
RATIONAL CURVES ON K3 SURFACES

XI CHEN

1. Basics

1.1. K3 surfaces. A Calabi-Yau (CY) manifold is a compact Kähler
manifold that

• has trivial canonical bundle and
• is simply connected.

A K3 surface X is a CY manifold of (complex) dimension dimCX = 2.

Theorem 1.1 (Siu). Let X be a simply-connected compact complex
surface with the trivial canonical bundle. Then X is Kähler.

A quick computation gives the Hodge numbers:

(1.1)

1
0 0

1 20 1
0 0

1

Here H0(X,Z) = Z, H1(X,Z) = 0 and H2,0(X) = H0(KX) = C follow
directly from the definition, while h1,1(X) = 20 follows from Noether’s
formula:

(1.2) χtop(X) = 12(K2
X + χ(OX)) = 24

So H2(X) = C22. A subtle point here is that H2(X,Z) = Z22 is torsion
free. This follows from Lefschetz (1, 1) theorem and Riemann-Roch.

Proposition 1.2. H2(X,Z) is torsion free for a K3 surface X.

Proof. By Lefschetz (1, 1) theorem, every torsion element of H2(X,Z)
lies in the image of Pic(X) → H2(X,Z). If H2(X,Z) is not torsion
free, there exists a line bundle L such that L 6= OX and L⊗m = OX

for some m > 1. By Riemann-Roch,

(1.3) h0(L)− h1(L) + h0(L−1) = 2

Therefore h0(L)+h0(L−1) ≥ 2. So at least one of L and L−1 is effective.
WLOG, assume that h0(L) > 0. Let s ∈ H0(L). Then sm ∈ H0(OX).
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Consequent, s nowhere vanishes and hence L = OX . Contradiction.
�

There are (at least) two conclusions we can draw from h1,1(X) = 20.
First, since H1(X,OX) = 0, we see that

Proposition 1.3. Pic(X) is a lattice of rank at most 20 contained
H2(X,Z) = Z22.

1.2. Deformations of K3 surfaces. Let π : M → S be a smooth
family of compact complex manifolds. Restricting the sequence

(1.4) 0 −→ TM/S −→ TM −→ π∗TS −→ 0

to a point 0 ∈ S and taking the long exact sequence, we obtain

(1.5) H0(π∗TS

∣∣
0
) // H1(TM/S

∣∣
0
)

TS,0
ks

// H1(TM0
)

where M0 = π−1(0). Here ks is call the Kodaira-Spencer map of the
family M/S and ks(∂/∂t) is the Kodaira-Spencer class of M/S if S is
the unit disk ∆ = {|t| < 1}.
If ks is an isomorphism, M/S is called a versal deformation space of

M0. A theorem of Kuranishi says that if H2(TX) = 0 for X = M0, then
the versal deformation space of X exists and is smooth of dimension
h1(TX).
For K3 surfaces, by Serre duality

(1.6) H1,1(X) = H1(ΩX) = H1(TX)
∨ = C20

This, along with H2(TX) = H0(ΩX)
∨ = 0, implies that the versal

deformation space of X is smooth of dimension 20. That is, the moduli
space of K3 surfaces, if exists, has dimension 20. In case that X is
projective, a general deformation of X is, however, no longer algebraic.

1.3. Gauss-Manin Connection. Let M/S be a smooth family of K3
surfaces. We know that R2π∗C is a flat complex vector bundle. Dif-
feomorphically and locally, R2π∗C ∼= H2(M0,C) × U for a polydisk U
around 0. There is a natural flat connection call Gauss-Manin connec-
tion

(1.7) ∇ : OS ⊗R2π∗C → Ω1
S ⊗R2π∗C

satisfying that ∇2 = 0 and the Griffiths transversality:

(1.8) ∇
(
OS ⊗ F pR2π∗C

)
⊂ Ω1

S ⊗F p−1R2π∗C.
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For a holomorpic tangent vector u ∈ TS,0, we define

(1.9) ∇uω = 〈∇ω, u〉 ∈ F p−1H2(X)

for ω ∈ H0(OS ⊗ F pR2π∗C) for S a polydisk around 0 and M0 = X.
Then we have well-defined maps

(1.10) P0,2 ◦ ∇u : H1,1(X) −→ H0,2(X)

and

(1.11) P1,1 ◦ ∇u : H2,0(X) −→ H1,1(X)

where Pm,n are the projections Hm+n(•) → Hm,n(•).
Take p = 1, 2 and the maps (1.10) and (1.11) are given by the pairings

(1.12) H1(TX)×H1,1(X) −→ H0,2(X)

and

(1.13) H1(TX)×H2,0(X) −→ H1,1(X),

via the natural maps TX ⊗ΩX → OX and TX ⊗∧2ΩX → ΩX , respec-
tively. It turns out both (1.12) and (1.13) are nondegenerate pairings.
One consequence of the above discussion is that a general K3 surface

is not projective. If M/S is a projective family of K3 surfaces, then
there exists a nontrivial line bundle L ∈ Pic(M) over S. Since c1(L) ∈
H0(R2π∗Z),

(1.14) ∇c1(L) = 0.

