$\bar{\partial}$-TORSION AND COMPACT ORBITS OF ANOSOV ACTIONS ON COMPLEX 3-MANIFOLDS

EUGENIO GARNICA VIGIL AND HÉCTOR SÁNCHEZ MORGADO*

Abstract

In analogy with work of Fried and Laederich we study the relation between $\bar{\partial}$-torsion of a compact complex 3 -manifold M and the compact orbits of an Anosov holomorphic action on M.

1. Introduction

In 1968 Milnor [8] pointed out the remarkable similarity between the algebraic formalism of the Reidemeister torsion in topology and zeta functions à la Weil in dynamical systems theory. This theme has been thoroughly investigated by David Fried who devised for any smooth flow and any flat bundle over the underlying manifold a certain zeta function counting the periodic orbits of a flow with appropriate multiplicities. He was able to show for a variety of flows [1] that the zeta function associated to any acyclic flat bundle is actually meromorphic on a neighborhood of $[0, \infty)$, regular at 0 , and that its value at 0 coincides with the Reidemeister torsion with coefficients in the given flat bundle and thus is a topological invariant. Because of the analogy with the Lefschetz fixed point formula, Fried used the term "flow with the Lefschetz property" in reference to such a flow. In particular, Fried proved that the geodesic flow of a closed manifold of constant negative curvature has the Lefschetz property [2] and we extended those results to transitive Anosov flows on 3-manifolds [10].

In analogy with their definition of analytic torsion on a Riemannian manifold, Ray and Singer define the $\bar{\partial}$-torsion for complex manifolds. Fried proved that the known connections between torsion and the dynamical features of closed orbits continue to hold in the holomorphic category [3]. He posed also a question about such connections for actions of a noncompact Lie group other than \mathbb{R}. Laederich [6] has investigated the case of complex manifolds which fibrate over the torus having a one dimensional holomorphic foliation transverse to the fibers.

[^0]He found a formula relating $\bar{\partial}$-torsion to "theta" functions associated to the compact orbits of the foliation.

In this paper we find a formula (6) relating $\bar{\partial}$-torsion of a compact complex 3-manifold M to special values of zeta functions (3), (5) defined with the compact orbits of an Anosov holomorphic action on M.

2. Main Result

2.1. Holomorphic Anosov actions. For $(M,\|\cdot\|)$ a Hermitian 3manifold, we follow Ghys [5] and call a holomorphic action $\phi: \mathbb{C}^{*} \times$ $M \rightarrow M,(x, T) \mapsto \phi(T)(x)$, Anosov if there exist invariant subbundles E^{u}, E^{s} of the real tangent bundle $T_{\mathbb{R}} M$ and constants $c>0, a>0$, such that

1. $T_{\mathbb{R}} M=E^{s} \oplus E^{u} \oplus T \phi$, where $T \phi$ is the bundle tangent to the orbits of the action.
2. For all $T \in \mathbb{C}^{*}, v^{s} \in E^{s}, v^{u} \in E^{u}$ one has

$$
\begin{aligned}
& \left\|d \phi(T)\left(v^{s}\right)\right\| \leq c|T|^{-a}\left\|v^{s}\right\| \\
& \left\|d \phi(T)\left(v^{u}\right)\right\| \leq c|T|^{a}\left\|v^{u}\right\| .
\end{aligned}
$$

In all of this paper G will denote the Lie group $\operatorname{SL}(2, \mathbb{C})$.
The first examples of Anosov actions are holomorphic suspensions. Suppose $A \in G$ preserves a lattice $\Lambda \subset \mathbb{C}^{2}$ and let \bar{A} be the corresponding diffeomorphism of \mathbb{C} / Λ. For $\omega \in \mathbb{C}-S^{1}$ consider the diffeomorphism A_{ω} of $\mathbb{C} / \Lambda \times \mathbb{C}^{*}$ given by $A_{\omega}(x, S)=(\bar{A}(x), \omega S)$, and the properly discontinous and free action of \mathbb{Z} on $\mathbb{C} / \Lambda \times \mathbb{C}^{*}$ given by $(k,(x, S)) \mapsto A_{\omega}^{k}(x, S)$. If the spectrum of A is disjoint from S^{1}, the action of \mathbb{C}^{*} given on the quotient manifold M by $(T,[x, S]) \mapsto[x, S T]$ is Anosov.

A second kind of examples of holomorphic Anosov actions comes from the choice of a cocompact discrete subgroup Γ of G with no elliptic elements. Let $M=\Gamma \backslash G$, then the holomorphic \mathbb{C}^{*} action $\phi(T)(\Gamma g)=$ $\Gamma g\left(\begin{array}{cc}T & 0 \\ 0 & T^{-1}\end{array}\right)$ is Anosov. One proves this fact in exactly the same way as for the corresponding well known examples in the real domain.

Ghys modifies the last examples by the following construction. Let $u: \Gamma \rightarrow \mathbb{C}^{*}$ be a representation and consider the action of Γ on G given by $(\gamma, g) \mapsto \gamma g\left(\begin{array}{cc}u(\gamma) & 0 \\ 0 & u(\gamma)^{-1}\end{array}\right)$. This action commutes with the \mathbb{C}^{*} action by right translations by $\left(\begin{array}{cc}T & 0 \\ 0 & T^{-1}\end{array}\right)$. If the action of Γ is free, proper and totally discontinous one considers the quotient manifold M with the \mathbb{C}^{*} action which becomes Anosov.

Ghys proved that any holomorphic Anosov action on a compact complex 3-manifold is up to finite covers holomorphically conjugate to one of the examples described above.

Let Γ be a discrete subgroup of G and $M=\Gamma \backslash G$ with the Anosov action as above. The orbit of Γg is compact iff there are $\gamma \in \Gamma-\{I\}$, $\lambda \in \mathbb{C}^{*}-\{1\}$ such that

$$
g^{-1} \gamma g=\left(\begin{array}{cc}
\lambda & 0 \tag{1}\\
0 & \lambda^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\exp (i \theta+l) & 0 \\
0 & \exp (-i \theta-l)
\end{array}\right)
$$

Since the elements of $\Gamma-\{I\}$ are hyperbolic, $\forall \gamma \in \Gamma-\{I\}$ there are a unique $\lambda_{\gamma} \in \mathbb{C}^{*}$ with $\left|\lambda_{\gamma}\right|>1$, and $g \in G$ such that (1) holds. If there is another $h \in G$ such that $h^{-1} \gamma h=\left(\begin{array}{cc}\lambda_{\gamma} & 0 \\ 0 & \lambda_{\gamma}^{-1}\end{array}\right)$, then $g=h\left(\begin{array}{cc}S & 0 \\ 0 & S^{-1}\end{array}\right)$.

