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Abstract. In analogy with work of Fried and Laederich we study
the relation between ∂̄-torsion of a compact complex 3-manifold M
and the compact orbits of an Anosov holomorphic action on M .

1. Introduction

In 1968 Milnor [8] pointed out the remarkable similarity between
the algebraic formalism of the Reidemeister torsion in topology and
zeta functions à la Weil in dynamical systems theory. This theme
has been thoroughly investigated by David Fried who devised for any
smooth flow and any flat bundle over the underlying manifold a certain
zeta function counting the periodic orbits of a flow with appropriate
multiplicities. He was able to show for a variety of flows [1] that the zeta
function associated to any acyclic flat bundle is actually meromorphic
on a neighborhood of [0,∞), regular at 0, and that its value at 0
coincides with the Reidemeister torsion with coefficients in the given
flat bundle and thus is a topological invariant. Because of the analogy
with the Lefschetz fixed point formula, Fried used the term “flow with
the Lefschetz property” in reference to such a flow. In particular, Fried
proved that the geodesic flow of a closed manifold of constant negative
curvature has the Lefschetz property [2] and we extended those results
to transitive Anosov flows on 3-manifolds [10].

In analogy with their definition of analytic torsion on a Riemannian
manifold, Ray and Singer define the ∂̄-torsion for complex manifolds.
Fried proved that the known connections between torsion and the dy-
namical features of closed orbits continue to hold in the holomorphic
category [3]. He posed also a question about such connections for
actions of a noncompact Lie group other than R. Laederich [6] has
investigated the case of complex manifolds which fibrate over the torus
having a one dimensional holomorphic foliation transverse to the fibers.
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He found a formula relating ∂̄-torsion to “theta” functions associated
to the compact orbits of the foliation.

In this paper we find a formula (6) relating ∂̄-torsion of a compact
complex 3-manifold M to special values of zeta functions (3), (5) de-
fined with the compact orbits of an Anosov holomorphic action on M .

2. Main result

2.1. Holomorphic Anosov actions. For (M, || · ||) a Hermitian 3-
manifold, we follow Ghys [5] and call a holomorphic action φ : C∗ ×
M →M , (x, T ) 7→ φ(T )(x), Anosov if there exist invariant subbundles
Eu, Es of the real tangent bundle TRM and constants c > 0, a > 0,
such that

1. TRM = Es ⊕ Eu ⊕ Tφ, where Tφ is the bundle tangent to the
orbits of the action.

2. For all T ∈ C∗, vs ∈ Es, vu ∈ Eu one has

‖dφ(T )(vs)‖ ≤ c|T |−a‖vs‖

‖dφ(T )(vu)‖ ≤ c|T |a‖vu‖.
In all of this paper G will denote the Lie group SL(2,C).
The first examples of Anosov actions are holomorphic suspensions.

Suppose A ∈ G preserves a lattice Λ ⊂ C
2 and let Ā be the corre-

sponding diffeomorphism of C/Λ. For ω ∈ C − S1 consider the dif-
feomorphism Aω of C/Λ × C∗ given by Aω(x, S) = (Ā(x), ωS), and
the properly discontinous and free action of Z on C/Λ × C∗ given by
(k, (x, S)) 7→ Akω(x, S). If the spectrum of A is disjoint from S1, the
action of C∗ given on the quotient manifold M by (T, [x, S]) 7→ [x, ST ]
is Anosov.