Consequently,

(1.15) 〈ks(u), c1(L)〉 = 0

for all u ∈ TS,0. By the nondegeneracy of the pairing (1.12), the image
of the Kodaira-Spencer map has dimension at most 19. Therefore,M/S
cannot be a versal deformation space of X = M0. In other words, if
M/S is a versal deformation space of X, a general fiber Ms of M/S is
a K3 surface with Picard group Pic(Ms) = 0.

1.4. Examples. The simplest examples of K3 surfaces are complete
intersections in Pn. Let X ⊂ Pn be a complete interesction cut out by
hypersurfaces of degrees d1, d2, ..., dn−2. By weak Lefschetz, π1(X) = 0.
By adjunction,

(1.16) KX = OX ⇔ d1 + d2 + ...+ dn−2 = n+ 1

We also require that X be nondegerate, i.e., di ≥ 2. Therefore, here
are all the possibilities:

(1) X ⊂ P3 a quartic surface;
(2) X ⊂ P4 a complete intersection of a quadric and a cubic;
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(3) X ⊂ P5 a complete intersection of three quadrics.

Theorem 1.4 (Noether-Lefschetz). For a very general surface X ⊂ P3

of degree d ≥ 4, Pic(X) ∼= Z is generated by the hyperplane section
OX(1).

Noether’s original argument is seriously flawed. Lefschetz gave the
first correct proof using the powerful tool of Hodge theory. Later Grif-
fiths and Harris gave a more elementary proof using degeneration. Both
proofs are quite novel in their own ways. We will give outlines of both
proofs.

Lefschetz’s proof of Noether-Lefschetz. Let W ⊂ P1×P3 be a Lefschetz
pencil of quartic surfaces, B be the finite set of points b over which the
fiber Wb is singular and S = P1\B. Lefschetz’s famous argument shows
that the monodromy action of π1(S) on H2

prim(X,Q) is irreducible for
some 0 ∈ S and X = W0, where

(1.17) H2
prim(X,Q) = {η ∈ H2(X,Q) : 〈η, c1(L)〉 = 0}

and L = OX(1). For a line bundle Mb ∈ Pic(Wb) for b ∈ S general, it
is easy to see that γ(c1(Mb)) is a Hodge (1, 1) class in H2(Wb) for every
γ ∈ π1(S). If Mb is not a multiple of L, γ(c1(Mb)) generates H

2(X,Q)
for γ ∈ π1(S) by the irreducibility of the action π1(S) on H2

prim(X,Q).

This is impossible since H2,0(X) 6= 0. Contradiction. �

Griffiths-Harris’ Proof of Noether-Lefschetz. Let W ⊂ P1 × P3 be a
pencil of quartic surfaces containing a member W0 = S1 ∪ S2, where
S1 and S2 are quadric surfaces. Let D = S1 ∩ S2. The 3-fold W has
16 rational double points p1, p2, ..., p16 on D. Blowing up W along S1

resolves these singularities. Let Z be the resulting 3-fold, Z0 = R1∪R2

and D = R1 ∩ R2. It is easy to see that R1 is the blowup of S1 at
p1, p2, ..., p16 and R2

∼= S2. We have the left exact sequence

(1.18) 0 −→ Pic(W0) −→ Pic(R1)⊕ Pic(R2) −→ Pic(D)

over Z. We can show that for L1 ∈ Pic(R1) and L2 ∈ Pic(R2),

(1.19) L1

∣∣∣∣
D

= L2

∣∣∣∣
D

if and only if L1 = aL + bKR1
and L2 = aL− bKR2

for some a, b ∈ Z.
Then Pic(W0) = Z⊕ Z and Pic(Wt) = Z for t ∈ P1 general. �

The key fact in Lefschetz’s proof is H2,0(X) 6= 0 while Griffiths-
Harris’ proof relies on the fact that g(D) > 0 for the degenerated K3
surface X = S1 ∪ S2; both are the consequence of H0(KX) 6= 0.
A consequence of this theorem is
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Corollary 1.5. Let X1 and X2 be two very general quartic surfaces
and let f : X1 → X2 be an isomorphism. Then f is induced by an
action of PGL(4).