Let G_{γ} be the centralizer of γ, then

$$
g^{-1} G_{\gamma} g=\left\{\left(\begin{array}{cc}
S & 0 \\
0 & S^{-1}
\end{array}\right): S \in \mathbb{C}^{*}\right\} .
$$

Therefore the orbit of Γg is $\mathcal{O}_{\gamma}=\left\{\Gamma x g: x \in G_{\gamma}\right\}$ and so it is conformally equivalent to $\Gamma_{\gamma} \backslash G_{\gamma}$, where $\Gamma_{\gamma}=\Gamma \cap G_{\gamma}$. Moreover

$$
\Gamma_{\gamma}=\left\{g\left(\begin{array}{cc}
\lambda_{\gamma_{o}}^{n} & 0 \\
0 & \lambda_{\gamma_{o}}^{-n}
\end{array}\right) g^{-1}: n \in \mathbb{Z}\right\}
$$

for $\gamma_{o} \in \Gamma$ prime, and $\mathcal{O}_{\gamma_{o}}=\mathcal{O}_{\gamma}$. Writing $\lambda_{\gamma_{o}}=\exp \left(l_{\gamma_{o}}+i \theta_{\gamma_{o}}\right)$ we have that $\Gamma_{\gamma_{o}} \backslash G_{\gamma_{o}}=\Gamma_{\gamma} \backslash G_{\gamma}$ is conformally equivalent to the torus $\left(l_{\gamma_{o}}+i \theta_{\gamma_{o}}\right) \mathbb{Z}+2 \pi i \mathbb{Z} \backslash \mathbb{C}$. Note that for $k=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ we have

$$
(g k)^{-1} \gamma_{0}^{-1} g k=\left(\begin{array}{cc}
\lambda_{\gamma_{o}} & 0 \\
0 & \lambda_{\gamma_{o}}^{-1}
\end{array}\right)
$$

Thus, the cyclic group Γ_{γ} defines two compact orbits $\mathcal{O}_{\gamma_{o}}$ and $\mathcal{O}_{\gamma_{o}^{-1}}$. If $\Gamma_{\gamma}, \Gamma_{\gamma^{\prime}}$ define the same compact orbit, then there is $\delta \in \Gamma$ such that $\delta \gamma^{\prime} \delta^{-1} \in \Gamma_{\gamma}$. Thus, if $[\Gamma]$ denotes the set of Γ-conjugacy classes of elements of Γ, the compact orbits of the Anosov action are parametrized by the classes $[\gamma] \in[\Gamma]$ for prime $\gamma \in \Gamma_{0}=\Gamma-\{I\}$.

For $\rho: \Gamma \rightarrow \mathrm{U}(\mathrm{m})$ a representation and $\Re z>0$, we define

$$
\begin{equation*}
Z_{a}(z)=\prod_{[\gamma] \text { prime }} \prod_{j, k=1}^{\infty} \prod_{r= \pm 2} \operatorname{det}\left(I-\rho(\gamma) e^{i r \theta_{\gamma}} \lambda_{\gamma}^{-2 j+1} \bar{\lambda}_{\gamma}^{-2 k+1} e^{-l_{\gamma} z}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& Z_{A}(z)=\prod_{[\gamma] \text { prime }} \prod_{j, k=1}^{\infty} \operatorname{det}\left(I-\rho(\gamma) \lambda_{\gamma}^{-2 j-k} e^{-l_{\gamma} z}\right)^{k+3} \\
& Z_{B}(z)=\prod_{[\gamma] \operatorname{prime}} \prod_{j, k, r=1}^{\infty} \operatorname{det}\left(I-\rho(\gamma) \lambda_{\gamma}^{-2 j-k+1} \bar{\lambda}_{\gamma}^{-2 r+1} e^{-l_{\gamma} z}\right) \\
& Z_{C}(z)=\prod_{[\gamma] \text { prime }} \prod_{j, k=1}^{\infty} \operatorname{det}\left(I-\rho(\gamma) \bar{\lambda}_{\gamma}^{-2 j} \lambda_{\gamma}^{-k} e^{-l_{\gamma} z}\right)^{k-3} \\
& Z_{\rho}(z)=\frac{Z_{A}(z) Z_{B}(z)^{6}}{Z_{C}(z)}
\end{aligned}
$$

2.2. $\bar{\partial}$-torsion. For a closed Hermitian complex k-manifold M and a representation $\rho: \pi_{1}(M) \rightarrow \mathrm{U}(\mathrm{m})$ we define $\bar{\partial}$-torsion.

First we recall how one defines the determinant of a positive elliptic differential operator D on $M . D^{-s}$ is a trace class operator for $\Re s$ large and the Dirichlet series $\zeta_{D}(s)=\operatorname{Tr} D^{-s}=\sum_{\lambda} \lambda^{-s}$ has a meromorphic continuation to \mathbb{C}, regular at $s=0$. One defines $\operatorname{det} D=\exp \left(-\zeta_{D}^{\prime}(0)\right)$.

Next we introduce the $\bar{\partial}$-Laplacian associated to ρ (see [3]). Consider the \mathbb{C}^{m} valued differential forms ω on the universal cover \tilde{M} of M that are ρ equivariant. That is, if $g \in \pi_{1}(M)$ acts on \tilde{M} as a deck transformation then the components $\omega_{1}, \ldots, \omega_{m}$ of ω satisfy

$$
g^{*} \omega_{i}=\sum_{j=1}^{m} \rho(g)_{i j} \omega_{j} .
$$

The space $\Omega(\rho)$ of such twisted forms has a decomposition

$$
\Omega(\rho)=\bigoplus_{0 \leq p, q \leq k} \Omega^{p, q}
$$

where the summands fit into a double cochain complex because the derivatives ∂ and $\bar{\partial}$ preserve the equivariance property. Since ρ is unitary, using the Riemannian measure on M and the Hodge star operator one defines an inner product on twisted forms. Taking the adjoint $\bar{\partial}^{*}$ of $\bar{\partial}$ one forms the $\bar{\partial}$-Laplacian $\bar{\Delta}=\bar{\partial} \bar{\partial} \overline{\bar{x}}^{*}+\bar{\partial}^{*} \bar{\partial}$ on twisted forms. Recalling the bigrading we write $\bar{\Delta}=\underset{0 \leq p, q, \leq k}{ } \bar{\Delta}^{p, q}, \bar{\Delta}^{p, q}: \Omega^{p, q} \rightarrow \Omega^{p, q}$.