A second kind of examples of holomorphic Anosov actions comes
from the choice of a cocompact discrete subgroup Γ of G with no elliptic
elements. Let M = Γ \G, then the holomorphic C∗ action φ(T )(Γg) =
Γg
(
T 0
0 T−1

)
is Anosov. One proves this fact in exactly the same way as

for the corresponding well known examples in the real domain.
Ghys modifies the last examples by the following construction. Let

u : Γ→ C
∗ be a representation and consider the action of Γ on G given

by (γ, g) 7→ γg
( u(γ) 0

0 u(γ)−1

)
. This action commutes with the C∗ action

by right translations by
(
T 0
0 T−1

)
. If the action of Γ is free, proper and

totally discontinous one considers the quotient manifold M with the
C
∗ action which becomes Anosov.
Ghys proved that any holomorphic Anosov action on a compact com-

plex 3-manifold is up to finite covers holomorphically conjugate to one
of the examples described above.
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Let Γ be a discrete subgroup of G and M = Γ \G with the Anosov
action as above. The orbit of Γg is compact iff there are γ ∈ Γ− {I},
λ ∈ C∗ − {1} such that

g−1γg =

(
λ 0
0 λ−1

)
=

(
exp(iθ + l) 0

0 exp(−iθ − l)

)
(1)

Since the elements of Γ−{I} are hyperbolic, ∀γ ∈ Γ−{I} there are
a unique λγ ∈ C∗ with |λγ| > 1, and g ∈ G such that (1) holds. If there

is another h ∈ G such that h−1γh =
( λγ 0

0 λ−1
γ

)
, then g = h

(
S 0
0 S−1

)
.

Let Gγ be the centralizer of γ, then

g−1Gγg = {
(
S 0
0 S−1

)
: S ∈ C∗}.

Therefore the orbit of Γg is Oγ = {Γxg : x ∈ Gγ} and so it is confor-
mally equivalent to Γγ \Gγ, where Γγ = Γ ∩Gγ. Moreover

Γγ =

{
g

(
λnγo 0
0 λ−nγo

)
g−1 : n ∈ Z

}

for γo ∈ Γ prime, and Oγo = Oγ. Writing λγo = exp(lγo + iθγo) we
have that Γγo \ Gγo = Γγ \ Gγ is conformally equivalent to the torus
(lγo + iθγo)Z+ 2πiZ \ C. Note that for k =

(
0 −1
1 0

)
we have

(gk)−1γ−1
0 gk =

(
λγo 0
0 λ−1

γo

)
.

Thus, the cyclic group Γγ defines two compact orbits Oγo and Oγ−1
o

.
If Γγ, Γγ′ define the same compact orbit, then there is δ ∈ Γ such
that δγ′δ−1 ∈ Γγ. Thus, if [Γ] denotes the set of Γ-conjugacy classes of
elements of Γ, the compact orbits of the Anosov action are parametrized
by the classes [γ] ∈ [Γ] for prime γ ∈ Γ0 = Γ− {I}.

For ρ : Γ→ U(m) a representation and <z > 0, we define

Za(z) =
∏

[γ] prime

∞∏
j,k=1

∏
r=±2

det(I − ρ(γ)eirθγλ−2j+1
γ λ̄−2k+1

γ e−lγz).(2)
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ZA(z) =
∏

[γ] prime

∞∏
j,k=1

det(I − ρ(γ)λ−2j−k
γ e−lγz)k+3

ZB(z) =
∏

[γ] prime

∞∏
j,k,r=1

det(I − ρ(γ)λ−2j−k+1
γ λ̄−2r+1

γ e−lγz)

ZC(z) =
∏

[γ] prime

∞∏
j,k=1

det(I − ρ(γ)λ̄−2j
γ λ−kγ e−lγz)k−3

Zρ(z) =
ZA(z)ZB(z)6

ZC(z)
.

(3)

2.2. ∂̄-torsion. For a closed Hermitian complex k-manifold M and a
representation ρ : π1(M)→ U(m) we define ∂̄-torsion.

First we recall how one defines the determinant of a positive elliptic
differential operator D on M . D−s is a trace class operator for <s large
and the Dirichlet series ζD(s) = TrD−s =

∑
λ λ
−s has a meromorphic

continuation to C, regular at s = 0. One defines detD = exp(−ζ ′D(0)).
Next we introduce the ∂̄-Laplacian associated to ρ (see [3]). Consider

the Cm valued differential forms ω on the universal cover M̃ of M
that are ρ equivariant. That is, if g ∈ π1(M) acts on M̃ as a deck
transformation then the components ω1, . . . , ωm of ω satisfy

g∗ωi =
m∑
j=1

ρ(g)ijωj.

