$\bar{\partial}\text{-}\text{TORSION}$ AND COMPACT ORBITS OF ANOSOV ACTIONS ON COMPLEX 3-MANIFOLDS

EUGENIO GARNICA VIGIL AND HÉCTOR SÁNCHEZ MORGADO*

ABSTRACT. In analogy with work of Fried and Laederich we study the relation between $\bar{\partial}$ -torsion of a compact complex 3-manifold Mand the compact orbits of an Anosov holomorphic action on M.

1. INTRODUCTION

In 1968 Milnor [8] pointed out the remarkable similarity between the algebraic formalism of the Reidemeister torsion in topology and zeta functions à la Weil in dynamical systems theory. This theme has been thoroughly investigated by David Fried who devised for any smooth flow and any flat bundle over the underlying manifold a certain zeta function counting the periodic orbits of a flow with appropriate multiplicities. He was able to show for a variety of flows [1] that the zeta function associated to any acyclic flat bundle is actually meromorphic on a neighborhood of $[0,\infty)$, regular at 0, and that its value at 0 coincides with the Reidemeister torsion with coefficients in the given flat bundle and thus is a topological invariant. Because of the analogy with the Lefschetz fixed point formula, Fried used the term "flow with the Lefschetz property" in reference to such a flow. In particular, Fried proved that the geodesic flow of a closed manifold of constant negative curvature has the Lefschetz property [2] and we extended those results to transitive Anosov flows on 3-manifolds [10].

In analogy with their definition of analytic torsion on a Riemannian manifold, Ray and Singer define the $\bar{\partial}$ -torsion for complex manifolds. Fried proved that the known connections between torsion and the dynamical features of closed orbits continue to hold in the holomorphic category [3]. He posed also a question about such connections for actions of a noncompact Lie group other than \mathbb{R} . Laederich [6] has investigated the case of complex manifolds which fibrate over the torus having a one dimensional holomorphic foliation transverse to the fibers.

²⁰⁰⁰ Mathematics Subject Classification. 58G10, 58F23.

^{*}Partially supported by PAPIIT IN-103795.

He found a formula relating $\bar{\partial}$ -torsion to "theta" functions associated to the compact orbits of the foliation.

In this paper we find a formula (6) relating $\bar{\partial}$ -torsion of a compact complex 3-manifold M to special values of zeta functions (3), (5) defined with the compact orbits of an Anosov holomorphic action on M.

2. Main result

2.1. Holomorphic Anosov actions. For $(M, || \cdot ||)$ a Hermitian 3manifold, we follow Ghys [5] and call a holomorphic action $\phi : \mathbb{C}^* \times M \to M$, $(x, T) \mapsto \phi(T)(x)$, Anosov if there exist invariant subbundles E^u, E^s of the real tangent bundle $T_{\mathbb{R}}M$ and constants c > 0, a > 0, such that

- 1. $T_{\mathbb{R}}M = E^s \oplus E^u \oplus T\phi$, where $T\phi$ is the bundle tangent to the orbits of the action.
- 2. For all $T \in \mathbb{C}^*$, $v^s \in E^s$, $v^u \in E^u$ one has

$$\|d\phi(T)(v^s)\| \le c|T|^{-a} \|v^s\|$$

$$||d\phi(T)(v^u)|| \le c|T|^a ||v^u||.$$

In all of this paper G will denote the Lie group $SL(2, \mathbb{C})$.

The first examples of Anosov actions are holomorphic suspensions. Suppose $A \in G$ preserves a lattice $\Lambda \subset \mathbb{C}^2$ and let \overline{A} be the corresponding diffeomorphism of \mathbb{C}/Λ . For $\omega \in \mathbb{C} - S^1$ consider the diffeomorphism A_{ω} of $\mathbb{C}/\Lambda \times \mathbb{C}^*$ given by $A_{\omega}(x,S) = (\overline{A}(x), \omega S)$, and the properly discontinous and free action of \mathbb{Z} on $\mathbb{C}/\Lambda \times \mathbb{C}^*$ given by $(k, (x, S)) \mapsto A^k_{\omega}(x, S)$. If the spectrum of A is disjoint from S^1 , the action of \mathbb{C}^* given on the quotient manifold M by $(T, [x, S]) \mapsto [x, ST]$ is Anosov.

A second kind of examples of holomorphic Anosov actions comes from the choice of a cocompact discrete subgroup Γ of G with no elliptic elements. Let $M = \Gamma \setminus G$, then the holomorphic \mathbb{C}^* action $\phi(T)(\Gamma g) =$ $\Gamma g \begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix}$ is Anosov. One proves this fact in exactly the same way as for the corresponding well known examples in the real domain.

Ghys modifies the last examples by the following construction. Let $u: \Gamma \to \mathbb{C}^*$ be a representation and consider the action of Γ on G given by $(\gamma, g) \mapsto \gamma g \begin{pmatrix} u(\gamma) & 0 \\ 0 & u(\gamma)^{-1} \end{pmatrix}$. This action commutes with the \mathbb{C}^* action by right translations by $\begin{pmatrix} T & 0 \\ 0 & T^{-1} \end{pmatrix}$. If the action of Γ is free, proper and totally discontinous one considers the quotient manifold M with the \mathbb{C}^* action which becomes Anosov.

Ghys proved that any holomorphic Anosov action on a compact complex 3-manifold is up to finite covers holomorphically conjugate to one of the examples described above.

Let Γ be a discrete subgroup of G and $M = \Gamma \setminus G$ with the Anosov action as above. The orbit of Γg is compact iff there are $\gamma \in \Gamma - \{I\}$, $\lambda \in \mathbb{C}^* - \{1\}$ such that

(1)
$$g^{-1}\gamma g = \begin{pmatrix} \lambda & 0\\ 0 & \lambda^{-1} \end{pmatrix} = \begin{pmatrix} \exp(i\theta + l) & 0\\ 0 & \exp(-i\theta - l) \end{pmatrix}$$

Since the elements of $\Gamma - \{I\}$ are hyperbolic, $\forall \gamma \in \Gamma - \{I\}$ there are a unique $\lambda_{\gamma} \in \mathbb{C}^*$ with $|\lambda_{\gamma}| > 1$, and $g \in G$ such that (1) holds. If there is another $h \in G$ such that $h^{-1}\gamma h = \begin{pmatrix} \lambda_{\gamma} & 0\\ 0 & \lambda_{\gamma}^{-1} \end{pmatrix}$, then $g = h \begin{pmatrix} S & 0\\ 0 & S^{-1} \end{pmatrix}$.