Proof. f induces an isomorphism Pic(X2) → Pic(X1). Obviously,
f ∗OX2

(1) = OX1
(1) and it also induces a linear map |OX2

(1)| →
|OX1

(1)|. Both |OXi
(1)| ∼= |OP3(1)| = P3. Therefore, f induces an

automorphism of P3, say σ ∈ PGL(4). In return, it is easy to see that
σ induces f . �

Now we can compute the dimension of the moduli space of quartic
surfaces, if it exists

(1.20) dimM = dim(|OP3(4)|/ ∼) =

(
7

3

)
− 1− dimPGL(4) = 19

Similarly, we can compute the dimension of the space of the complete
intersections X = Q ∩ C ⊂ P4 of type (2, 3):

dim |OP4(2)|+ dim |OP4(3)| − dim |IX(2)| − dim |IX(3)|

=

(
6

4

)
+

(
7

4

)
− 1− (5 + 1) = 43

(1.21)

where IX is the ideal sheaf of X and h0(IX(d)) can be computed via
Kozul complex:

(1.22) 0 → OP4(−5) → OP4(−2)⊕OP4(−3) → IX → 0

Again we can show that the isomorphism between two very general
complete intersections of such type is induced by PGL(5). Hence the
moduli space of X = Q ∩ C has dimension 43− 24 = 19.

Exercise 1.6. Prove Noether-Lefschetz for a general complete inter-
section of type (2, 3) and (2, 2, 2) in P4 and P5, respectively.

Exercise 1.7. Compute the dimension of the moduli space of the com-
plete intersection X ⊂ P5 of type (2, 2, 2).

Here is another example. Let π : X → P2 be the double cover of P2

ramified over a smooth sextic curve D ⊂ P2. To see that X is a K3
surface, we first prove

Proposition 1.8. Let X0 be a smooth hypersurface of P1 × P2 of type
(2, 3). Then the projection X0 → P2 is a double cover ramified along a
sextic curve.

By weak Lefschetz and adjunction, X0 is a K3 surface. Obviously,
every double cover X of P2 ramified along a smooth sextic curve can be
deformed to an X0 ⊂ P1 × P2 of type (2, 3). Hence X is a K3 surface.
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The dimension of the moduli space of such X is the same as the
dimension of the moduli space of sextic curves:

(1.23) dim |OP2(6)| − dimPGL(3) = 27− 8 = 19.

Let A = C2/Λ be a 2-dimensional complex torus. We have Z2 action

on A by sending (x, y) → (−x,−y). Let X = A/Z2 and X̃ be the min-

imal resolution of X. Then X̃ is a special K3 surface called Kummer
surface.

Proposition 1.9. Let G = Z2 act on A2
xy by sending (x, y) → (−x,−y).

Then A2/G is a hypersurface in A3
uvw given by uv = w2.

Proof. A2/G = Spec k[x, y]G = Spec k[x2, y2, xy] = Spec k[u, v, w]/(uv−
w2). �

The action Z2 on A has sixteen fixed points. Therefore, X has sixteen
singularities where X is locally given by SpecC[u, v, w]/(uv −w2), i.e,
X has sixteen rational double points.

Proposition 1.10. Let X = (xy = z2) ⊂ Y = A3
xyz and let π : Ỹ → Y

be the blowup of Y at the origin p. Let X̃ be the proper transform of

X under π and EX be the exceptional divisor of π : X̃ → X. Then

X̃ is smooth, EX is a smooth rational curve with E2
X = −2 on X̃ and

KX̃ = π∗KX .

Proof. Ỹ ⊂ A3 × P2 is given by x/X = y/Y = z/Z and X̃ is by

(1.24)
x

X
=

y

Y
=

z

Z
and XY = Z2

It is straightforward to check that X̃ is smooth. The exceptional divisor
is a smooth conic curve XY = Z2 in P2. Let EY be the exceptional

divisor of Ỹ → Y . By

(1.25) π∗X = X̃+2EY ⇒ π∗X ·E2
Y = X̃ ·E2

Y +2E3
Y ⇒ X̃ ·E2

Y = −2E3
Y

we see that E2
X = X̃ · E2

Y = −2. Since

(1.26) KỸ = π∗KY + 2EY ,

(1.27) KX̃ = (π∗KY + 2EY + X̃)|X̃ = π∗(KY +X)|X̃ = π∗KX

�

So we see that X̃ contains sixteen (−2)-curves. And since ν∗KX =
KA and π∗KX = KX̃ , KX̃ is trivial. By classification of complex sur-