The Hodge theorem states that ker $\bar{\Delta}^{p, q}$ is isomorphic to the Dolbeaut group $H^{p, q}(\Omega)$. When all these groups are zero we call the representation acyclic. In such a case $D=\bar{\Delta}^{p, q}$ is a positive elliptic operator. In complex differential geometry one computes det D via the trace of the
heat kernel $\operatorname{Tr} e^{-t D}$ as follows. The Mellin transform of $e^{-\lambda t}(\lambda>0)$ is

$$
M e^{-\lambda t}=\int_{0}^{\infty} t^{s-1} e^{-\lambda t} d t=\lambda^{-s} \int_{0}^{\infty} x^{s-1} e^{-x} d x=\lambda^{-s} \Gamma(s)
$$

Summing over $\lambda \in \operatorname{spec} \mathrm{D}$, gives

$$
M \operatorname{Tr} e^{-t D}=\Gamma(s) \zeta_{D}(s)
$$

For an acyclic representation ρ, Ray and Singer [9] defined the $\bar{\partial}$ torsion $\left.\tau_{p} \in\right] 0, \infty[$ by

$$
\begin{equation*}
\tau_{p}^{2}=\exp \frac{d}{d s}\left(\frac{1}{\Gamma(s)} M\left(\sum_{q}(-1)^{q} q \operatorname{Tr} e^{-t \bar{\Delta}^{p, q}}\right)\right)_{s=0} \tag{4}
\end{equation*}
$$

The purpose of this paper is to prove the following
THEOREM. Let Γ be a cocompact discrete subgroup of G and let $M=\Gamma \backslash G$ with the Anosov action as in 2.1. Let $\rho: \Gamma \rightarrow U(m)$ be an acyclic representation. Let Z_{a}, Z_{ρ} be as in (2) and (3), and let $\eta_{a}=Z_{a}^{\prime} / Z_{a}$. Then $\log Z_{\rho}$ is analytic for $\Re z>-1$ and η_{a} has a meromorphic continuation to \mathbb{C} whose poles are simple, are located on $i \mathbb{R}$, and except for the zero pole, have integer residues. If r_{ρ} denotes the residue of η_{a} at zero and $c \in \mathbb{C}^{*}$,

$$
\begin{equation*}
\zeta_{\rho}(z)=c \exp \int_{0}^{z}\left(\eta_{a}(s)-\frac{r_{\rho}}{s}\right) d s \tag{5}
\end{equation*}
$$

defines an entire function whose only zeros ocurr at the nonzero poles of η_{a}. Choosing c such that $\zeta_{\rho}(1)=Z_{a}(1)$ we have

$$
\begin{equation*}
\tau_{p}^{2}=\left(\frac{\exp \left(\frac{19}{80} m \operatorname{vol}(M) \pi^{-3}\right)}{2^{9 r_{\rho} / 2}\left|Z_{\rho}(0)\right|^{2} \zeta_{\rho}(0)^{3}}\right)^{\binom{3}{p}} \tag{6}
\end{equation*}
$$

Remarks:

1. The analogous result for the holomorphic suspension examples in 2.1 is a particular case of the theorem of Laederich [6].
2. We have been unable to deal with the modified examples of Ghys.
3. We identified the zeta function Z_{a} given by the product (2), which is not convergent for $\Re z=0$, and we found that it was studied by Scott [11].
4. We chose to decompose the function Z_{ρ} in order to have nice product expansions (3).

3. The $\bar{\partial}$-Laplacian

Let $K=\mathrm{SU}(2, \mathbb{C})$ (maximal compact subgroup of G) and $\mathfrak{g}=\operatorname{sl}(2, \mathbb{C})$ (Lie algebra of G). Consider the following \mathbb{R}-basis of \mathfrak{g}

$$
\begin{aligned}
& E_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), E_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), E_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \\
& F_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & i \\
-i & 0
\end{array}\right), F_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right), F_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) .
\end{aligned}
$$

\mathfrak{g} has a natural Hermitian product $\langle x, y\rangle=\operatorname{Tr}\left(x \bar{y}^{t}\right)$ and the above basis is orthonormal for the metric $\Re\langle$,$\rangle . Note that E_{1}, F_{2}, F_{3}$ is a basis of $\operatorname{su}(2, \mathbb{C})$.

Thought as a real Lie algebra, its complexification $\mathfrak{g}_{\mathbb{C}}$ has a basis $\left\{X_{1}, X_{2}, X_{3}, \bar{X}_{1}, \bar{X}_{2}, \bar{X}_{3}\right\}$ where

$$
X_{k}=\frac{1}{2}\left(E_{k}-\mathbb{J} F_{k}\right), \quad \bar{X}_{k}=\frac{1}{2}\left(E_{k}+\mathbb{J} F_{k}\right), \quad \mathbb{J}^{2}=-\mathbb{I} .
$$

Writing $\left[\bar{X}_{l}, \bar{X}_{j}\right]=\sum_{k} C_{l j}^{k} \bar{X}_{k}$, we have $C_{l j}^{j}=0, C_{12}^{3}=C_{32}^{1}=C_{31}^{2}=\sqrt{2}$.
Each element $X \in \mathfrak{g}$ defines a left invariant vector field on the complex manifold G such that

$$
X(f)(g)=\left.\frac{d}{d s}\right|_{s=0} f(g \exp (s X))
$$

for $f: G \rightarrow \mathbb{C}$. The elements of $\mathfrak{g}_{\mathbb{C}}$ define sections of the complexified tangent bundle $T_{\mathbb{C}} G$. Note that

$$
\mathbb{J} F_{k}(f)(g)=\left.i \frac{d}{d s}\right|_{s=0} f\left(g \exp \left(s F_{k}\right)\right)
$$

Let $\omega_{k}, \bar{\omega}_{k}$ be the duals of the vector fields X_{k}, \bar{X}_{k}. Then

$$
\omega_{k}\left(E_{l}\right)=\delta_{k l}, \omega_{k}\left(F_{l}\right)=i \delta_{k l}, \bar{\omega}_{k}\left(E_{l}\right)=\delta_{k l}, \bar{\omega}_{k}\left(F_{l}\right)=-i \delta_{k l}
$$

Any element η of $\wedge^{p, q}(G)$ can be written

$$
\eta=\sum_{I, J} \eta_{I J} \omega_{I} \wedge \bar{\omega}_{J}
$$

where $I=\left(i_{1}, \ldots, i_{p}\right), i_{1}<\cdots<i_{p}, J=\left(j_{1}, \ldots, j_{q}\right), j_{1}<\cdots<j_{q}$,

$$
\omega_{I}=\omega_{i_{1}} \wedge \cdots \wedge \omega_{i_{p}}, \quad \bar{\omega}_{I}=\bar{\omega}_{i_{1}} \wedge \cdots \wedge \bar{\omega}_{i_{p}} .
$$

All of the above vector fields define vector fields on $M=\Gamma \backslash G$. Define

$$
\left[\bar{\omega}_{l}, \bar{\omega}_{j}\right]=\sum_{k} C_{l j}^{k} \bar{\omega}_{k}
$$