The space Ω(ρ) of such twisted forms has a decomposition

Ω(ρ) =
⊕

0≤p,q≤k

Ωp,q

where the summands fit into a double cochain complex because the
derivatives ∂ and ∂̄ preserve the equivariance property. Since ρ is uni-
tary, using the Riemannian measure on M and the Hodge star operator
one defines an inner product on twisted forms. Taking the adjoint ∂̄∗ of
∂̄ one forms the ∂̄-Laplacian ∆̄ = ∂̄∂̄∗+∂̄∗∂̄ on twisted forms. Recalling
the bigrading we write ∆̄ =

⊕
0≤p,q,≤k

∆̄p,q, ∆̄p,q : Ωp,q → Ωp,q.

The Hodge theorem states that ker ∆̄p,q is isomorphic to the Dolbeaut
group Hp,q(Ω). When all these groups are zero we call the representa-
tion acyclic. In such a case D = ∆̄p,q is a positive elliptic operator. In
complex differential geometry one computes detD via the trace of the
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heat kernel Tr e−tD as follows. The Mellin transform of e−λt (λ > 0) is

Me−λt =

∫ ∞
0

ts−1e−λtdt = λ−s
∫ ∞

0

xs−1e−xdx = λ−sΓ(s).

Summing over λ ∈ spec D, gives

MTr e−tD = Γ(s)ζD(s)

For an acyclic representation ρ, Ray and Singer [9] defined the ∂̄-
torsion τp ∈]0,∞[ by

τ 2
p = exp

d

ds

(
1

Γ(s)
M
(∑

q

(−1)qqTr e−t∆̄
p,q))

s=0

.(4)

The purpose of this paper is to prove the following

THEOREM. Let Γ be a cocompact discrete subgroup of G and let
M = Γ \ G with the Anosov action as in 2.1. Let ρ : Γ → U(m)
be an acyclic representation. Let Za, Zρ be as in (2) and (3), and
let ηa = Z ′a/Za. Then logZρ is analytic for <z > −1 and ηa has a
meromorphic continuation to C whose poles are simple, are located on
iR, and except for the zero pole, have integer residues. If rρ denotes
the residue of ηa at zero and c ∈ C∗,

ζρ(z) = c exp

∫ z

0

(ηa(s)−
rρ
s

)ds(5)

defines an entire function whose only zeros ocurr at the nonzero poles
of ηa. Choosing c such that ζρ(1) = Za(1) we have

τ 2
p =

(
exp(19

80
m vol (M)π−3)

29rρ/2|Zρ(0)|2ζρ(0)3

)( 3
p

)
(6)

Remarks:

1. The analogous result for the holomorphic suspension examples in
2.1 is a particular case of the theorem of Laederich [6].

2. We have been unable to deal with the modified examples of Ghys.
3. We identified the zeta function Za given by the product (2), which

is not convergent for <z = 0, and we found that it was studied by
Scott [11].

4. We chose to decompose the function Zρ in order to have nice
product expansions (3).
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3. The ∂̄-Laplacian

Let K =SU(2,C) (maximal compact subgroup of G) and g =sl(2,C)
(Lie algebra of G). Consider the following R-basis of g
E1 = 1√

2

(
0 1
−1 0

)
, E2 = 1√

2

(
0 1
1 0

)
, E3 = 1√

2

(
1 0
0 −1

)
,

F1 = 1√
2

(
0 i
−i 0

)
, F2 = 1√

2

(
0 i
i 0

)
, F3 = 1√

2

(
i 0
0 −i

)
.

g has a natural Hermitian product 〈x, y〉 = Tr (xȳt) and the above
basis is orthonormal for the metric <〈, 〉. Note that E1, F2, F3 is a
basis of su(2,C).

Thought as a real Lie algebra, its complexification gC has a basis
{X1, X2, X3, X1, X2, X3} where

Xk =
1

2
(Ek − JFk), Xk =

1

2
(Ek + JFk), J

2 = −I.