faces, X̃ can be either a K3 surface or abelian surface. Since an abelian

surface does not contain any rational curves, X̃ must be a K3 surface.
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1.5. Deformation of K3 surfaces, A second look. As we pointed
out in the examples of K3 surfaces as complete intersections in Pn or
double covers of P2, the corresponding moduli space of K3 surfaces
has dimension 19, while the versal deformation of a K3 surface has
dimension 20. So where does the extra dimension go? The answer,
we have shown in 1.3, is that a general deformation of a K3 surface
is not algebraic; 19 is the dimension of the deformation of a polarized
K3. Let us take another look at this problem via a more elementary
approach.
First let us illustrate this using the example of quartic surfaces. Let

X ⊂ P3 be a smooth quartic surface. We have the exact sequence

(1.28) 0 → TX → TP3 |X → NX → 0

where NX is the normal bundle of X. The induced long exact sequence
is

(1.29) H0(NX) −→ H1(TX)
β
−→ H1(TP3 |X)

By Euler sequence

(1.30) 0 → OX → OX(1)
⊕4 → TP3 |X → 0

we see that H1(TP3 |X) ∼= H2(OX) = C. Consider the dual map β∨ of
β:

(1.31) H1(TX)

×

β
// H1(TP3 |X)

×

H1(ΩX)

��

H1(ΩP3|X)
β∨

oo

��

C C

Since H1(ΩP3 |X) = H1(ΩP3) = C is generated by c1(L),

(1.32) Im β∨ = {λc1(L) : λ ∈ C}

where L is the hyperplane bundle. Consequently,

Im(H0(NX) → H1(TX)) = ker β

= {ε ∈ H1(TX) : 〈ε, c1(L)〉 = 0} = c1(L)
⊥

(1.33)

By deformation theory, H0(NX) classifies embedded deformations of
X ⊂ P3 and H1(TX) classifies the deformations of X as a complex
manifold. So the image Im(H0(NX) → H1(TX)) classifies the defor-
mations of the pair (X,L), i.e., a polarized K3 surface. The above
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argument actually applies to any polarized K3 surface, not only quar-
tic surfaces. Therefore, the versal deformation space of a polarized K3
surface (X,L) is a hyperplane inH1(TX) that is perpendicular to c1(L).
The above technique can be generalized to prove the following:

Proposition 1.11. Let X/∆ be a family of smooth projective surfaces
over disk ∆ with central fiber S = X0 and let D ⊂ S be an effective
divisor on S. Suppose that D can be extended to X, i.e., there exists a
flat family Y/∆ with the commutative diagram

(1.34) Y
π

//

��

X

��

∆ // ∆

such that Y0 embeds into X0 with image D. For each w ∈ H0(KS), let
µw be the map

(1.35) µw : H1(ΩS)
⊗w
−−→ H1(ΩS(KS))

where KS is the canonical class of S. Then the Kodaira-Spencer class
ks(∂/∂t) ∈ H1(TS) of X lies in the subspace

(1.36) {v ∈ H1(TS) : 〈v, µw(c1(D))〉 = 0 for all w ∈ H0(KS)}

where 〈·, ·〉 is the pairing H1(TS) × H1(ΩS(KS)) → C given by Serre
duality.

Using the above proposition, we can give yet another proof of Noether-
Lefschetz for quartic surfaces.
Let M = |OP3(4)| and S = {(p,X) : p ∈ X} ⊂ P3×M . Let L = π∗

1L
be the pullback of the hyperplane bundle of P3. If for a very general
X, there is a line bundle D ∈ Pic(X) such that D is not a multiple of
L, then after a possible base change of M , there exists a line bundle D
on S such that DX is not a multiple of LX when restricted to a very
general point [X] ∈ M . Then by the above proposition, the image of

(1.37) TM,[X]
ks
−→ H0(NX) −→ H1(TX)

is contained in c1(D)⊥. Also Im(H0(NX) → H1(TX)) is c1(L)
⊥ and ks

is obviously surjective. Therefore, we necessarily have

(1.38) c1(L)
⊥ = c1(D)⊥

That is, c1(L) and c1(D) are linearly dependent over Q. Therefore,
Pic(X) = Z. Let J be a generator of Pic(X). Then L = mJ for some
m ∈ Z. WLOG, assume that m > 0. Since L2 = 4, m = 1 or m = 2.
We are done if m = 1. If m = 2, J2 = 1 and (K + J)J = 1. This is
impossible by Riemann-Roch.
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Exercise 1.12. LetM be the moduli space of the tuple (X,L1, L2, ..., Lm),
where X is a K3 surface, {Lk} are m linearly independent line bundles
on X and L1 is ample. Then dimM ≤ 20−m.