Let $\eta=f \omega_{I} \wedge \bar{\omega}_{J} \in \wedge^{p, q}(M)$ then

$$
\begin{align*}
\bar{\partial} \eta= & (-1)^{p} \sum_{j} \bar{X}_{j}(f) \omega_{I} \wedge \bar{\omega}_{j} \wedge \bar{\omega}_{J} \\
& +(-1)^{p+1} \sum_{l<j} f \omega_{I} \wedge \bar{\omega}_{l} \wedge \bar{\omega}_{j} \iota\left(\left[\bar{X}_{l}, \bar{X}_{j}\right]\right) \wedge \bar{\omega}_{J} \tag{7}
\end{align*}
$$

One computes the adjoint

$$
\begin{align*}
\bar{\partial}^{*} \eta= & (-1)^{p+1} \sum_{j} X_{j}(f) \omega_{I} \wedge \iota\left(\bar{X}_{j}\right) \bar{\omega}_{J} \\
& +(-1)^{p} \sum_{l<j} f \omega_{I} \wedge\left[\bar{\omega}_{l}, \bar{\omega}_{j}\right] \wedge \iota\left(\bar{X}_{l}\right) \iota\left(\bar{X}_{j}\right) \bar{\omega}_{J} \tag{8}
\end{align*}
$$

and so the $\bar{\partial}$-Laplacian
(9)

$$
\begin{aligned}
\bar{\Delta} \eta & =\sum_{k}-X_{k}\left(\bar{X}_{k} f\right) \omega_{I} \wedge \bar{\omega}_{J}+\sum_{j l}\left[X_{l}, \bar{X}_{j}\right](f) \omega_{I} \wedge \bar{\omega}_{j} \wedge \iota\left(\bar{X}_{l}\right) \bar{\omega}_{J} \\
& -\sum_{m<n} \sum_{l<j} \sum_{k} C_{m n}^{k} C_{l j}^{k} f \omega_{I} \wedge \bar{\omega}_{m} \wedge \bar{\omega}_{n} \wedge \iota\left(\bar{X}_{l}\right) \iota\left(\bar{X}_{j}\right) \bar{\omega}_{J} \\
& +\sum_{l j}\left(X_{l}(f) \omega_{I} \wedge \bar{\omega}_{j} \wedge \iota\left(\left[\bar{X}_{l}, \bar{X}_{j}\right]\right) \bar{\omega}_{J}+\bar{X}_{l}(f) \omega_{I} \wedge\left[\bar{\omega}_{j}, \bar{\omega}_{l}\right] \wedge \iota\left(\bar{X}_{j}\right) \bar{\omega}_{J}\right) \\
& +\sum_{m<n} f \omega_{I} \wedge\left[\bar{\omega}_{m}, \bar{\omega}_{n}\right] \wedge \iota\left(\left[\bar{X}_{m}, \bar{X}_{n}\right]\right) \bar{\omega}_{J} \\
& -\sum_{m n j} f \omega_{I} \wedge\left[\bar{\omega}_{m}, \bar{\omega}_{n}\right] \wedge \bar{\omega}_{j} \wedge \iota\left(\bar{X}_{n}\right) \iota\left(\left[\bar{X}_{m}, \bar{X}_{j}\right]\right) \bar{\omega}_{J}
\end{aligned}
$$

Thus, we have the following

Proposition.

$$
\begin{equation*}
\eta=f \omega_{I} \quad \Rightarrow \quad \bar{\Delta}^{p, 0} \eta=\left(-\sum_{k} X_{k} \bar{X}_{k} f\right) \omega_{I} . \tag{10}
\end{equation*}
$$

Writing $\omega_{I} \wedge\left(f_{1} \bar{\omega}_{1}+f_{2} \bar{\omega}_{2}+f_{3} \bar{\omega}_{3}\right)=\omega_{I} \otimes\left(f_{1}, f_{2}, f_{3}\right)^{t}$, we have
(11) $\bar{\Delta}^{p, 1}: \omega_{I} \otimes\left(f_{1}, f_{2}, f_{3}\right)^{t} \mapsto$
$\omega_{I} \otimes\left(\begin{array}{ccc}-\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I} & -\sqrt{2} \mathbb{J} F_{3} & \sqrt{2} \mathbb{J} F_{2} \\ -\sqrt{2} \mathbb{J} F_{3} & -\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I} & \sqrt{2} E_{1} \\ \sqrt{2} \mathbb{J} F_{2} & -\sqrt{2} E_{1} & -\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I}\end{array}\right)\left(\begin{array}{l}f_{1} \\ f_{2} \\ f_{3}\end{array}\right)$.
Writing $\omega_{I} \wedge\left(f_{1} \bar{\omega}_{2} \wedge \bar{\omega}_{3}+f_{2} \bar{\omega}_{3} \wedge \bar{\omega}_{1}+f_{3} \bar{\omega}_{1} \wedge \bar{\omega}_{2}\right)=\omega_{I} \otimes\left(f_{1}, f_{2}, f_{3}\right)^{t}$, we have
$\omega_{I} \otimes\left(\begin{array}{ccc}-\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I} & \sqrt{2} \mathbb{J} E_{3} & -\sqrt{2} \mathbb{J} E_{2} \\ \sqrt{2} \mathbb{J} E_{3} & -\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I} & \sqrt{2} E_{1} \\ -\sqrt{2} \mathbb{J} F_{2} & -\sqrt{2} E_{1} & -\sum_{k} X_{k} \bar{X}_{k}+2 \mathbb{I}\end{array}\right)\left(\begin{array}{l}f_{1} \\ f_{2} \\ f_{3}\end{array}\right)$.

$$
\begin{equation*}
\eta=f \omega_{I} \wedge \bar{\omega}_{1} \wedge \bar{\omega}_{2} \wedge \bar{\omega}_{3} \Rightarrow \bar{\Delta}^{p, 3} \eta=\left(-\sum_{k} X_{k} \bar{X}_{k} f\right) \omega_{I} \wedge \bar{\omega}_{1} \wedge \bar{\omega}_{2} \wedge \bar{\omega}_{3} \tag{13}
\end{equation*}
$$

4. The trace formula for the heat kernel

Consider an acyclic representation $\rho: \Gamma \rightarrow \mathrm{U}(\mathrm{m})$. Let π_{ρ} be the induced unitary representation of G on

$$
L^{2}(G ; \rho)=\left\{f: G \rightarrow \mathbb{C}^{m}: \int_{M}|f|^{2}<\infty, \quad f(\gamma g)=\rho(\gamma) f(g)\right\}
$$