Writing [X l, Xj] =
∑

k C
k
ljXk, we have Cj

lj = 0, C3
12 = C1

32 = C2
31 =

√
2.

Each element X ∈ g defines a left invariant vector field on the com-
plex manifold G such that

X(f)(g) =
d

ds

∣∣
s=0

f(g exp(sX))

for f : G → C. The elements of gC define sections of the complexified
tangent bundle TCG. Note that

JFk(f)(g) = i
d

ds

∣∣
s=0

f(g exp(sFk)).

Let ωk, ωk be the duals of the vector fields Xk, Xk. Then

ωk(El) = δkl, ωk(Fl) = iδkl, ωk(El) = δkl, ωk(Fl) = −iδkl.

Any element η of ∧p,q(G) can be written

η =
∑
I,J

ηIJωI ∧ ωJ

where I = (i1, . . . , ip), i1 < · · · < ip, J = (j1, . . . , jq), j1 < · · · < jq,

ωI = ωi1 ∧ · · · ∧ ωip , ωI = ωi1 ∧ · · · ∧ ωip .

All of the above vector fields define vector fields on M = Γ \G. Define

[ωl, ωj] =
∑
k

Ck
ljωk.

Let η = fωI ∧ ωJ ∈ ∧p,q(M) then
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∂̄η =(−1)p
∑
j

Xj(f)ωI ∧ ωj ∧ ωJ

+ (−1)p+1
∑
l<j

fωI ∧ ωl ∧ ωjι([X l, Xj]) ∧ ωJ
(7)

One computes the adjoint

∂̄∗η =(−1)p+1
∑
j

Xj(f)ωI ∧ ι(Xj)ωJ

+ (−1)p
∑
l<j

fωI ∧ [ωl, ωj] ∧ ι(X l)ι(Xj)ωJ ,
(8)

and so the ∂̄-Laplacian

∆̄η =
∑
k

−Xk(Xkf)ωI ∧ ωJ +
∑
jl

[Xl, Xj](f)ωI ∧ ωj ∧ ι(X l)ωJ

−
∑
m<n

∑
l<j

∑
k

Ck
mnC

k
ljfωI ∧ ωm ∧ ωn ∧ ι(X l)ι(Xj)ωJ

+
∑
lj

(
Xl(f)ωI ∧ ωj ∧ ι([X l, Xj])ωJ +X l(f)ωI ∧ [ωj, ωl] ∧ ι(Xj)ωJ

)
+
∑
m<n

fωI ∧ [ωm, ωn] ∧ ι([Xm, Xn])ωJ

−
∑
mnj

fωI ∧ [ωm, ωn] ∧ ωj ∧ ι(Xn)ι([Xm, Xj])ωJ

(9)

Thus, we have the following

Proposition.

η = fωI ⇒ ∆̄p,0η = (−
∑
k

XkXkf)ωI .(10)

Writing ωI ∧ (f1ω1 + f2ω2 + f3ω3) = ωI ⊗ (f1, f2, f3)t, we have

(11) ∆̄p,1 : ωI ⊗ (f1, f2, f3)t 7→

ωI⊗

−∑kXkXk + 2I −
√

2JF3

√
2JF2

−
√

2JF3 −
∑

kXkXk + 2I
√

2E1√
2JF2 −

√
2E1 −

∑
kXkXk + 2I

f1

f2

f3

 .

Writing ωI ∧ (f1ω2 ∧ω3 + f2ω3 ∧ω1 + f3ω1 ∧ω2) = ωI ⊗ (f1, f2, f3)t,
we have
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(12) ∆̄p,2 : ωI ⊗ (f1, f2, f3)t 7→

ωI⊗

−∑kXkXk + 2I
√

2JE3 −
√

2JE2√
2JE3 −

∑
kXkXk + 2I

√
2E1

−
√

2JF2 −
√

2E1 −
∑

kXkXk + 2I

f1

f2

f3

 .