So far we reach the conclusion that the moduli space of polarized K3
surfaces (X,L) has dimension at most 19. Then how many components
does this moduli space have?
We call a polarized K3 surface (X,L) a primitive K3 surface if there

does not exist D ∈ Pic(X) and m > 1 such that L = mD and in this
case, we say L is a primitive line bundle over X. Let C ∈ |L|. Then
2pa(C)− 2 = L2. This number g = pa(C) is called the genus of X. By
a K3 surface of genus g, we mean a polarized K3 surface (X,L) with
a primitive line bundle L and L2 = 2g − 2.

Theorem 1.13. For each g ≥ 2, there exists a moduli space Mg pa-
rameterizing genus g K3 surfaces; Mg is quasi-projective, smooth and
irreducible of dimension 19.

Genus 2 K3 surfaces are double covers of P2 ramified along a smooth
sextic curves. Genus 3 K3 surfaces are quartic surfaces in P3. Genus
4 K3 surfaces are complete intersections in P4 of type (2, 3). Genus 5
K3 surfaces are complete intersections in P5 of type (2, 2, 2). Here I
will give an elementary proof of existence of K3 of any genus g.

Proposition 1.14. For every g ≥ 2, there exists a K3 surface X of
genus g and Pic(X) = Z.

Proof. Let X be a smooth surface in P1 × P2 of type (2, 3). We embed
X →֒ P3k+2 by the very ample linear series |π∗

1OP1(k)⊗ π∗
2OP2(1)| with

k > 0. In the exact sequence

(1.39) H1(TX) → H1(TPg |X) → H1(NX) → H2(TX)

we have already seen that H1(TX) → H1(TPg |X) is surjective, where
g = 3k + 2. And since H2(TX) = 0, H2(NX) = 0 and the embedded
deformations of X ⊂ Pg are unobstructed. Therefore, there exists a flat
family Y ⊂ Pg ×∆m such that Y0 = X ⊂ Pg and the Kodaira-Spencer
map T∆m,0 → H0(NX) is an isomorphism. We have proved that
Im(H0(NX) → H1(TX)) is c1(L)

⊥, where L = π∗
1OP1(k)⊗ π∗

2OP2(1).
For a general fiber Yt of Y → ∆m, Pic(Yt) = Z is generated by L.
So this proves the proposition when g = 3k + 2. For g = 3k, 3k + 1,

see the following exercise. �

Exercise 1.15. Let E = O ⊕O ⊕O(1) be a rank three vector bundle
over P1 and Y = PE. Let X ∈ |−KY | be a smooth anti-canonical sur-
face in PE. Show that the complete linear series |OPE(1)⊗ π∗OP1(k)|
(k ≥ 1) embeds X into P3k.
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Change E to E = O ⊕O(1)⊕O(1) and do the same thing.

1.6. Degeneration of K3 surfaces by Ciliberto-Lopez-Miranda.

Let S1 and S2 be two Del Pezzo surfaces. We “glue” S1 and S2 along
a smooth anti-canonical curve D ⊂ S1 and D ⊂ S2. More precisely,
we glue S1 and S2 transversely via two immersions ik : D →֒ Sk for
k = 1, 2. The union S = S1 ∪ S2 is not necessarily projective. It is
projective if and only there are ample line bundles L1 ∈ Pic(S1) and
L2 ∈ Pic(S2) such that

(1.40) i∗1L1 = i∗2L2.

This pair (L1, L2) defines an ample line bundle L ∈ Pic(S), which
polarizes S.
Since π1(S1) = π1(S2) = 0 andD is connected, S is simply connected.

