0/B) by Remark 2.7. Furthermore, the description of
the free group K(G0/B) in terms of generators does not depend on the characteristic of



RATIONALITY OF CYCLES OVER FUNCTION FIELD OF EXCEPTIONAL VARIETIES 9

the base field (see [1, Lemma 13.3(4)]). Thus, in order to compute the groups γi/i+1
5 (B′)

for i = 3, 4, 5, since J5(G′) 6= (0, . . . , 0), one can use the following theorem (adapted from
[11, Theorem RM.10] to our situation)

Theorem 4.6 (Karpenko, Merkurjev). Let H be a semisimple linear algebraic group of
inner type over a field of characteristic 0 and let p be a torsion prime of H. If Jp(H) 6=
(0, . . . , 0) then

Chj(Rp(H)) =

{
Z/pZ if j = 0 or j = k(p+ 1)− p+ 1, 1 ≤ k ≤ p− 1
0 otherwise,

which combined with (4.4) gives that

γ
i/i+1
5 (B′) ' Chi(B′) = Z/5Z⊕(ai−2+ai) for i = 3, 4, 5

(where the isomorphism is due to i < p+ 1). Therefore, we get

γ
i/i+1
5 (B) = Z/5Z⊕(ai−2+ai) for i = 3, 4, 5.

Thus, since τ 3/4
5 (B) ' Ch3(B), the isomorphism (4.4) for k = 3 gives that τ 3/4

5 (B) '
γ

3/4
5 (B). Since the γ-filtration is contained in the topological one, we get

τ 4
5 (B) = γ4

5(B),

which implies the existence of an exact sequence

0→ (τ 5
5 (B)/γ5

5(B))→ γ
4/5
5 (B)→ τ

4/5
5 (B)→ 0.

Thus, since τ 4/5
5 (B) ' Ch4(B), by applying the isomorphism (4.4) for k = 4, we get a

surjection
Z/5Z⊕(a2+a4) � Ch4(R5(G))⊕ Z/5Z⊕(a2+a4),

which implies that Ch4(R5(G)) = 0.
We prove that Ch5(R5(G)) = 0 by proceeding in exactly the same way. �

5. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Remark 5.1. Let G be a semisimple linear algebraic group over a field F and let X be
a projective homogeneous G-variety. The F -variety X is A-trivial in the sense of [11,
Definition 2.3] (see [11, Example 2.5]), i.e for any extension L/F with X(L) 6= ∅, the
degree homomorphism deg : CH0(XL)→ Z is an isomorphism.

Since by [11, Lemma 2.9], any A-trivial variety X with 1 ∈ degCh0(X) is such that for
any equidimensional variety Y the change of field homomorphism Ch(Y )→ Ch(YF (X)) is
an isomorphism (in any codimension, with Ch the Chow group modulo p, for any prime
p), one can assume that 1 /∈ degCh0(X) in order to prove Theorem 1.1.

Now, we know from [16, Table 4.13] that if G is of type F4 or E8 then the J-invariant
Jp(G) of G is equal to (0) or (1) (in the latter case, the J-invariant modulo p is maximal),
with p = 3 if G is of type F4 and p = 5 if G is of type E8. However, the assumption
Jp(G) = (0) is equivalent to the existence of a splitting field K/F of G of degree coprime
to p (see [16, Corollary 6.7]). In that case one has Ch0(X) ' Ch0(XK) and consequently
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1 ∈ degCh0(X). Thus, under the assumption 1 /∈ degCh0(X), one necessarly has Jp(G) =
(1) and that is why we can assume Jp(G) maximal in the sequel.

We have seen in the previous remark that if Jp(G) is maximal then p must divide the
degree of any splitting field of G. Consequently, by [16, Example 3.6]), every projective
homogeneous variety under a group of type F4 or E8 with maximal Jp(G) (p = 3 for the
type F4 and p = 5 for the type E8) is generically split. Then, by Proposition 3.2, the first
conclusion of Theorem 1.1 is a direct consequence of the following proposition.