η = fωI ∧ ω1 ∧ ω2 ∧ ω3 ⇒ ∆̄p,3η = (−
∑
k

XkXkf)ωI ∧ ω1 ∧ ω2 ∧ ω3.

(13)

4. The trace formula for the heat kernel

Consider an acyclic representation ρ : Γ → U(m). Let πρ be the
induced unitary representation of G on

L2(G; ρ) = {f : G→ C
m :

∫
M

|f |2 <∞, f(γg) = ρ(γ)f(g)}

πρ decomposes as πρ =
∑

ω∈Ĝ nρ(ω)ω and nρ < ∞ for ω ∈ Ĝ, where

Ĝ stands for set of all equivalence classes of irreducible unitary repre-
sentations of G. Let ϕ be in the Harish-Chandra’s L1 Schwarz space
C1(G). For (Tω, Vω) ∈ ω ∈ Ĝ, the operator Tω(ϕ) =

∫
G
ϕ(x)Tω(x)dx

on Vω is trace class and Θω(ϕ) = TrTω(ϕ) is the character of ω. ∆̄p,q

extends to

L2(Ωp,q) = ∧p,q(g)⊗ L2(G; ρ) =
⊕
ω∈Ĝ

nρ(ω) ∧p,q (g)⊗ Vω.(14)

Denote by Dp,q the corresponding operator on ∧p,q(g) ⊗ L2(G). The
heat operator e−tD

p,q
has kernel h∗p,qt in End(∧p,q(g)) ⊗ C1(G). Thus

the Schwarz kernel for e−t∆̄
p,q

is

hp,qt (Γx,Γy) =
∑
γ∈Γ

h∗p,qt (x−1γy)⊗ ρ(γ).

Setting ϕpt =
∑

q(−1)qqTrh∗p,qt , one has the trace formula

H(t) :=
3∑
q=0

(−1)qqTr e−t∆̄
p,q

=
∑
ω∈Ĝ

nρ(ω)Θω(ϕpt )

=
∑

[γ]∈[Γ]

Tr ρ(γ)vol (Γγ \Gγ)

∫
Gγ\G

ϕpt (x
−1γx)dẋ.

(15)

The last integrals can be expressed in terms of the characters of the
representations in the principal series which we now define (see [4]).
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For k ∈ Z, v ∈ R, let Hk,v = L2(C). For g =
(
a b
c d

)
, we define an

operator Tk,v(g) in Hk,v as follows

Tk,v(g)f(z) = |bz + d|k+iv−2(bz + d)−kf

(
az + c

bz + d

)
.

Let Θk,v be the character of Tk,v.
Every element γ ∈ Γ0 is conjugate to a matrix(

λγ 0
0 λ−1

γ

)
=

(
exp(iθγ + lγ) 0

0 exp(−iθγ − lγ)

)
with lγ > 0 and one has

∫
Gγ\G

ϕpt (x
−1γx)dẋ =

(2π)−2

|λγ − λ−1
γ |2

∞∑
k=−∞

∫ ∞
−∞

Θk,v(ϕ
p
t )e

ikθγe−ivlγdv.

(16)

For γ = I we have the Plancherel formula

ϕpt (I) =
1

32π4

∞∑
k=−∞

∫ ∞
−∞

(k2 + v2)Θk,v(ϕ
p
t )dv.(17)

To give the action of g on Hk,v, let A = (−k− 2 + iv)/2, B = (k− 2 +
iv)/2, X =

(
u w
y −u

)
and f ∈ Hk,v, then

Xf(z) = [A(wz − u) +B(wz − u)]f(z)

+
∂f

∂z
(2uz + y − wz2) +

∂f

∂z
(2uz + y − wz2).