The dualizing sheaf ωS is trivial since

(1.41) ωS

∣∣∣∣
Sk

= ωSk
+D = 0

for k = 1, 2. So S is a “degenerated” K3 surface.
We let

• if g is odd, we let Si
∼= F0 = P1 × P1 and

(1.42) Li = L

∣∣∣∣
Si

= Ci +
g − 1

2
Fi

where Ci and Fi are the generators of Pic(Si) with C2
i = F 2

i = 0
and CiFi = 1 for i = 1, 2;

• if g ≥ 4 is even, we let Si
∼= F1 = P(OP1 ⊕OP1(−1)) and

(1.43) Li = L

∣∣∣∣
Si

= Ci +
g

2
Fi

where Ci and Fi are the generators of Pic(Si) with C2
i = −1,

F 2
i = 0 and CiFi = 1 for i = 1, 2.

We can embed S to Pg by |L|. Let NS be the normal bundle of
S ⊂ Pg:

(1.44) NS = Hom(IS/I
2
S,OS).

Theorem 1.16 (Ciliberto-Lopez-Miranda). [CLM] For S ⊂ Pg given
as above, H1(NS) = 0 and H0(NS) = g2 + 2g + 19.

So a general embedded deformation of S ⊂ Pg is a K3 surface of
genus g. Namely, there exists W ⊂ Pg×∆ such that W0 = S1∪S2 and
Wt is a smooth K3 surface of genus g.
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It is worthwhile to take a closer look at W . Since the T 1

(1.45) T 1(W0) = Ext(ΩW0
,OW0

)) = H0(OD(−KS1
−KS2

))

W has sixteen rational double points p1, p2, .., p16. Let X be the blowup
of W along S1. As in Griffiths-Harris’ proof of Noether-Lefschetz, the
central fiber X0 of X/∆ is a union R1 ∪ R2, where R1 is the blowup
of S1 at p1, p2, ..., p16 and R2 = S2. So one may use Griffiths-Harris’
argument to establish Noether-Lefschetz for K3 surfaces of all genera
g.

2. Rational curves on K3

2.1. Existence. First of all, we have

Proposition 2.1. There are at most countably many rational curves
on a K3 surface X.

Proof. Otherwise, X is covered by rational curves, i.e., X is uniruled.
There exists a dominant rational map P1 × Γ → X, where Γ is a
smooth projective curve. This rational map can resolved by a sequence
of blowups. Let f : Y → P1 × Γ → X be such a resolution. So Y is a
fiberation over Γ whose general fibers are P1. Since f is surjective, we
have the injection

(2.1) f ∗ : H0(KX) →֒ H0(KY ).

So KY is effective since KX is. Let Yp = C be a general fiber of Y → Γ.
Then

(2.2) KY |C = KC = −2

Yet KY |C = KY · C ≥ 0 since KY is effective. Contradiction. �

Exercise 2.2. Let X be a smooth projective variety satisfying that
mKX is effective for some m > 0. Show that X is not uniruled.

More generally, according to Kodaira’s classification of compact com-
plex surfaces, for a smooth projecitve surface X over C,

• If κ(X) < 0, X is covered by rational curves.
• If κ(X) = 0, there are at most countably many rational curves
on X.

• If κ(X) > 0, there are only finitely many rational curves on X
conjecturally (Lang conjecture).

Yet the existence of rational curves are more subtle. The existence
of rational curves on K3 surfaces was established by S. Mori and S.
Mukai. I made it more precise:
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Theorem 2.3 (Chen). For any integers n ≥ 3 and d > 0, the linear
system |OS(d)| on a general K3 surface S in Pn contains an irreducible
nodal rational curve.

The idea for the proof is to degenerate a K3 surface to a union of
rational surfaces given in 1.6. It is best illustrated by quartic surfaces.
Let us consider X0 = Q1 ∪ Q2 ⊂ P3 be a union of two quadrics.

This is a “special” quartic surface and any smooth quartics can be
degenerated to it. It is a common knowledge that Qi

∼= P1 × P1 is
embedded into P3 by |H1 + H2|, where Hi are two rulings of Qi. Let
E = Q1∩Q2. Then E is an elliptic curve in the linear series |2H1+2H2|.
In addition we have

(2.3) OQ1
(H1 +H2)|E = OQ2

(H1 +H2)|E

Let X ⊂ P3×∆ be a pencil of quartics whose central fiber is X0. So
the defining equation of X looks like

(2.4) FQ1
FQ2

+ tF = 0

where FQi
are the defining equations of Qi. We choose X to be general

enough. The idea is to find a curve Y0 ∈ |OX0
(d)| and show that Y0

can be deformed to a nodal rational curve Yt ∈ |OXt
(d)|.