Let G_{γ} be the centralizer of γ , then

$$g^{-1}G_{\gamma}g = \left\{ \left(\begin{smallmatrix} S & 0\\ 0 & S^{-1} \end{smallmatrix}\right) : S \in \mathbb{C}^* \right\}.$$

Therefore the orbit of Γg is $\mathcal{O}_{\gamma} = \{\Gamma xg : x \in G_{\gamma}\}$ and so it is conformally equivalent to $\Gamma_{\gamma} \setminus G_{\gamma}$, where $\Gamma_{\gamma} = \Gamma \cap G_{\gamma}$. Moreover

$$\Gamma_{\gamma} = \left\{ g \begin{pmatrix} \lambda_{\gamma_o}^n & 0\\ 0 & \lambda_{\gamma_o}^{-n} \end{pmatrix} g^{-1} : n \in \mathbb{Z} \right\}$$

for $\gamma_o \in \Gamma$ prime, and $\mathcal{O}_{\gamma_o} = \mathcal{O}_{\gamma}$. Writing $\lambda_{\gamma_o} = \exp(l_{\gamma_o} + i\theta_{\gamma_o})$ we have that $\Gamma_{\gamma_o} \setminus G_{\gamma_o} = \Gamma_{\gamma} \setminus G_{\gamma}$ is conformally equivalent to the torus $(l_{\gamma_o} + i\theta_{\gamma_o})\mathbb{Z} + 2\pi i\mathbb{Z} \setminus \mathbb{C}$. Note that for $k = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ we have

$$(gk)^{-1}\gamma_0^{-1}gk = \begin{pmatrix} \lambda_{\gamma_o} & 0\\ 0 & \lambda_{\gamma_o}^{-1} \end{pmatrix}.$$

Thus, the cyclic group Γ_{γ} defines two compact orbits \mathcal{O}_{γ_o} and $\mathcal{O}_{\gamma_o^{-1}}$. If Γ_{γ} , $\Gamma_{\gamma'}$ define the same compact orbit, then there is $\delta \in \Gamma$ such that $\delta \gamma' \delta^{-1} \in \Gamma_{\gamma}$. Thus, if $[\Gamma]$ denotes the set of Γ -conjugacy classes of elements of Γ , the compact orbits of the Anosov action are parametrized by the classes $[\gamma] \in [\Gamma]$ for prime $\gamma \in \Gamma_0 = \Gamma - \{I\}$.

For $\rho: \Gamma \to U(m)$ a representation and $\Re z > 0$, we define

(2)
$$Z_a(z) = \prod_{[\gamma] \text{ prime } j,k=1} \prod_{r=\pm 2}^{\infty} \prod_{r=\pm 2} \det(I - \rho(\gamma)e^{ir\theta_{\gamma}}\lambda_{\gamma}^{-2j+1}\bar{\lambda}_{\gamma}^{-2k+1}e^{-l_{\gamma}z}).$$

$$Z_A(z) = \prod_{[\gamma] \text{ prime } j,k=1} \prod_{j,k=1}^{\infty} \det(I - \rho(\gamma)\lambda_{\gamma}^{-2j-k}e^{-l_{\gamma}z})^{k+3}$$

$$Z_B(z) = \prod_{[\gamma] \text{ prime } j,k,r=1} \prod_{j,k=1}^{\infty} \det(I - \rho(\gamma)\lambda_{\gamma}^{-2j-k+1}\bar{\lambda}_{\gamma}^{-2r+1}e^{-l_{\gamma}z})$$

$$Z_C(z) = \prod_{[\gamma] \text{ prime } j,k=1} \prod_{j,k=1}^{\infty} \det(I - \rho(\gamma)\bar{\lambda}_{\gamma}^{-2j}\lambda_{\gamma}^{-k}e^{-l_{\gamma}z})^{k-3}$$

$$Z_\rho(z) = \frac{Z_A(z)Z_B(z)^6}{Z_C(z)}.$$

2.2. ∂ -torsion. For a closed Hermitian complex k-manifold M and a representation $\rho : \pi_1(M) \to U(m)$ we define $\bar{\partial}$ -torsion.

First we recall how one defines the determinant of a positive elliptic differential operator D on M. D^{-s} is a trace class operator for $\Re s$ large and the Dirichlet series $\zeta_D(s) = \operatorname{Tr} D^{-s} = \sum_{\lambda} \lambda^{-s}$ has a meromorphic continuation to \mathbb{C} , regular at s = 0. One defines det $D = \exp(-\zeta'_D(0))$.

Next we introduce the $\bar{\partial}$ -Laplacian associated to ρ (see [3]). Consider the \mathbb{C}^m valued differential forms ω on the universal cover \tilde{M} of Mthat are ρ equivariant. That is, if $g \in \pi_1(M)$ acts on \tilde{M} as a deck transformation then the components $\omega_1, \ldots, \omega_m$ of ω satisfy

$$g^*\omega_i = \sum_{j=1}^m \rho(g)_{ij}\omega_j.$$

The space $\Omega(\rho)$ of such twisted forms has a decomposition

$$\Omega(\rho) = \bigoplus_{0 \le p, q \le k} \Omega^{p,q}$$

where the summands fit into a double cochain complex because the derivatives ∂ and $\bar{\partial}$ preserve the equivariance property. Since ρ is unitary, using the Riemannian measure on M and the Hodge star operator one defines an inner product on twisted forms. Taking the adjoint $\bar{\partial}^*$ of $\bar{\partial}$ one forms the $\bar{\partial}$ -Laplacian $\bar{\Delta} = \bar{\partial}\bar{\partial}^* + \bar{\partial}^*\bar{\partial}$ on twisted forms. Recalling the bigrading we write $\bar{\Delta} = \bigoplus_{0 \leq p,q, \leq k} \bar{\Delta}^{p,q}, \ \bar{\Delta}^{p,q} : \Omega^{p,q} \to \Omega^{p,q}.$