(18)

Consider the Casimir elements ΩG = E2
2 + E2

3 + F 2
1 − E2

1 − F 2
2 − F 2

3 ,
ΩK = −E2

1 − F 2
2 − F 2

3 . Note that −4
∑

j XjXj = −ΩG + 2ΩK . From

(18), ΩGf = ((A2 +B2)− 2(A+B))f = ((k2 − v2)/2− 2)f = λk,vf .
The irreducible representations of K are given by (Vn, τn), n ∈ N ∪
{0}, where Vn is the space of homogeneous polynomials of degree n in
two variables and τn(g)P ((z1, z2)t) = P (g−1(z1, z2)t).

For X =
(

u w
−w −u

)
and Pk = zk1z

n−k
2 we have

XPk = −kwPk−1 + (n− 2k)uPk + (n− k)wPk+1.

Then 2ΩKP = (n2 + 2n)P .
One easily finds that the multiplicity of τn in Tk,v|K is

[τn : Tk,v|K] =

{
1 if n− k is even and n ≥ |k|
0 otherwise.



10 E. GARNICA V. AND H. SÁNCHEZ M.

When this multipicity is 1, ΩG − 2ΩK |Vn is multiplication by µk,v,n =
λk,v − n(n+ 2).

ω|K =
∑
n∈Z+

[τn : Tω|K](τn, Vn).

From (10) and (13), we have that for q = 0, 3

∆̄p,q|Vω = Ip,q ⊗ 1

4
(−ΩG + 2ΩK)|Vω,

and thus

Θk,v(Trh∗p,qt ) =

(
3
p

) ∞∑
n=|k|

n−k even

(n+ 1) exp(tµk,v,n/4).

Let

D(k, n) =

n− 2(k + 1) 0 2(n− k)
0 −n+ 2(k − 1) 2k

k + 1 n− k − 1 0

 .

Its eigenvalues are λ = −2, n,−n−2. Let E(k, n, λ) be the λ-eigenspace
of D(k, n) and

Vn(λ) =

∑
k

(ak−1 + bk+1)Pk
(ak−1 − bk+1)Pk

ckPk

 :

akbk
ck

 ∈ E(k, n, λ)

 ,

Wn(λ) =

∑
k

−(ak−1 + bk+1)Pk
(ak−1 − bk+1)Pk

ckPk

 :

akbk
ck

 ∈ E(k, n, λ)

 .

Then

∧0,1(g)⊗ Vn = Vn(−2)⊕ Vn(n)⊕ Vn(−n− 2),

∧0,2(g)⊗ Vn = Wn(−2)⊕Wn(n)⊕Wn(−n− 2).

From (11) and (12) we see that

∆̄p,1| ∧p,0 (g)⊗ Vn(λ) = Ip,1 ⊗ 1

4
(−ΩG + 2ΩK) + (λ+ 2)I|Vn(λ),

∆̄p,2| ∧p,0 (g)⊗Wn(λ) = Ip,2 ⊗ 1

4
(−ΩG + 2ΩK) + (λ+ 2)I|Wn(λ).

Thus, for q = 1, 2 we have

Θk,v(Trh∗p,qt ) =
(

3
p

) ∞∑
n=|k|

n−k even

(n+ 1) exp(tµk,v,n/4)(1 + e−t(n+2) + etn).
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Therefore, the characters are given by

(19) Θk,v(ϕ
p
t ) =

(
3
p

) ∞∑
n=|k|

n−k even

(n+ 1) exp(tµk,v,n/4)(e−t(n+2) + etn − 2)

=
(

3
p

)
et(λk,v+1)/4

∞∑
n=|k|

n−k even

(n+ 1)(e−t(n+3)2/4 + e−t(n−1)2/4 − 2e−t(n+1)2/4)

=
(

3
p

)
e−tv

2/8((1− |k|)e−t(|k|+2)2/8 + (1 + |k|)e−t(|k|−2)2/8).