For example, let us work out the case d = 1. Obviously, there exists
r ∈ E such that

(2.5) OE(H1 +H2) = OE(4r)

Actually there are exactly 16 such points. There exists a unique curve
Ci ∈ |OQi

(H1 +H2)| such that Ci · E = 4r. This is due to the fact

(2.6) H0(OQi
(H1 +H2)) = H0(OE(H1 +H2))

Also for E general, Ci is irreducible and smooth.
Let Ud,δ(S) be the subset of |OS(d)| consisting of irreducible nodal

curves with δ nodes on a quartic surface S. Let

(2.7) Wd,δ =
⋃

t 6=0

Ud,δ(Xt) ⊂ |OX(d)|

and let W d,δ be the closure of Wd,δ in |OX(d)|
A theorem of Caporaso-Harris-Ran shows that

Proposition 2.4. The following are true:

(1) [C1 ∪ C2] ∈ W 1,3;
(2) W 1,3 has an ordinary singularity of multiplicity 4 at [C1 ∪ C2];
(3) for any open neighborhood Or of r ∈ P3, there exists an open

neighborhood V[C1∪C2] of [C1 ∪ C2] ∈ W 1,3 such that for any
[C] ∈ V[C1∪C2], the nodes of C lies in Or.
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From the above proposition, we see that U1,3(Xt) is nonempty for
t 6= 0. So there exists an irreducible curve Yt with 3 nodes in |OXt

(1)|.
This curve Yt is obviously a rational curve.
For d ≥ 2, a slight different construction is needed but the basic idea

is the same. For example, let us work out the case d = 2.
The threefold X has sixteen rational double points lying on E. Let

p be one of them. We let Y0 = C11 ∪ C12 ∪ C21 ∪ C22 with

(1) Ci1 ∈ |OQi
(H1)| and Ci2 ∈ |OQi

(H1 + 2H2)|;
(2) Ci1 · E = p+ qi and Ci2 · E = q3−i + 5r

where q1, q2, r are determined by p up to 25 different choices.
Again we can show there is a flat family Y ⊂ X of nodal curves

after a base change such that Yt ∈ |OXt
(2)| has 9 nodes, with 4 of

them approaching r, 1 of them approaching p, 2 of them approaching
C11 ∩ C12 and 2 of them approaching C21 ∩ C22 as t → 0. Obviously,
Yt is a rational curve. For details, please see [C1].

2.2. Density of rational curves on K3 surfaces. There has been
a revival of interest in the existence of rational curves on K3 surfaces.
There are two main results.

Theorem 2.5 (Bogomolov-Hassett-Tschinkel, Li-Liedtke). There are
infinitely many rational curves on every projective K3 surface X with
Pic(X) = Z.

Their proof goes like the following: it suffices to prove it for such a
K3 surface over a number field. For a family X of K3 surfaces over
SpecZ, the reduction Xp at p is a K3 surface of even Picard rank.
Using this fact, they can construct rational curves on Xp of arbitrarily
high degree that can be “lifted” to the generic fiber of X.
In another direction, we proved that

Theorem 2.6 (Chen-Lewis). For all g ≥ 2, the set

∞⋃

n=1

Cg,n

is dense in Sg under the analytic topology, where

Cg,n ⊂ Sg = {(X,L, p) : (X,L) ∈ Kg, p ∈ X}

is the closed subscheme of Sg whose fiber over a general point (X,L) ∈
Kg is the union of all irreducible rational curves in the linear series
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|nL|. Here

Kg =
{
(X,L) : X is a K3 surface,

L ∈ Pic(X) is ample primitive

and L2 = 2g − 2
}

(2.8)

is the moduli space of K3 surfaces of genus g.

Our proof is based on the following facts:

• Let π : X → P1 be an elliptic K3 surface. Fixing a divisor L on
X, let φ : X 99K X be the rational map defined by sending

(2.9) φ(p) = L− (d− 1)p

for p ∈ Xb = π−1(b), where d = L ·Xb. Equivalently, let Xη be
the generic point of π. Then φ is induced by an endomorphism
of the elliptic curve Xη over C(t).

• For every rational curve C ⊂ X, φ(C) is also a rational curve
on X.

• Let π : X → P1 be an elliptic K3 surface and C ⊂ X be a
rational curve not containing in a fiber of π. If φn(p) is dense
on the fiber of X/P1 containing p for a general point p ∈ C,
φn(C) is dense on X.

• There exists rational curves C ⊂ X such that φn(p) is dense for
a general point p ∈ C.

• Elliptic K3 surfaces are dense in the moduli space of K3 sur-
faces.

• For every rational curve C ′ = φn(C), there exists a rational
curve C ′′ on X such that C ′ ∪ C ′′ ∈ |mL|.