π_{ρ} decomposes as $\pi_{\rho}=\sum_{\omega \in \hat{G}} n_{\rho}(\omega) \omega$ and $n_{\rho}<\infty$ for $\omega \in \hat{G}$, where \hat{G} stands for set of all equivalence classes of irreducible unitary representations of G. Let φ be in the Harish-Chandra's L^{1} Schwarz space $\mathcal{C}_{1}(G)$. For $\left(T_{\omega}, V_{\omega}\right) \in \omega \in \hat{G}$, the operator $T_{\omega}(\varphi)=\int_{G} \varphi(x) T_{\omega}(x) d x$ on V_{ω} is trace class and $\Theta_{\omega}(\varphi)=\operatorname{Tr} T_{\omega}(\varphi)$ is the character of ω. $\bar{\Delta}^{p, q}$ extends to

$$
\begin{equation*}
L^{2}\left(\Omega^{p, q}\right)=\wedge^{p, q}(\mathfrak{g}) \otimes L^{2}(G ; \rho)=\bigoplus_{\omega \in \hat{G}} n_{\rho}(\omega) \wedge^{p, q}(\mathfrak{g}) \otimes V_{\omega} . \tag{14}
\end{equation*}
$$

Denote by $D^{p, q}$ the corresponding operator on $\wedge^{p, q}(\mathfrak{g}) \otimes L^{2}(G)$. The heat operator $e^{-t D^{p, q}}$ has kernel $h_{t}^{* p, q}$ in $\operatorname{End}\left(\wedge^{p, q}(\mathfrak{g})\right) \otimes \mathcal{C}_{1}(G)$. Thus the Schwarz kernel for $e^{-t \bar{\Delta}^{p, q}}$ is

$$
h_{t}^{p, q}(\Gamma x, \Gamma y)=\sum_{\gamma \in \Gamma} h_{t}^{* p, q}\left(x^{-1} \gamma y\right) \otimes \rho(\gamma) .
$$

Setting $\varphi_{t}^{p}=\sum_{q}(-1)^{q} q \operatorname{Tr} h_{t}^{* p, q}$, one has the trace formula

$$
\begin{align*}
H(t) & :=\sum_{q=0}^{3}(-1)^{q} q \operatorname{Tr} e^{-t \bar{\Delta}^{p, q}}=\sum_{\omega \in \hat{G}} n_{\rho}(\omega) \Theta_{\omega}\left(\varphi_{t}^{p}\right) \tag{15}\\
& =\sum_{[\gamma] \in[\Gamma]} \operatorname{Tr} \rho(\gamma) \operatorname{vol}\left(\Gamma_{\gamma} \backslash G_{\gamma}\right) \int_{G_{\gamma} \backslash G} \varphi_{t}^{p}\left(x^{-1} \gamma x\right) d \dot{x} .
\end{align*}
$$

The last integrals can be expressed in terms of the characters of the representations in the principal series which we now define (see [4]).

For $k \in \mathbb{Z}, v \in \mathbb{R}$, let $H_{k, v}=L^{2}(\mathbb{C})$. For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we define an operator $T_{k, v}(g)$ in $H_{k, v}$ as follows

$$
T_{k, v}(g) f(z)=|b z+d|^{k+i v-2}(b z+d)^{-k} f\left(\frac{a z+c}{b z+d}\right)
$$

Let $\Theta_{k, v}$ be the character of $T_{k, v}$.
Every element $\gamma \in \Gamma_{0}$ is conjugate to a matrix

$$
\left(\begin{array}{cc}
\lambda_{\gamma} & 0 \\
0 & \lambda_{\gamma}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
\exp \left(i \theta_{\gamma}+l_{\gamma}\right) & 0 \\
0 & \exp \left(-i \theta_{\gamma}-l_{\gamma}\right)
\end{array}\right)
$$

with $l_{\gamma}>0$ and one has

$$
\begin{equation*}
\int_{G_{\gamma} \backslash G} \varphi_{t}^{p}\left(x^{-1} \gamma x\right) d \dot{x}=\frac{(2 \pi)^{-2}}{\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \Theta_{k, v}\left(\varphi_{t}^{p}\right) e^{i k \theta_{\gamma}} e^{-i v l_{\gamma}} d v \tag{16}
\end{equation*}
$$

For $\gamma=I$ we have the Plancherel formula

$$
\begin{equation*}
\varphi_{t}^{p}(I)=\frac{1}{32 \pi^{4}} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty}\left(k^{2}+v^{2}\right) \Theta_{k, v}\left(\varphi_{t}^{p}\right) d v \tag{17}
\end{equation*}
$$

To give the action of \mathfrak{g} on $H_{k, v}$, let $A=(-k-2+i v) / 2, B=(k-2+$ $i v) / 2, X=\left(\begin{array}{cc}u & w \\ y & -u\end{array}\right)$ and $f \in H_{k, v}$, then

$$
\begin{align*}
X f(z) & =[A(w z-u)+B(\overline{w z-u})] f(z) \\
& +\frac{\partial f}{\partial z}\left(2 u z+y-w z^{2}\right)+\frac{\partial f}{\partial \bar{z}}\left(\overline{2 u z+y-w z^{2}}\right) \tag{18}
\end{align*}
$$

Consider the Casimir elements $\Omega_{G}=E_{2}^{2}+E_{3}^{2}+F_{1}^{2}-E_{1}^{2}-F_{2}^{2}-F_{3}^{2}$, $\Omega_{K}=-E_{1}^{2}-F_{2}^{2}-F_{3}^{2}$. Note that $-4 \sum_{j} X_{j} \bar{X}_{j}=-\Omega_{G}+2 \Omega_{K}$. From (18), $\Omega_{G} f=\left(\left(A^{2}+B^{2}\right)-2(A+B)\right) f=\left(\left(k^{2}-v^{2}\right) / 2-2\right) f=\lambda_{k, v} f$.

The irreducible representations of K are given by $\left(V_{n}, \tau_{n}\right), n \in \mathbb{N} \cup$ $\{0\}$, where V_{n} is the space of homogeneous polynomials of degree n in two variables and $\tau_{n}(g) P\left(\left(z_{1}, z_{2}\right)^{t}\right)=P\left(g^{-1}\left(z_{1}, z_{2}\right)^{t}\right)$.

For $X=\left(\begin{array}{cc}u & w \\ -\bar{w} & -u\end{array}\right)$ and $P_{k}=z_{1}^{k} z_{2}^{n-k}$ we have

$$
X P_{k}=-k w P_{k-1}+(n-2 k) u P_{k}+(n-k) \bar{w} P_{k+1}
$$

Then $2 \Omega_{K} P=\left(n^{2}+2 n\right) P$.
One easily finds that the multiplicity of τ_{n} in $T_{k, v} \mid K$ is

$$
\left[\tau_{n}: T_{k, v} \mid K\right]= \begin{cases}1 & \text { if } n-k \text { is even and } n \geq|k| \\ 0 & \text { otherwise }\end{cases}
$$

When this multipicity is $1, \Omega_{G}-2 \Omega_{K} \mid V_{n}$ is multiplication by $\mu_{k, v, n}=$ $\lambda_{k, v}-n(n+2)$.

$$
\omega \mid K=\sum_{n \in \mathbb{Z}^{+}}\left[\tau_{n}: T_{\omega} \mid K\right]\left(\tau_{n}, V_{n}\right)
$$