The Hodge theorem states that ker $\bar{\Delta}^{p,q}$ is isomorphic to the Dolbeaut group $H^{p,q}(\Omega)$. When all these groups are zero we call the representation **acyclic**. In such a case $D = \bar{\Delta}^{p,q}$ is a positive elliptic operator. In complex differential geometry one computes det D via the trace of the

$\bar{\partial}$ -TORSION AND ANOSOV ACTIONS ON COMPLEX MANIFOLDS

heat kernel Tr e^{-tD} as follows. The Mellin transform of $e^{-\lambda t}$ ($\lambda > 0$) is

$$Me^{-\lambda t} = \int_0^\infty t^{s-1} e^{-\lambda t} dt = \lambda^{-s} \int_0^\infty x^{s-1} e^{-x} dx = \lambda^{-s} \Gamma(s).$$

Summing over $\lambda \in \text{spec } D$, gives

$$M\mathrm{Tr}\,e^{-tD} = \Gamma(s)\zeta_D(s)$$

For an acyclic representation ρ , Ray and Singer [9] defined the ∂ -torsion $\tau_p \in]0, \infty[$ by

(4)
$$\tau_p^2 = \exp \frac{d}{ds} \left(\frac{1}{\Gamma(s)} M\left(\sum_q (-1)^q q \operatorname{Tr} e^{-t\bar{\Delta}^{p,q}}\right) \right)_{s=0}.$$

The purpose of this paper is to prove the following

THEOREM. Let Γ be a cocompact discrete subgroup of G and let $M = \Gamma \setminus G$ with the Anosov action as in 2.1. Let $\rho : \Gamma \to U(m)$ be an acyclic representation. Let Z_a, Z_ρ be as in (2) and (3), and let $\eta_a = Z'_a/Z_a$. Then $\log Z_\rho$ is analytic for $\Re z > -1$ and η_a has a meromorphic continuation to \mathbb{C} whose poles are simple, are located on $i\mathbb{R}$, and except for the zero pole, have integer residues. If r_ρ denotes the residue of η_a at zero and $c \in \mathbb{C}^*$,

(5)
$$\zeta_{\rho}(z) = c \exp \int_0^z (\eta_a(s) - \frac{r_{\rho}}{s}) ds$$

defines an entire function whose only zeros ocurr at the nonzero poles of η_a . Choosing c such that $\zeta_{\rho}(1) = Z_a(1)$ we have

(6)
$$\tau_p^2 = \left(\frac{\exp(\frac{19}{80}m \operatorname{vol}(M)\pi^{-3})}{2^{9r_\rho/2}|Z_\rho(0)|^2\zeta_\rho(0)^3}\right)^{\binom{3}{p}}$$

Remarks:

- 1. The analogous result for the holomorphic suspension examples in 2.1 is a particular case of the theorem of Laederich [6].
- 2. We have been unable to deal with the modified examples of Ghys.
- 3. We identified the zeta function Z_a given by the product (2), which is not convergent for $\Re z = 0$, and we found that it was studied by Scott [11].
- 4. We chose to decompose the function Z_{ρ} in order to have nice product expansions (3).

3. The $\bar{\partial}$ -Laplacian

Let $K = \mathrm{SU}(2, \mathbb{C})$ (maximal compact subgroup of G) and $\mathfrak{g} = \mathrm{sl}(2, \mathbb{C})$ (Lie algebra of G). Consider the following \mathbb{R} -basis of \mathfrak{g}

$$E_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, E_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, E_{3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$F_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, F_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, F_{3} = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

 \mathfrak{g} has a natural Hermitian product $\langle x, y \rangle = \operatorname{Tr}(x\bar{y}^t)$ and the above basis is orthonormal for the metric $\Re\langle,\rangle$. Note that E_1, F_2, F_3 is a basis of $\operatorname{su}(2,\mathbb{C})$.

Thought as a real Lie algebra, its complexification $\mathfrak{g}_{\mathbb{C}}$ has a basis $\{X_1, X_2, X_3, \overline{X}_1, \overline{X}_2, \overline{X}_3\}$ where

$$X_k = \frac{1}{2}(E_k - \mathbb{J}F_k), \quad \overline{X}_k = \frac{1}{2}(E_k + \mathbb{J}F_k), \quad \mathbb{J}^2 = -\mathbb{I}.$$

Writing $[\overline{X}_l, \overline{X}_j] = \sum_k C_{lj}^k \overline{X}_k$, we have $C_{lj}^j = 0, C_{12}^3 = C_{32}^1 = C_{31}^2 = \sqrt{2}$. Each element $X \in \mathfrak{g}$ defines a left invariant vector field on the com-

Each element $X \in \mathfrak{g}$ defines a left invariant vector field on the complex manifold G such that

$$X(f)(g) = \frac{d}{ds}\Big|_{s=0} f(g\exp(sX))$$

for $f: G \to \mathbb{C}$. The elements of $\mathfrak{g}_{\mathbb{C}}$ define sections of the complexified tangent bundle $T_{\mathbb{C}}G$. Note that

$$\mathbb{J}F_k(f)(g) = i\frac{d}{ds}\big|_{s=0} f(g\exp(sF_k)).$$

Let $\omega_k, \overline{\omega}_k$ be the duals of the vector fields X_k, \overline{X}_k . Then

$$\omega_k(E_l) = \delta_{kl}, \, \omega_k(F_l) = i\delta_{kl}, \, \overline{\omega}_k(E_l) = \delta_{kl}, \, \overline{\omega}_k(F_l) = -i\delta_{kl}.$$

Any element η of $\wedge^{p,q}(G)$ can be written

$$\eta = \sum_{I,J} \eta_{IJ} \omega_I \wedge \overline{\omega}_J$$

where $I = (i_1, \ldots, i_p), i_1 < \cdots < i_p, J = (j_1, \ldots, j_q), j_1 < \cdots < j_q$

$$\omega_I = \omega_{i_1} \wedge \dots \wedge \omega_{i_p}, \quad \overline{\omega}_I = \overline{\omega}_{i_1} \wedge \dots \wedge \overline{\omega}_{i_p}$$