Exercise 2.7. Let T = (R/Z)n. For which points p, is {mp : m ∈ Z}
dense in T?

2.3. Counting rational curves. The next natural question following
the existence problem is how many irreducible rational curves there are
in |O(d)| on a generalK3 surface in Pn. The number for d = 1 has been
successfully calculated in [Y-Z]. They give the following remarkable
formula

(2.10)
∞∑

g=1

n(g)qg =
q

∆(q)

where ∆(q) = q
∏∞

n=1(1 − qn)24 is the well-known modular form of
weight 12 and n(g) is the nominated number of rational curves in |O(1)|
on a general K3 surface in Pg for g ≥ 3. More precisely, n(g) is the
sum of the Euler characteristics of the compactified Jacobians of all
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rational curves in |O(1)|. Since the compactified Jacobian of a rational
curve with singularities other than nodes is not very well understood,
we only know this sum equals the number of rational curves in |O(1)|
on a K3 surface in the case that all these rational curves are nodal.
Later J. Bryan and N.C. Leung redid and generalized Yau-Zaslow’s

counting via a different approach. Basically, they used a degeneration
argument by degenerating a general K3 surface to a K3 surface S of
Picard lattice

(2.11)

(
−2 1
1 0

)
.

Let C and F be the generators of Pic(S) with C2 = −2, C ·F = 1 and
F 2 = 0. We also assume that F is effective.
The good thing about S is that (S,C + gF ) is a K3 surface of genus

g and every member of the linear series |C + gF |.

Exercise 2.8. Show that h0(C) = 1, h0(F ) = 2 and the map π : S →
P1 given by |F | realizes S as an elliptic fiberation. For S general, there
are exactly 24 singular fibers of π.

Exercise 2.9. Show that every curve in D ∈ |C + gF | is a union
C ∪ F1 ∪ ... ∪ Fg with Fi ∈ |F |.

Using this degeneration, I proved the following theorem:

Theorem 2.10. All rational curves in the primitive class of a general
K3 surface of genus g ≥ 2 are nodal.

This justifies the number obtained by Yau-Zaslow is the number of
rational curves.

Question 2.11. Compute the number of rational curves in |OS(d)|.

2.4. Hodge-D-Conjecture. As another application of rational curves
on K3, J. Lewis and I proved the following theorem, originally a con-
jecture of Beilinson:

Theorem 2.12 (Chen, Lewis). Hodge-D conjecture holds for a general
K3 surface X (general under the real analytic topology). That is, the
regulator map

(2.12) r2,1 : CH
2,1(X) → H1,1(X,R)

is surjective.
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Here the rational curves are used to construct nontrivial classes in
CH2,1(X). By definition,

(2.13) CHk(X, 1) =

{∑
j(fj, Zj) :

cdXZj = k − 1, fj ∈ C(Zj)
×

∑
j div(fj) = 0

}

Image(Tame symbol)
.

Choose two rational curves C1 and C2 ⊂ X. Suppose that there are
two points p, q ∈ C1 ∩ C2. Then there exists two rational functions
f1 and f2 on C1 and C2, respectively, such that (f1) = p − q and
(f2) = q − p. Then (f1, C1) + (f2, C2) is a class in CH2,1(X).
On the other hand, there exist K3 surfaces X with maximal Picard

rank h1,1(X) = 20. For such surfaces,

(2.14) Im(r2,1) = H1,1(X,Q)⊗R = H1,1(X,R).

A natural approach is via degeneration: LetW/∆ be a one-parameter
family of K3 surfaces with Pic(W0) = Z20. Show that

(2.15) lim
t→0

r2,1(CH
2(Wt, 1)) = r2,1(CH

2(W0, 1)).

To show (2.15), we need to construct higher Chow cycles on Wt using
rational curves:

(2.16) ξt = (ft, Ct) + (gt,Dt)

where Ct and Dt are rational curves on Wt and ft and gt are rational
functions with zero and pole at two intersections of Ct and Dt. Here
great care has to be taken such that the limit ξ0 of ξt exists as a
higher Chow cycle in CH2(W0, 1); unlike regular Chow cycles, higher
Chow cycles on the generic fiber do not necessarily extend over a one-
parameter family. So it is important to choose the right W0: we used
a special elliptic K3 with singular fibers of W0 → P1 looking like

E1

E3

E0 E2

q1

q0

q2

q3

q

F1 F2 F6

C

Figure 1. The BL K3 surface we will use
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