From (10) and (13), we have that for $q=0,3$

$$
\bar{\Delta}^{p, q}\left|V_{\omega}=I^{p, q} \otimes \frac{1}{4}\left(-\Omega_{G}+2 \Omega_{K}\right)\right| V_{\omega},
$$

and thus

$$
\Theta_{k, v}\left(\operatorname{Tr} h_{t}^{* p, q}\right)=\binom{3}{p} \sum_{\substack{n=|k| \\ n-k \text { even }}}^{\infty}(n+1) \exp \left(t \mu_{k, v, n} / 4\right)
$$

Let

$$
D(k, n)=\left(\begin{array}{ccc}
n-2(k+1) & 0 & 2(n-k) \\
0 & -n+2(k-1) & 2 k \\
k+1 & n-k-1 & 0
\end{array}\right) .
$$

Its eigenvalues are $\lambda=-2, n,-n-2$. Let $E(k, n, \lambda)$ be the λ-eigenspace of $D(k, n)$ and

$$
\begin{aligned}
& V_{n}(\lambda)=\left\{\sum_{k}\left(\begin{array}{c}
\left(a_{k-1}+b_{k+1}\right) P_{k} \\
\left(a_{k-1}-b_{k+1}\right) P_{k} \\
c_{k} P_{k}
\end{array}\right):\left(\begin{array}{l}
a_{k} \\
b_{k} \\
c_{k}
\end{array}\right) \in E(k, n, \lambda)\right\}, \\
& W_{n}(\lambda)=\left\{\sum_{k}\left(\begin{array}{c}
-\left(a_{k-1}+b_{k+1}\right) P_{k} \\
\left(a_{k-1}-b_{k+1}\right) P_{k} \\
c_{k} P_{k}
\end{array}\right):\left(\begin{array}{l}
a_{k} \\
b_{k} \\
c_{k}
\end{array}\right) \in E(k, n, \lambda)\right\} .
\end{aligned}
$$

Then

$$
\begin{gathered}
\wedge^{0,1}(\mathfrak{g}) \otimes V_{n}=V_{n}(-2) \oplus V_{n}(n) \oplus V_{n}(-n-2), \\
\wedge^{0,2}(\mathfrak{g}) \otimes V_{n}=W_{n}(-2) \oplus W_{n}(n) \oplus W_{n}(-n-2) .
\end{gathered}
$$

From (11) and (12) we see that

$$
\begin{aligned}
& \bar{\Delta}^{p, 1}\left|\wedge^{p, 0}(\mathfrak{g}) \otimes V_{n}(\lambda)=I^{p, 1} \otimes \frac{1}{4}\left(-\Omega_{G}+2 \Omega_{K}\right)+(\lambda+2) I\right| V_{n}(\lambda), \\
& \bar{\Delta}^{p, 2}\left|\wedge^{p, 0}(\mathfrak{g}) \otimes W_{n}(\lambda)=I^{p, 2} \otimes \frac{1}{4}\left(-\Omega_{G}+2 \Omega_{K}\right)+(\lambda+2) I\right| W_{n}(\lambda) .
\end{aligned}
$$

Thus, for $q=1,2$ we have

$$
\Theta_{k, v}\left(\operatorname{Tr} h_{t}^{* p, q}\right)=\binom{3}{p} \sum_{\substack{n=|k| \\ n-k \text { even }}}^{\infty}(n+1) \exp \left(t \mu_{k, v, n} / 4\right)\left(1+e^{-t(n+2)}+e^{t n}\right) .
$$

Therefore, the characters are given by

$$
\begin{align*}
& \text { (19) } \Theta_{k, v}\left(\varphi_{t}^{p}\right)=\binom{3}{p} \sum_{\substack{n=|k| \\
n-k \text { even }}}^{\infty}(n+1) \exp \left(t \mu_{k, v, n} / 4\right)\left(e^{-t(n+2)}+e^{t n}-2\right) \tag{19}\\
& =\binom{3}{p} e^{t\left(\lambda_{k, v}+1\right) / 4} \sum_{\substack{n=|k| \\
n-k \text { even }}}^{\infty}(n+1)\left(e^{-t(n+3)^{2} / 4}+e^{-t(n-1)^{2} / 4}-2 e^{-t(n+1)^{2} / 4}\right) \\
& =\binom{3}{p} e^{-t v^{2} / 8}\left((1-|k|) e^{-t(|k|+2)^{2} / 8}+(1+|k|) e^{-t(|k|-2)^{2} / 8}\right)
\end{align*}
$$

The function $\Phi_{I}^{p}:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
\left.\Phi_{I}^{p}(t)=\frac{2\binom{3}{p}}{(2 \pi)^{7 / 2}} \sum_{|k|=1}^{\infty}(3+k) \exp \left(-t k^{2} / 8\right)\left((k+2)^{2} t^{-1 / 2}+4 t^{-3 / 2}\right)\right)
$$

is exponentially small at ∞. By Plancherel formula (17) we have

$$
\begin{equation*}
\varphi_{t}^{p}(I)=\Phi_{I}^{p}(t)+24(2 \pi)^{-7 / 2}\binom{3}{p}\left(t^{-1 / 2}+t^{-3 / 2}\right), \tag{20}
\end{equation*}
$$

Defining $\Phi_{\gamma}^{p}:(0, \infty) \rightarrow \mathbb{R}$ by

$$
\Phi_{\gamma}^{p}(t)=4\binom{3}{p} \sqrt{\frac{\pi}{2 t}} \exp \left(-2 l_{\gamma}^{2} / t\right) \sum_{|k|=1}^{\infty}(3+k) \exp \left(-t k^{2} / 8\right) 2 \cos \left((k+2) \theta_{\gamma},\right.
$$

we get

$$
\begin{align*}
& \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \Theta_{k, v}\left(\varphi_{t}^{p}\right) e^{i k \theta_{\gamma}} e^{-i v l_{\gamma}} d v \tag{21}\\
&=\Phi_{\gamma}^{p}(t)+24\binom{3}{p} \cos \left(2 \theta_{\gamma}\right) \sqrt{\frac{\pi}{2 t}} \exp \left(-2 l_{\gamma}^{2} / t\right)
\end{align*}
$$

5. Zeta functions

This section is concerned with the analyticity of the zeta functions that appear in THEOREM. Recall their definition given by (2), (3).