All of the above vector fields define vector fields on $M = \Gamma \setminus G$. Define

$$\left[\overline{\omega}_l, \overline{\omega}_j\right] = \sum_k C_{lj}^k \overline{\omega}_k$$

Let $\eta = f\omega_I \wedge \overline{\omega}_J \in \wedge^{p,q}(M)$ then

(7)
$$\bar{\partial}\eta = (-1)^p \sum_j \overline{X}_j(f)\omega_I \wedge \overline{\omega}_j \wedge \overline{\omega}_J \\ + (-1)^{p+1} \sum_{l < j} f\omega_I \wedge \overline{\omega}_l \wedge \overline{\omega}_j \iota([\overline{X}_l, \overline{X}_j]) \wedge \overline{\omega}_J$$

One computes the adjoint

(8)
$$\bar{\partial}^* \eta = (-1)^{p+1} \sum_j X_j(f) \omega_I \wedge \iota(\overline{X}_j) \overline{\omega}_J + (-1)^p \sum_{l < j} f \omega_I \wedge [\overline{\omega}_l, \overline{\omega}_j] \wedge \iota(\overline{X}_l) \iota(\overline{X}_j) \overline{\omega}_J,$$

and so the $\bar{\partial}\text{-Laplacian}$

$$(9)$$

$$\bar{\Delta}\eta = \sum_{k} -X_{k}(\overline{X}_{k}f)\omega_{I} \wedge \overline{\omega}_{J} + \sum_{jl} [X_{l},\overline{X}_{j}](f)\omega_{I} \wedge \overline{\omega}_{j} \wedge \iota(\overline{X}_{l})\overline{\omega}_{J}$$

$$-\sum_{m < n} \sum_{l < j} \sum_{k} C_{mn}^{k} C_{lj}^{k} f \omega_{I} \wedge \overline{\omega}_{m} \wedge \overline{\omega}_{n} \wedge \iota(\overline{X}_{l})\iota(\overline{X}_{j})\overline{\omega}_{J}$$

$$+\sum_{lj} (X_{l}(f)\omega_{I} \wedge \overline{\omega}_{j} \wedge \iota([\overline{X}_{l},\overline{X}_{j}])\overline{\omega}_{J} + \overline{X}_{l}(f)\omega_{I} \wedge [\overline{\omega}_{j},\overline{\omega}_{l}] \wedge \iota(\overline{X}_{j})\overline{\omega}_{J})$$

$$+\sum_{m < n} f \omega_{I} \wedge [\overline{\omega}_{m},\overline{\omega}_{n}] \wedge \iota([\overline{X}_{m},\overline{X}_{n}])\overline{\omega}_{J}$$

$$-\sum_{mnj} f \omega_{I} \wedge [\overline{\omega}_{m},\overline{\omega}_{n}] \wedge \overline{\omega}_{j} \wedge \iota(\overline{X}_{n})\iota([\overline{X}_{m},\overline{X}_{j}])\overline{\omega}_{J}$$

Thus, we have the following

Proposition.

(10)
$$\eta = f\omega_I \quad \Rightarrow \quad \overline{\Delta}^{p,0}\eta = \left(-\sum_k X_k \overline{X}_k f\right)\omega_I.$$

Writing $\omega_I \wedge (f_1 \overline{\omega}_1 + f_2 \overline{\omega}_2 + f_3 \overline{\omega}_3) = \omega_I \otimes (f_1, f_2, f_3)^t$, we have

(11)
$$\Delta^{p,1} : \omega_I \otimes (f_1, f_2, f_3)^t \mapsto \\ \omega_I \otimes \begin{pmatrix} -\sum_k X_k \overline{X}_k + 2\mathbb{I} & -\sqrt{2}\mathbb{J}F_3 & \sqrt{2}\mathbb{J}F_2 \\ -\sqrt{2}\mathbb{J}F_3 & -\sum_k X_k \overline{X}_k + 2\mathbb{I} & \sqrt{2}E_1 \\ \sqrt{2}\mathbb{J}F_2 & -\sqrt{2}E_1 & -\sum_k X_k \overline{X}_k + 2\mathbb{I} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}.$$

Writing $\omega_I \wedge (f_1 \overline{\omega}_2 \wedge \overline{\omega}_3 + f_2 \overline{\omega}_3 \wedge \overline{\omega}_1 + f_3 \overline{\omega}_1 \wedge \overline{\omega}_2) = \omega_I \otimes (f_1, f_2, f_3)^t$, we have

(12)
$$\Delta^{p,2} : \omega_I \otimes (f_1, f_2, f_3)^t \mapsto \\ \omega_I \otimes \begin{pmatrix} -\sum_k X_k \overline{X}_k + 2\mathbb{I} & \sqrt{2}\mathbb{J}E_3 & -\sqrt{2}\mathbb{J}E_2 \\ \sqrt{2}\mathbb{J}E_3 & -\sum_k X_k \overline{X}_k + 2\mathbb{I} & \sqrt{2}E_1 \\ -\sqrt{2}\mathbb{J}F_2 & -\sqrt{2}E_1 & -\sum_k X_k \overline{X}_k + 2\mathbb{I} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}.$$
(13)

$$\eta = f\omega_I \wedge \overline{\omega}_1 \wedge \overline{\omega}_2 \wedge \overline{\omega}_3 \Rightarrow \overline{\Delta}^{p,3} \eta = \left(-\sum_k X_k \overline{X}_k f\right) \omega_I \wedge \overline{\omega}_1 \wedge \overline{\omega}_2 \wedge \overline{\omega}_3.$$

4. The trace formula for the heat kernel

Consider an acyclic representation $\rho : \Gamma \to U(m)$. Let π_{ρ} be the induced unitary representation of G on

$$L^{2}(G;\rho) = \{f: G \to \mathbb{C}^{m} : \int_{M} |f|^{2} < \infty, \quad f(\gamma g) = \rho(\gamma)f(g)\}$$