Proposition 5.2. Let G be a linear algebraic group of type F4 or E8 over a field F such
that Jp(G) is nontrivial, with p = 3 if G is of type F4 and p = 5 if G is of type E8. Then,
for any extension L/F , the change of field

(5.3) Ch(Rp(G)) −→ Ch(Rp(G)L),

where Rp(G) is the associated Rost motive, is surjective in codimension < p+ 1.

Proof. First of all, the homomorphism (5.3) is clearly surjective in codimension 0 since
one has Ch0(Rp(G)L) = Z/pZ for any extension L/F . Then, Ch1(B) is identified with
the Picard group Pic(B) and is rational since G is of type F4 or E8 (see [18, Example
4.1.1]). Furthermore, thanks to the Solomon Theorem for example (see [18, §2.5]), one
can compute the coefficients ai’s in the decomposition (4.4): we get a0 = 1 and a1 =
rank(G) = rank(CH1(B)). Thus, the isomorphism (4.4) implies that Ch1(Rp(G)L) = 0
for any extension L/F . Therefore, we have already shown that the homomorphism (5.3)
is surjective in codimension 0 and 1.

Now we show that it is surjective in codimension 2 and 3 (which proves the propo-
sition for G of type F4). Since Jp(G) is maximal, one has Ch2(Rp(G)) = Z/pZ and
Ch3(Rp(G)) = 0 by Lemma 4.1. Moreover, since Jp(GL) ≤ Jp(G) for any extension L/F ,
one has Jp(GL) = (0) or Jp(GL) = Jp(G) (i.e is maximal).

If Jp(GL) = Jp(G) then one has Ch2(Rp(G)L) = Z/pZ and Ch3(Rp(G)L) = 0 by Lemma
4.2 (i) and the homomorphism (5.3) is clearly surjective in codimension 3. Thanks to the
decomposition (4.4) and Lemma 4.2 (ii), we see that it is also surjective in codimension
2.

If Jp(GL) = (0) then on the one hand one has Rp(GL) = Z/pZ and on the other
hand the motivic decomposition given in [16, Proposition 5.18 (i)] implies the following
decomposition on Chow groups for any integer k

(5.4) Chk(Rp(G)L) '
p−1⊕
i=0

Chk−i(p+1)(Rp(GL)).

In particular, one has Chk(Rp(G)L) = 0 for k = 2 or 3 and the conclusion follows.

For G of type E8, we now prove that Ch(R5(G)) −→ Ch(R5(G)L) is surjective in
codimension 4 and 5 by showing that one has Ch4(R5(G)L) = Ch5(R5(G)L) = 0 for
any extension L/F . By Lemma 4.5, this is true when Jp(GL) = Jp(G). Moreover,
if Jp(GL) = 0 then one has R5(GL) = Z/5Z and the isomorphism (5.4) implies that
Ch4(R5(G)L) = Ch5(R5(G)L) = 0. That completes the proof of Proposition 5.2. �
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Finally, using the same notation as in the statement of Theorem 1.1, we want to prove
the second conclusion of Theorem 1.1. Since for any generic point ζ of Y , one has

1 /∈ degCh0(XF (ζ))⇒ Jp(GF (ζ)) = (1),

by Proposition 3.1 and in view of what has already been done, it is sufficient to prove the
following lemma to get the second conclusion.

Lemma 5.5. Let G be a linear algebraic group of type F4 or E8 over a field F such that
Jp(G) is nontrivial, with p = 3 if G is of type F4 and p = 5 if G is of type E8. Then one
has

Chp+1(Rp(G)) = 0.

Proof. Thanks to Proposition 2.3, one can prove the lemma by proceeding in exactly the
same way Lemma 4.5 has been proved. �

This concludes the proof of Theorem 1.1.
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