For each $\gamma \in \Gamma_{0}$ there are γ_{o} prime and $n_{\gamma} \in \mathbb{N}$, such that $\gamma=\gamma_{o}^{n_{\gamma}}$. $\Gamma_{\gamma} \backslash G_{\gamma}$ is conformally equivalent to $\left(l_{\gamma_{o}}+i \theta_{\gamma_{o}}\right) \mathbb{Z}+2 \pi i \mathbb{Z} \backslash \mathbb{C}$ and so
$\operatorname{vol}\left(\Gamma_{\gamma} \backslash G_{\gamma}\right)=2 \pi l_{\gamma} / n_{\gamma}$. Let

$$
\begin{aligned}
a_{\gamma} & =\frac{2 \cos \left(2 \theta_{\gamma}\right)}{\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}}=\sum_{j, k=1}^{\infty}\left(e^{i 2 \theta_{\gamma}}+e^{-i 2 \theta_{\gamma}}\right) \lambda_{\gamma}^{-2 j+1} \bar{\lambda}_{\gamma}^{-2 k+1} \\
b_{\gamma} & =\frac{2 \lambda_{\gamma}^{-1}\left(3 \cos \left(2 \theta_{\gamma}\right)\left(1-\lambda_{\gamma}^{-1}\right)-i \sin \left(2 \theta_{\gamma}\right)\right)}{\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}\left(1-\lambda_{\gamma}^{-1}\right)^{2}}, \\
A_{\gamma} & =\frac{\lambda_{\gamma}^{-3}\left(4-3 \lambda_{\gamma}^{-1}\right)}{\left(1-\lambda_{\gamma}^{-2}\right)\left(1-\lambda_{\gamma}^{-1}\right)^{2}}=\sum_{j, k=1}^{\infty}(3+k) \lambda_{\gamma}^{-2 j-k} \\
B_{\gamma} & =\frac{\left|\lambda_{\gamma}\right|^{-2} \lambda_{\gamma}^{-1}}{\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}\left(1-\lambda_{\gamma}^{-1}\right)}=\sum_{j, k, r=1}^{\infty} \lambda_{\gamma}^{-2 j-k+1} \bar{\lambda}_{\gamma}^{-2 r+1} \\
C_{\gamma} & =\frac{\bar{\lambda}_{\gamma}^{-2} \lambda_{\gamma}^{-1}\left(3 \lambda_{\gamma}^{-1}-2\right)}{\left(1-\bar{\lambda}_{\gamma}^{-2}\right)\left(1-\lambda_{\gamma}^{-1}\right)^{2}}=\sum_{j, k=1}^{\infty}(k-3) \bar{\lambda}_{\gamma}^{-2 j} \lambda_{\gamma}^{-k}
\end{aligned}
$$

Then

$$
\begin{gather*}
b_{\gamma}=A_{\gamma}+6 B_{\gamma}-C_{\gamma} \text { and } \tag{22}\\
b_{\gamma}+\bar{b}_{\gamma}=\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{-2} \sum_{|k|=1}^{\infty}(3+k) e^{-|k| l_{\gamma}} 2 \cos \left((k+2) \theta_{\gamma}\right) .
\end{gather*}
$$

For $\beta=a, A, B, C$ we have

$$
Z_{\beta}(z)=\exp \left(-\sum_{[\gamma] \in\left[\Gamma_{0}\right]} \frac{1}{n_{\gamma}} \operatorname{Tr} \rho(\gamma) \beta_{\gamma} e^{-l_{\gamma} z}\right) .
$$

For $\Re z>0$ and $\beta=a, b, A, B, C$ let

$$
\eta_{\beta}(z)=\frac{Z_{\beta}^{\prime}(z)}{Z_{\beta}(z)}=\sum_{[\gamma] \in\left[\Gamma_{0}\right]} \frac{\operatorname{Tr} \rho(\gamma)}{2 \pi} \operatorname{vol}\left(\Gamma_{\gamma} \backslash G_{\gamma}\right) \beta_{\gamma} e^{-l_{\gamma} z} .
$$

By the definition of Z_{ρ} and (22),

$$
\begin{equation*}
\frac{Z_{\rho}^{\prime}}{Z_{\rho}}=\eta_{A}+6 \eta_{B}-\eta_{C}=\eta_{b} \tag{23}
\end{equation*}
$$

Let N_{T} be the number of $[\gamma]$ in $[\Gamma]$ with $l_{\gamma} \leq T$. Margulis [7] has proved that $\lim _{T \rightarrow \infty} \log N_{T} / T=2$.

For $\beta=A, B, C, \lim _{l_{\gamma} \rightarrow \infty} \log \left|\beta_{\gamma}\right| / l_{\gamma}=-3$ and so the series $\log Z_{\beta}(z)$ converges uniformly in each set $\Re z \geq-1+\delta, \delta>0$. By (23)

$$
\int_{0}^{\infty} \eta_{b}(x) d x=-\log Z_{\rho}(0) .
$$

Since $\lim _{l_{\gamma} \rightarrow \infty} \log \left|a_{\gamma}\right| / l_{\gamma}=-2$, the series $\eta_{a}(z)$ converges uniformly in each set $\Re z \geq \delta>0$. Scott [11] has shown that $\eta_{a}(z)$ has a meromorphic continuation to \mathbb{C} with only simple poles at zero and the points $\pm i v \neq 0$ such that $n_{\rho}\left(T_{2, v}\right) \neq 0$, having residue $n_{\rho}\left(T_{2, v}\right)+n_{\rho}\left(T_{2,-v}\right)$ at these points, and satisfying the functional equation

$$
\begin{equation*}
\eta_{a}(i z)+\eta_{a}(-i z)+p(z)=0 \tag{24}
\end{equation*}
$$

where $p(r)=m \operatorname{vol}(M)\left(4+r^{2}\right) /(2 \pi)^{3}$. Let r_{ρ} be the residue of η_{a} at zero and define $\psi_{\rho}(z)=\eta_{a}(z)-r_{\rho} / z$. Thus, for any $c \in \mathbb{C}^{*}$

$$
\zeta_{\rho}(z)=c \exp \int_{0}^{z} \psi_{\rho}(s) d s
$$

is a well defined entire function whose only zeros ocurr at the points $z=$ $\pm i v \neq 0$ such that $n_{\rho}\left(T_{2, v}\right) \neq 0$, and are of order $n_{\rho}\left(T_{2, v}\right)+n_{\rho}\left(T_{2,-v}\right)$.