 π_{ρ} decomposes as $\pi_{\rho} = \sum_{\omega \in \hat{G}} n_{\rho}(\omega)\omega$ and $n_{\rho} < \infty$ for $\omega \in \hat{G}$, where \hat{G} stands for set of all equivalence classes of irreducible unitary representations of G. Let φ be in the Harish-Chandra's L^1 Schwarz space $C_1(G)$. For $(T_{\omega}, V_{\omega}) \in \omega \in \hat{G}$, the operator $T_{\omega}(\varphi) = \int_G \varphi(x) T_{\omega}(x) dx$ on V_{ω} is trace class and $\Theta_{\omega}(\varphi) = \operatorname{Tr} T_{\omega}(\varphi)$ is the character of ω . $\bar{\Delta}^{p,q}$ extends to

(14)
$$L^2(\Omega^{p,q}) = \wedge^{p,q}(\mathfrak{g}) \otimes L^2(G;\rho) = \bigoplus_{\omega \in \hat{G}} n_\rho(\omega) \wedge^{p,q}(\mathfrak{g}) \otimes V_\omega.$$

Denote by $D^{p,q}$ the corresponding operator on $\wedge^{p,q}(\mathfrak{g}) \otimes L^2(G)$. The heat operator $e^{-tD^{p,q}}$ has kernel $h_t^{*p,q}$ in $\operatorname{End}(\wedge^{p,q}(\mathfrak{g})) \otimes \mathcal{C}_1(G)$. Thus the Schwarz kernel for $e^{-t\overline{\Delta}^{p,q}}$ is

$$h_t^{p,q}(\Gamma x, \Gamma y) = \sum_{\gamma \in \Gamma} h_t^{*p,q}(x^{-1}\gamma y) \otimes \rho(\gamma).$$

Setting $\varphi_t^p = \sum_q (-1)^q q \operatorname{Tr} h_t^{*p,q}$, one has the trace formula

(15)
$$H(t) := \sum_{q=0}^{3} (-1)^{q} q \operatorname{Tr} e^{-t\bar{\Delta}^{p,q}} = \sum_{\omega \in \hat{G}} n_{\rho}(\omega) \Theta_{\omega}(\varphi_{t}^{p})$$
$$= \sum_{[\gamma] \in [\Gamma]} \operatorname{Tr} \rho(\gamma) \operatorname{vol} (\Gamma_{\gamma} \setminus G_{\gamma}) \int_{G_{\gamma} \setminus G} \varphi_{t}^{p}(x^{-1}\gamma x) d\dot{x}.$$

The last integrals can be expressed in terms of the characters of the representations in the **principal series** which we now define (see [4]).

For $k \in \mathbb{Z}, v \in \mathbb{R}$, let $H_{k,v} = L^2(\mathbb{C})$. For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we define an operator $T_{k,v}(g)$ in $H_{k,v}$ as follows

$$T_{k,v}(g)f(z) = |bz+d|^{k+iv-2}(bz+d)^{-k}f\left(\frac{az+c}{bz+d}\right).$$

Let $\Theta_{k,v}$ be the character of $T_{k,v}$.

Every element $\gamma \in \Gamma_0$ is conjugate to a matrix

$$\begin{pmatrix} \lambda_{\gamma} & 0\\ 0 & \lambda_{\gamma}^{-1} \end{pmatrix} = \begin{pmatrix} \exp(i\theta_{\gamma} + l_{\gamma}) & 0\\ 0 & \exp(-i\theta_{\gamma} - l_{\gamma}) \end{pmatrix}$$

with $l_{\gamma} > 0$ and one has

$$\int_{G_{\gamma}\backslash G}\varphi_{t}^{p}(x^{-1}\gamma x)d\dot{x} = \frac{(2\pi)^{-2}}{|\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^{2}}\sum_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}\Theta_{k,v}(\varphi_{t}^{p})e^{ik\theta_{\gamma}}e^{-ivl_{\gamma}}dv.$$

For $\gamma = I$ we have the Plancherel formula

(17)
$$\varphi_t^p(I) = \frac{1}{32\pi^4} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} (k^2 + v^2) \Theta_{k,v}(\varphi_t^p) dv.$$

To give the action of \mathfrak{g} on $H_{k,v}$, let A = (-k - 2 + iv)/2, B = (k - 2 + iv)/2 $iv)/2, X = \begin{pmatrix} u & w \\ y & -u \end{pmatrix}$ and $f \in H_{k,v}$, then

(18)
$$Xf(z) = [A(wz - u) + B(\overline{wz - u})]f(z) + \frac{\partial f}{\partial z}(2uz + y - wz^2) + \frac{\partial f}{\partial \overline{z}}(\overline{2uz + y - wz^2}).$$

Consider the Casimir elements $\Omega_G = E_2^2 + E_3^2 + F_1^2 - E_1^2 - F_2^2 - F_3^2$, $\Omega_K = -E_1^2 - F_2^2 - F_3^2$. Note that $-4\sum_j X_j \overline{X}_j = -\Omega_G + 2\Omega_K$. From (18), $\Omega_G f = ((A^2 + B^2) - 2(A + B))f = ((k^2 - v^2)/2 - 2)f = \lambda_{k,v} f.$

The irreducible representations of K are given by $(V_n, \tau_n), n \in \mathbb{N} \cup$ $\{0\}$, where V_n is the space of homogeneous polynomials of degree n in two variables and $\tau_n(g)P((z_1, z_2)^t) = P(g^{-1}(z_1, z_2)^t)$. For $X = \begin{pmatrix} u & w \\ -\overline{w} & -u \end{pmatrix}$ and $P_k = z_1^k z_2^{n-k}$ we have

$$XP_k = -kwP_{k-1} + (n-2k)uP_k + (n-k)\overline{w}P_{k+1}.$$

Then $2\Omega_K P = (n^2 + 2n)P$.