The function Φp
I : (0,∞)→ R defined by

Φp
I(t) =

2
(

3
p

)
(2π)7/2

∞∑
|k|=1

(3 + k) exp(−tk2/8)((k + 2)2t−1/2 + 4t−3/2))

is exponentially small at ∞. By Plancherel formula (17) we have

ϕpt (I) = Φp
I(t) + 24(2π)−7/2

(
3
p

)
(t−1/2 + t−3/2),(20)

Defining Φp
γ : (0,∞)→ R by

Φp
γ(t) = 4

(
3
p

)√ π

2t
exp(−2l2γ/t)

∞∑
|k|=1

(3 + k) exp(−tk2/8)2 cos((k + 2)θγ,

we get

(21)
∞∑

k=−∞

∫ ∞
−∞

Θk,v(ϕ
p
t )e

ikθγe−ivlγdv

= Φp
γ(t) + 24

(
3
p

)
cos(2θγ)

√
π

2t
exp(−2l2γ/t).

5. Zeta functions

This section is concerned with the analyticity of the zeta functions
that appear in THEOREM. Recall their definition given by (2), (3).

For each γ ∈ Γ0 there are γo prime and nγ ∈ N, such that γ = γ
nγ
o .

Γγ \ Gγ is conformally equivalent to (lγo + iθγo)Z + 2πiZ \ C and so
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vol (Γγ \Gγ) = 2πlγ/nγ. Let

aγ =
2 cos(2θγ)

|λγ − λ−1
γ |2

=
∞∑

j,k=1

(ei2θγ + e−i2θγ )λ−2j+1
γ λ̄−2k+1

γ ,

bγ =
2λ−1

γ (3 cos(2θγ)(1− λ−1
γ )− i sin(2θγ))

|λγ − λ−1
γ |2(1− λ−1

γ )2
,

Aγ =
λ−3
γ (4− 3λ−1

γ )

(1− λ−2
γ )(1− λ−1

γ )2
=

∞∑
j,k=1

(3 + k)λ−2j−k
γ ,

Bγ =
|λγ|−2λ−1

γ

|λγ − λ−1
γ |2(1− λ−1

γ )
=

∞∑
j,k,r=1

λ−2j−k+1
γ λ̄−2r+1

γ ,

Cγ =
λ̄−2
γ λ−1

γ (3λ−1
γ − 2)

(1− λ̄−2
γ )(1− λ−1

γ )2
=

∞∑
j,k=1

(k − 3)λ̄−2j
γ λ−kγ .

Then

bγ = Aγ + 6Bγ − Cγ and(22)

bγ + bγ = |λγ − λ−1
γ |−2

∞∑
|k|=1

(3 + k)e−|k|lγ2 cos((k + 2)θγ).

For β = a,A,B,C we have

Zβ(z) = exp
(
−
∑

[γ]∈[Γ0]

1

nγ
Tr ρ(γ)βγe

−lγz
)
.

For <z > 0 and β = a, b, A,B,C let

ηβ(z) =
Z ′β(z)

Zβ(z)
=
∑

[γ]∈[Γ0]

Tr ρ(γ)

2π
vol (Γγ \Gγ)βγe

−lγz.

By the definition of Zρ and (22),

Z ′ρ
Zρ

= ηA + 6ηB − ηC = ηb.(23)

Let NT be the number of [γ] in [Γ] with lγ ≤ T . Margulis [7] has proved
that lim

T→∞
logNT/ T = 2.

For β = A,B,C, lim
lγ→∞

log |βγ|/ lγ = −3 and so the series logZβ(z)

converges uniformly in each set <z ≥ −1 + δ, δ > 0. By (23)∫ ∞
0

ηb(x)dx = − logZρ(0).
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Since lim
lγ→∞

log |aγ|/ lγ = −2, the series ηa(z) converges uniformly in

each set <z ≥ δ > 0. Scott [11] has shown that ηa(z) has a meromor-
phic continuation to C with only simple poles at zero and the points
±iv 6= 0 such that nρ(T2,v) 6= 0, having residue nρ(T2,v) + nρ(T2,−v) at
these points, and satisfying the functional equation

ηa(iz) + ηa(−iz) + p(z) = 0(24)

where p(r) = m vol (M)(4 + r2)/(2π)3. Let rρ be the residue of ηa at
zero and define ψρ(z) = ηa(z)− rρ/z. Thus, for any c ∈ C∗

ζρ(z) = c exp

∫ z

0

ψρ(s)ds

is a well defined entire function whose only zeros ocurr at the points z =
±iv 6= 0 such that nρ(T2,v) 6= 0, and are of order nρ(T2,v) + nρ(T2,−v).