6. Proof of formula (6)

Let

$$
\begin{aligned}
F(t) & =24(2 \pi)^{-7 / 2}\binom{3}{p} m \operatorname{vol}(M)\left(t^{-1 / 2}+t^{-3 / 2}\right) \\
g(t) & =\binom{3}{p} \sum_{[\gamma] \in\left[\Gamma_{0}\right]} \frac{6 \cos \left(2 \theta_{\gamma}\right) \operatorname{Tr} \rho(\gamma) \operatorname{vol}\left(\Gamma_{\gamma} \backslash G_{\gamma}\right)}{\pi^{2}\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}} \sqrt{\frac{\pi}{2 t}} \exp \left(-2 l_{\gamma}^{2} / t\right) \\
G(t) & =\sum_{[\gamma] \in\left[\Gamma_{0}\right]} \frac{\operatorname{Tr} \rho(\gamma) \operatorname{vol}\left(\Gamma_{\gamma} \backslash G_{\gamma}\right)}{4 \pi^{2}\left|\lambda_{\gamma}-\lambda_{\gamma}^{-1}\right|^{2}} \Phi_{\gamma}^{p}(t) .
\end{aligned}
$$

Then g is exponentially small at 0^{+}, and so is G by Poisson summation formula. By (15), (16), (20), (21) we have

$$
H(t)-m \operatorname{vol}(M) \Phi_{I}^{p}(t)-\chi_{(0,1]} F(t)=\chi_{(1, \infty)} F(t)+g(t)+G(t)
$$

the left hand side is exponentially small at ∞ while the right hand side is exponentially small at 0^{+}. We define an entire function $h(s)$ by taking the Mellin transform of both sides. For $\Re s>3 / 2,\left(t^{-1 / 2}+\right.$ $\left.t^{-3 / 2}\right) \chi_{(0,1]}$ has Mellin transform $\left(s-\frac{1}{2}\right)^{-1}+\left(s-\frac{3}{2}\right)^{-1}$. For $\Re s<1 / 2$, $\left(t^{-1 / 2}+t^{-3 / 2}\right) \chi_{(1, \infty)}$ has Mellin transform $-\left(s-\frac{1}{2}\right)^{-1}-\left(s-\frac{3}{2}\right)^{-1}$. Both have meromorphic continuation to \mathbb{C}. Therefore

$$
h(s)+24(2 \pi)^{-7}\binom{3}{p} m \operatorname{vol}(M)\left(\frac{1}{s-1 / 2}+\frac{1}{s-3 / 2}\right)
$$

gives a meromorphic continuation of both $M H(s)-m \operatorname{vol}(M) M \Phi_{I}^{p}(s)$ and $M g(s)+M G(s)$. Thus

$$
\begin{equation*}
M H(s)=m \operatorname{vol}(M) M \Phi_{I}^{p}(s)+M g(s)+M G(s) \tag{25}
\end{equation*}
$$

We have
$M \Phi_{I}^{p}(s)=\binom{3}{p} 8^{s-1} \pi^{2 s-5}\left(\frac{7 s-9}{\pi^{2}} \Gamma(2-s) \zeta(4-2 s)+12 \Gamma(1-s) \zeta(2-2 s)\right)$,

$$
\begin{equation*}
M \Phi_{I}^{p}(0)=\binom{3}{p} 19 / 80 \pi^{3} . \tag{26}
\end{equation*}
$$

For $\Re s<0$ we use the substitution

$$
\begin{equation*}
t^{s-1}=\frac{8^{s-1}}{\Gamma(1-s)} \int_{0}^{\infty}(x(x+2|k|))^{-s} e^{-x(x+2|k|) t / 8}(2 x+2|k|) d x \tag{27}
\end{equation*}
$$

switch the order of integration in the Mellin transform, integrate term by term using

$$
\int_{0}^{\infty} e^{-(x+|k|)^{2} t / 8}(2 x+2|k|) \frac{1}{\sqrt{2 \pi t}} e^{-2 l_{\gamma}^{2} / t} d t=4 e^{-l_{\gamma}(x+|k|)}
$$

and let $s \uparrow 0$ to get

$$
\begin{equation*}
M G(0)=\binom{3}{p} \int_{0}^{\infty}\left(\eta_{b}(x)+\overline{\eta_{b}(x)}\right) d x=-\binom{3}{p} \log \left|Z_{\rho}(0)\right|^{2} . \tag{28}
\end{equation*}
$$

For $g(t)$ we have

$$
M g(s)=3\binom{3}{p} \frac{8^{s}}{\Gamma(1-s)} \int_{0}^{\infty} x^{-2 s} \eta_{a}(x) d x
$$

Since

$$
\int_{0}^{\infty} x^{-2 s} \eta_{a}(x) d x=\int_{0}^{1} x^{-2 s} \psi_{\rho}(x) d x+\int_{0}^{1} r_{\rho} x^{-2 s-1} d x+\int_{1}^{\infty} x^{-2 s} \eta_{a}(x) d x
$$

we have
$\lim _{s \uparrow 0}\left(\int_{0}^{\infty} x^{-2 s} \eta_{a}(x) d x+\frac{r_{\rho}}{2 s}\right)=\log \left(\frac{\zeta_{\rho}(1)}{\zeta_{\rho}(0)}\right)-\log Z_{a}(1)=-\log \zeta_{\rho}(0)$.
Thus

$$
\begin{align*}
\frac{d}{d s}\left(\frac{M g(s)}{\Gamma(s)}\right)_{s=0} & =-3\binom{3}{p}\left(\log \zeta_{\rho}(0)+\frac{d}{d s}\left(\frac{8^{s} r_{\rho} \sin \pi s}{2 \pi s}\right)_{s=0}\right) \tag{29}\\
& =-3\binom{3}{p}\left(\log \zeta_{\rho}(0)+\frac{r_{\rho}}{2} \log 8\right)
\end{align*}
$$

From the definition (4), equations (25), (26), (28) and (29) give (6).

References

[1] Fried, D. Lefschetz formulas for flows. In The Lefschetz Centennial Conference Part III. Contemp. Math. 58, 16-69 (1987).
[2] Fried, D. Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84, 523-540 (1986).
[3] Fried, D. Torsion and closed geodesics on complex hyperbolic manifolds. Invent. Math. 91, 31-51 (1988).
[4] Gel'fand I. M. et al. Representation Theory and Automorphic Functions. Boston: Academic Press (1990).
[5] Ghys, E. Holomorphic Anosov Systems. Invent. Math. 119, 585-614 (1995).
[6] Laederich, S. $\bar{\partial}$-Torsion, Foliations and Holomorphic vector fields. Commun. Math. Phys. 145, 447-458 (1992).
[7] Margulis, G. Applications of ergodic theory to the investigation of manifolds of negative curvature. Funct. Anal. Appl. 3, 335-336 (1969).
[8] Milnor, J. Infinite cyclic coverings. In Conference on the Topology of Manifolds 115-133, Boston: Pridle, Weber, Schmidt (1968).
[9] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds. Ann. Math. 98, 154-177 (1973).
[10] Sánchez-Morgado, H. R-torsion and zeta functions for analytic Anosov flows on 3-manifolds. Trans. Amer. Math. Soc. 348 No 3, 963-974 (1996) .
[11] Scott, D. Selberg Type Zeta Functions for the Group of Complex Two by Two matrices of Determinant One. Math. Ann. 253, 177-194 (1980).

Facultad de Ciencias and Instituto de Matemáticas. Universidad Nacional Autónoma de México., Ciudad Universitaria C. P. 04510, México
D. F., México

E-mail address: garnica@servidor.unam.mx
E-mail address: hector@matem.unam.mx

[^0]: 2000 Mathematics Subject Classification. 58G10, 58F23.
 *Partially supported by PAPIIT IN-103795.