One easily finds that the multiplicity of τ_n in $T_{k,v}|K$ is

$$[\tau_n: T_{k,v}|K] = \begin{cases} 1 & \text{if } n-k \text{ is even and } n \ge |k| \\ 0 & \text{otherwise.} \end{cases}$$

When this multiplicity is 1, $\Omega_G - 2\Omega_K | V_n$ is multiplication by $\mu_{k,v,n} = \lambda_{k,v} - n(n+2)$.

$$\omega | K = \sum_{n \in \mathbb{Z}^+} [\tau_n : T_\omega | K](\tau_n, V_n).$$

From (10) and (13), we have that for q = 0, 3

$$\bar{\Delta}^{p,q}|V_{\omega} = I^{p,q} \otimes \frac{1}{4}(-\Omega_G + 2\Omega_K)|V_{\omega},$$

and thus

$$\Theta_{k,v}(\operatorname{Tr} h_t^{*p,q}) = \binom{3}{p} \sum_{\substack{n=|k|\\n-k \text{ even}}}^{\infty} (n+1) \exp(t\mu_{k,v,n}/4).$$

Let

$$D(k,n) = \begin{pmatrix} n-2(k+1) & 0 & 2(n-k) \\ 0 & -n+2(k-1) & 2k \\ k+1 & n-k-1 & 0 \end{pmatrix}.$$

Its eigenvalues are $\lambda = -2, n, -n-2$. Let $E(k, n, \lambda)$ be the λ -eigenspace of D(k, n) and

$$V_{n}(\lambda) = \left\{ \sum_{k} \begin{pmatrix} (a_{k-1} + b_{k+1})P_{k} \\ (a_{k-1} - b_{k+1})P_{k} \\ c_{k}P_{k} \end{pmatrix} : \begin{pmatrix} a_{k} \\ b_{k} \\ c_{k} \end{pmatrix} \in E(k, n, \lambda) \right\},$$
$$W_{n}(\lambda) = \left\{ \sum_{k} \begin{pmatrix} -(a_{k-1} + b_{k+1})P_{k} \\ (a_{k-1} - b_{k+1})P_{k} \\ c_{k}P_{k} \end{pmatrix} : \begin{pmatrix} a_{k} \\ b_{k} \\ c_{k} \end{pmatrix} \in E(k, n, \lambda) \right\}.$$

Then

$$\wedge^{0,1}(\mathfrak{g}) \otimes V_n = V_n(-2) \oplus V_n(n) \oplus V_n(-n-2),$$

$$\wedge^{0,2}(\mathfrak{g}) \otimes V_n = W_n(-2) \oplus W_n(n) \oplus W_n(-n-2).$$

From (11) and (12) we see that

$$\bar{\Delta}^{p,1}|\wedge^{p,0}(\mathfrak{g})\otimes V_n(\lambda)=I^{p,1}\otimes\frac{1}{4}(-\Omega_G+2\Omega_K)+(\lambda+2)I|V_n(\lambda),$$

$$\bar{\Delta}^{p,2}|\wedge^{p,0}(\mathfrak{g})\otimes W_n(\lambda)=I^{p,2}\otimes\frac{1}{4}(-\Omega_G+2\Omega_K)+(\lambda+2)I|W_n(\lambda).$$

Thus, for q = 1, 2 we have

$$\Theta_{k,v}(\operatorname{Tr} h_t^{*p,q}) = \binom{3}{p} \sum_{\substack{n=|k|\\n-k \text{ even}}}^{\infty} (n+1) \exp(t\mu_{k,v,n}/4)(1+e^{-t(n+2)}+e^{tn}).$$

Therefore, the characters are given by

(19)
$$\Theta_{k,v}(\varphi_t^p) = {3 \choose p} \sum_{\substack{n=|k| \\ n-k \text{ even}}}^{\infty} (n+1) \exp(t\mu_{k,v,n}/4) (e^{-t(n+2)} + e^{tn} - 2)$$
$$= {3 \choose p} e^{t(\lambda_{k,v}+1)/4} \sum_{\substack{n=|k| \\ n-k \text{ even}}}^{\infty} (n+1) (e^{-t(n+3)^2/4} + e^{-t(n-1)^2/4} - 2e^{-t(n+1)^2/4})$$
$$= {3 \choose p} e^{-tv^2/8} ((1-|k|)e^{-t(|k|+2)^2/8} + (1+|k|)e^{-t(|k|-2)^2/8}).$$

The function $\Phi^p_I: (0,\infty) \to \mathbb{R}$ defined by

$$\Phi_I^p(t) = \frac{2\binom{3}{p}}{(2\pi)^{7/2}} \sum_{|k|=1}^{\infty} (3+k) \exp(-tk^2/8)((k+2)^2t^{-1/2} + 4t^{-3/2}))$$

is exponentially small at ∞ . By Plancherel formula (17) we have

(20)
$$\varphi_t^p(I) = \Phi_I^p(t) + 24(2\pi)^{-7/2} {3 \choose p} (t^{-1/2} + t^{-3/2}),$$

Defining $\Phi^p_{\gamma}: (0,\infty) \to \mathbb{R}$ by

$$\Phi_{\gamma}^{p}(t) = 4\binom{3}{p}\sqrt{\frac{\pi}{2t}}\exp(-2l_{\gamma}^{2}/t)\sum_{|k|=1}^{\infty}(3+k)\exp(-tk^{2}/8)2\cos((k+2)\theta_{\gamma})$$

we get

(21)
$$\sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} \Theta_{k,v}(\varphi_t^p) e^{ik\theta_{\gamma}} e^{-ivl_{\gamma}} dv$$
$$= \Phi_{\gamma}^p(t) + 24 \left(\frac{3}{p}\right) \cos(2\theta_{\gamma}) \sqrt{\frac{\pi}{2t}} \exp(-2l_{\gamma}^2/t).$$