6. Proof of formula (6)

Let

F (t) =24(2π)−7/2
(

3
p

)
mvol (M)(t−1/2 + t−3/2)

g(t) =
(

3
p

) ∑
[γ]∈[Γ0]

6 cos(2θγ)Tr ρ(γ)vol (Γγ \Gγ)

π2|λγ − λ−1
γ |2

√
π

2t
exp(−2l2γ/t)

G(t) =
∑

[γ]∈[Γ0]

Tr ρ(γ)vol (Γγ \Gγ)

4π2|λγ − λ−1
γ |2

Φp
γ(t).

Then g is exponentially small at 0+, and so is G by Poisson summation
formula. By (15), (16), (20), (21) we have

H(t)−m vol (M)Φp
I(t)− χ(0,1]F (t) = χ(1,∞)F (t) + g(t) +G(t)

the left hand side is exponentially small at ∞ while the right hand
side is exponentially small at 0+. We define an entire function h(s)
by taking the Mellin transform of both sides. For <s > 3/2, (t−1/2 +
t−3/2)χ(0,1] has Mellin transform (s− 1

2
)−1 + (s− 3

2
)−1. For <s < 1/2,

(t−1/2 + t−3/2)χ(1,∞) has Mellin transform −(s− 1
2
)−1− (s− 3

2
)−1. Both

have meromorphic continuation to C. Therefore

h(s) + 24(2π)−7
(

3
p

)
m vol (M)

(
1

s− 1/2
+

1

s− 3/2

)
gives a meromorphic continuation of both MH(s)−m vol (M)MΦp

I(s)
and Mg(s) +MG(s). Thus

MH(s) = m vol (M)MΦp
I(s) +Mg(s) +MG(s).(25)
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We have

MΦp
I(s) =

(
3
p

)
8s−1π2s−5(

7s− 9

π2
Γ(2−s)ζ(4−2s)+12Γ(1−s)ζ(2−2s)),

MΦp
I(0) =

(
3
p

)
19/80π3.(26)

For <s < 0 we use the substitution

ts−1 =
8s−1

Γ(1− s)

∫ ∞
0

(x(x+ 2|k|))−se−x(x+2|k|)t/8(2x+ 2|k|)dx,(27)

switch the order of integration in the Mellin transform, integrate term
by term using∫ ∞

0

e−(x+|k|)2t/8(2x+ 2|k|) 1√
2πt

e−2l2γ/tdt = 4e−lγ(x+|k|),

and let s ↑ 0 to get

MG(0) =
(

3
p

) ∫ ∞
0

(ηb(x) + ηb(x))dx = −
(

3
p

)
log |Zρ(0)|2.(28)

For g(t) we have

Mg(s) = 3
(

3
p

) 8s

Γ(1− s)

∫ ∞
0

x−2sηa(x)dx.

Since∫ ∞
0

x−2sηa(x)dx =

∫ 1

0

x−2sψρ(x)dx+

∫ 1

0

rρx
−2s−1dx+

∫ ∞
1

x−2sηa(x)dx,

we have

lim
s↑0

(∫ ∞
0

x−2sηa(x)dx+
rρ
2s

)
= log

(
ζρ(1)

ζρ(0)

)
− logZa(1) = − log ζρ(0).

Thus

d

ds

(
Mg(s)

Γ(s)

)
s=0

= −3
(

3
p

)(
log ζρ(0) +

d

ds

(
8srρ sin πs

2πs

)
s=0

)
= −3

(
3
p

) (
log ζρ(0) +

rρ
2

log 8
)
.

(29)

From the definition (4), equations (25), (26), (28) and (29) give (6).
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