5. Zeta functions

This section is concerned with the analyticity of the zeta functions

that appear in THEOREM. Recall their definition given by (2), (3). For each $\gamma \in \Gamma_0$ there are γ_o prime and $n_{\gamma} \in \mathbb{N}$, such that $\gamma = \gamma_o^{n_{\gamma}}$. $\Gamma_{\gamma} \setminus G_{\gamma}$ is conformally equivalent to $(l_{\gamma_o} + i\theta_{\gamma_o})\mathbb{Z} + 2\pi i\mathbb{Z} \setminus \mathbb{C}$ and so

$$\operatorname{vol}(\Gamma_{\gamma} \setminus G_{\gamma}) = 2\pi l_{\gamma}/n_{\gamma}. \text{ Let}$$

$$a_{\gamma} = \frac{2\cos(2\theta_{\gamma})}{|\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^{2}} = \sum_{j,k=1}^{\infty} (e^{i2\theta_{\gamma}} + e^{-i2\theta_{\gamma}})\lambda_{\gamma}^{-2j+1}\bar{\lambda}_{\gamma}^{-2k+1},$$

$$b_{\gamma} = \frac{2\lambda_{\gamma}^{-1}(3\cos(2\theta_{\gamma})(1 - \lambda_{\gamma}^{-1}) - i\sin(2\theta_{\gamma}))}{|\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^{2}(1 - \lambda_{\gamma}^{-1})^{2}},$$

$$A_{\gamma} = \frac{\lambda_{\gamma}^{-3}(4 - 3\lambda_{\gamma}^{-1})}{(1 - \lambda_{\gamma}^{-2})(1 - \lambda_{\gamma}^{-1})^{2}} = \sum_{j,k=1}^{\infty} (3 + k)\lambda_{\gamma}^{-2j-k},$$

$$B_{\gamma} = \frac{|\lambda_{\gamma}|^{-2}\lambda_{\gamma}^{-1}}{|\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^{2}(1 - \lambda_{\gamma}^{-1})} = \sum_{j,k,r=1}^{\infty} \lambda_{\gamma}^{-2j-k+1}\bar{\lambda}_{\gamma}^{-2r+1},$$

$$C_{\gamma} = \frac{\bar{\lambda}_{\gamma}^{-2}\lambda_{\gamma}^{-1}(3\lambda_{\gamma}^{-1} - 2)}{(1 - \bar{\lambda}_{\gamma}^{-2})(1 - \lambda_{\gamma}^{-1})^{2}} = \sum_{j,k=1}^{\infty} (k - 3)\bar{\lambda}_{\gamma}^{-2j}\lambda_{\gamma}^{-k}.$$

Then

(22)
$$b_{\gamma} = A_{\gamma} + 6B_{\gamma} - C_{\gamma} \quad \text{and} \quad$$

$$b_{\gamma} + \overline{b}_{\gamma} = |\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^{-2} \sum_{|k|=1}^{\infty} (3+k)e^{-|k|l_{\gamma}} 2\cos((k+2)\theta_{\gamma}).$$

For $\beta = a, A, B, C$ we have

$$Z_{\beta}(z) = \exp\left(-\sum_{[\gamma]\in[\Gamma_0]} \frac{1}{n_{\gamma}} \operatorname{Tr} \rho(\gamma) \beta_{\gamma} e^{-l_{\gamma} z}\right).$$

For $\Re z > 0$ and $\beta = a, b, A, B, C$ let

$$\eta_{\beta}(z) = \frac{Z_{\beta}'(z)}{Z_{\beta}(z)} = \sum_{[\gamma] \in [\Gamma_0]} \frac{\operatorname{Tr} \rho(\gamma)}{2\pi} \operatorname{vol} \left(\Gamma_{\gamma} \setminus G_{\gamma}\right) \beta_{\gamma} e^{-l_{\gamma} z}$$

By the definition of Z_{ρ} and (22),

(23)
$$\frac{Z'_{\rho}}{Z_{\rho}} = \eta_A + 6\eta_B - \eta_C = \eta_b$$

Let N_T be the number of $[\gamma]$ in $[\Gamma]$ with $l_{\gamma} \leq T$. Margulis [7] has proved

that $\lim_{T \to \infty} \log N_T / T = 2$. For $\beta = A, B, C$, $\lim_{l_{\gamma} \to \infty} \log |\beta_{\gamma}| / l_{\gamma} = -3$ and so the series $\log Z_{\beta}(z)$ converges uniformly in each set $\Re z \ge -1 + \delta$, $\delta > 0$. By (23)

$$\int_0^\infty \eta_b(x)dx = -\log Z_\rho(0).$$

Since $\lim_{l_{\gamma}\to\infty} \log |a_{\gamma}|/l_{\gamma} = -2$, the series $\eta_a(z)$ converges uniformly in each set $\Re z \geq \delta > 0$. Scott [11] has shown that $\eta_a(z)$ has a meromorphic continuation to $\mathbb C$ with only simple poles at zero and the points $\pm iv \neq 0$ such that $n_{\rho}(T_{2,v}) \neq 0$, having residue $n_{\rho}(T_{2,v}) + n_{\rho}(T_{2,-v})$ at these points, and satisfying the functional equation

(24)
$$\eta_a(iz) + \eta_a(-iz) + p(z) = 0$$

where $p(r) = m \operatorname{vol}(M)(4+r^2)/(2\pi)^3$. Let r_{ρ} be the residue of η_a at zero and define $\psi_{\rho}(z) = \eta_a(z) - r_{\rho}/z$. Thus, for any $c \in \mathbb{C}^*$

$$\zeta_{\rho}(z) = c \exp \int_{0}^{z} \psi_{\rho}(s) ds$$

is a well defined entire function whose only zeros ocurr at the points z = $\pm iv \neq 0$ such that $n_{\rho}(T_{2,v}) \neq 0$, and are of order $n_{\rho}(T_{2,v}) + n_{\rho}(T_{2,-v})$.

6. Proof of formula
$$(6)$$

Let

$$\begin{split} F(t) &= 24(2\pi)^{-7/2} {3 \choose p} m \operatorname{vol}\left(M\right) (t^{-1/2} + t^{-3/2}) \\ g(t) &= {3 \choose p} \sum_{[\gamma] \in [\Gamma_0]} \frac{6 \cos(2\theta_{\gamma}) \operatorname{Tr} \rho(\gamma) \operatorname{vol}\left(\Gamma_{\gamma} \setminus G_{\gamma}\right)}{\pi^2 |\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^2} \sqrt{\frac{\pi}{2t}} \exp(-2l_{\gamma}^2/t) \\ G(t) &= \sum_{[\gamma] \in [\Gamma_0]} \frac{\operatorname{Tr} \rho(\gamma) \operatorname{vol}\left(\Gamma_{\gamma} \setminus G_{\gamma}\right)}{4\pi^2 |\lambda_{\gamma} - \lambda_{\gamma}^{-1}|^2} \Phi_{\gamma}^p(t). \end{split}$$

Then q is exponentially small at 0^+ , and so is G by Poisson summation formula. By (15), (16), (20), (21) we have

$$H(t) - m \operatorname{vol}(M) \Phi_I^p(t) - \chi_{(0,1]} F(t) = \chi_{(1,\infty)} F(t) + g(t) + G(t)$$

the left hand side is exponentially small at ∞ while the right hand side is exponentially small at 0^+ . We define an entire function h(s)by taking the Mellin transform of both sides. For $\Re s > 3/2$, $(t^{-1/2} +$ $t^{-3/2}\chi_{(0,1]}$ has Mellin transform $(s-\frac{1}{2})^{-1} + (s-\frac{3}{2})^{-1}$. For $\Re s < 1/2$, $(t^{-1/2} + t^{-3/2})\chi_{(1,\infty)}$ has Mellin transform $-(s-\frac{1}{2})^{-1} - (s-\frac{3}{2})^{-1}$. Both have meromorphic continuation to \mathbb{C} . Therefore

$$h(s) + 24(2\pi)^{-7} {3 \choose p} m \operatorname{vol}(M) \left(\frac{1}{s-1/2} + \frac{1}{s-3/2}\right)$$

gives a meromorphic continuation of both $MH(s) - m \operatorname{vol}(M) M\Phi_I^p(s)$ and Mg(s) + MG(s). Thus

(25)
$$MH(s) = m \operatorname{vol}(M) M \Phi_I^p(s) + Mg(s) + MG(s).$$

We have

$$M\Phi_{I}^{p}(s) = \binom{3}{p} 8^{s-1} \pi^{2s-5} (\frac{7s-9}{\pi^{2}} \Gamma(2-s)\zeta(4-2s) + 12\Gamma(1-s)\zeta(2-2s)),$$

(26)
$$M\Phi_I^p(0) = \binom{3}{p} 19/80\pi^3.$$

For $\Re s < 0$ we use the substitution

(27)
$$t^{s-1} = \frac{8^{s-1}}{\Gamma(1-s)} \int_0^\infty (x(x+2|k|))^{-s} e^{-x(x+2|k|)t/8} (2x+2|k|) dx,$$

switch the order of integration in the Mellin transform, integrate term by term using

$$\int_0^\infty e^{-(x+|k|)^2 t/8} (2x+2|k|) \frac{1}{\sqrt{2\pi t}} e^{-2l_\gamma^2/t} dt = 4e^{-l_\gamma(x+|k|)},$$

and let $s \uparrow 0$ to get

(28)
$$MG(0) = \binom{3}{p} \int_0^\infty (\eta_b(x) + \overline{\eta_b(x)}) dx = -\binom{3}{p} \log |Z_\rho(0)|^2.$$

For g(t) we have

$$Mg(s) = 3\binom{3}{p} \frac{8^{s}}{\Gamma(1-s)} \int_{0}^{\infty} x^{-2s} \eta_{a}(x) dx.$$

Since

$$\int_0^\infty x^{-2s} \eta_a(x) dx = \int_0^1 x^{-2s} \psi_\rho(x) dx + \int_0^1 r_\rho x^{-2s-1} dx + \int_1^\infty x^{-2s} \eta_a(x) dx,$$

we have

$$\lim_{s \uparrow 0} \left(\int_0^\infty x^{-2s} \eta_a(x) dx + \frac{r_\rho}{2s} \right) = \log \left(\frac{\zeta_\rho(1)}{\zeta_\rho(0)} \right) - \log Z_a(1) = -\log \zeta_\rho(0).$$

Thus

(29)
$$\frac{d}{ds} \left(\frac{Mg(s)}{\Gamma(s)}\right)_{s=0} = -3\binom{3}{p} \left(\log\zeta_{\rho}(0) + \frac{d}{ds} \left(\frac{8^{s}r_{\rho}\sin\pi s}{2\pi s}\right)_{s=0}\right)$$
$$= -3\binom{3}{p} \left(\log\zeta_{\rho}(0) + \frac{r_{\rho}}{2}\log 8\right).$$

From the definition (4), equations (25), (26), (28) and (29) give (6).

References

- Fried, D. Lefschetz formulas for flows. In *The Lefschetz Centennial Conference* Part III. Contemp. Math. 58, 16-69 (1987).
- Fried, D. Analytic torsion and closed geodesics on hyperbolic manifolds. *Invent. Math.* 84, 523-540 (1986).
- [3] Fried, D. Torsion and closed geodesics on complex hyperbolic manifolds. *Invent. Math.* 91, 31-51 (1988).
- [4] Gel'fand I. M. et al. Representation Theory and Automorphic Functions. Boston: Academic Press (1990).
- [5] Ghys, E. Holomorphic Anosov Systems. Invent. Math. 119, 585-614 (1995).
- [6] Laederich, S. ∂-Torsion, Foliations and Holomorphic vector fields. Commun. Math. Phys. 145, 447-458 (1992).
- [7] Margulis, G. Applications of ergodic theory to the investigation of manifolds of negative curvature. *Funct. Anal. Appl.* 3, 335-336 (1969).
- [8] Milnor, J. Infinite cyclic coverings. In Conference on the Topology of Manifolds 115-133, Boston: Pridle, Weber, Schmidt (1968).
- [9] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds. Ann. Math. 98, 154-177 (1973).
- [10] Sánchez-Morgado, H. R-torsion and zeta functions for analytic Anosov flows on 3-manifolds. Trans. Amer. Math. Soc. 348 No 3, 963-974 (1996).
- [11] Scott, D. Selberg Type Zeta Functions for the Group of Complex Two by Two matrices of Determinant One. *Math. Ann.* 253, 177-194 (1980).

Facultad de Ciencias and Instituto de Matemáticas. Universidad Nacional Autónoma de México., Ciudad Universitaria C. P. 04510, México D. F., México

E-mail address: garnica@servidor.unam.mx

E-mail address: hector@matem.unam.mx