

The Motivic Zeta Function

Carlos Pompeyo-Gutiérrez

Universidad Juárez Autónoma de Tabasco February 2013

Arithmetic, cycles, motives and algebraic geometry

Zeta functions over finite fields

$$k = \mathbb{F}_q$$

$$k_r = \mathbb{F}_{q^r}$$

 \overline{k} an algebraic closure of k

X an algebraic variety over k

$$\overline{X} = X \times_k \overline{k}$$

Weil zeta function

The Weil zeta function is given by

$$Z(X; t) = \exp\left(\sum_{r=1}^{\infty} \#\overline{X}(k_r) \frac{t^r}{r}\right)$$
.

Weil conjectures for Z(X, t)

- Rationality. Z(X, t) is a rational function of t.
- Functional equation. Let $E = \Delta_X \cdot \Delta_X$. Then

$$Z\left(X,\frac{1}{q^n t}\right) = \pm q^{nE/2} t^E Z(X,t)$$

• Riemann hypothesis.

$$Z(X, t) = \frac{P_1(t)P_3(t)\cdots P_{2n-1}(t)}{P_0(t)P_2(t)\cdots P_{2n}(t)}$$

with $P_0(t) = 1 - t$, $P_{2n}(t) = 1 - q^n t$ and for $1 \le i \le 2n - 1$ we have

$$P_i(t) = \prod_j (1 - \alpha_{i,j}t)$$

for some algebraic integers with $|\alpha_{i,j}| = q^{i/2}$.

The Weil zeta function can be rewritten as

$$Z(X, t) = \sum_{n=0}^{\infty} \# \operatorname{Sym}^{n}(X)(k) t^{n}$$

The ring of varieties

For an arbitrary field k, $K_0(Var(k))$ is given by:

Generators: [X] isomorphism class fo the variety X.

Relations generated by: $[X \setminus Y] = [X] - [Y], Y \subseteq X$ closed $[X \times Y] = [X][Y]$

Remark

Denote
$$\mathbb{L} := [\mathbb{A}^1_k]$$
 and $1 := [pt]$. Then

$$\left[\mathbb{P}_{k}^{1}\right] = \mathbb{L} + 1$$

A multiplicative Euler characteristic with compact support is a function

$$\mu: K_0(Var(k)) \to R$$

such that

•
$$\mu[X \times Y] = \mu[X] \cdot \mu[Y],$$

•
$$\mu[X \setminus Y] = \mu[X] - \mu[Y]$$
 for $Y \subseteq X$ closed.

Kapranov's zeta function

$$Z_{\mu}(X,t) = \sum_{n=0}^{\infty} \mu[\operatorname{Sym}^{n}(X)]t^{n} \in R[[t]].$$

If $\mu = id_{K_0(Var(k))}$ then $Z_{\mu}(X, t)$ is called the universal Kapranov zeta function.

•
$$Z_{\mu}(X \coprod X', t) = Z_{\mu}(X, t) \cdot Z_{\mu}(X', t).$$

- $Z_{\mu}(X \coprod X', t) = Z_{\mu}(X, t) \cdot Z_{\mu}(X', t).$
- If k is a finite field and $\mu[X] := \#X(k)$ then $Z_{\mu}(X, t) = Z(X, t)$.

- $Z_{\mu}(X \coprod X', t) = Z_{\mu}(X, t) \cdot Z_{\mu}(X', t).$
- If k is a finite field and $\mu[X] := \#X(k)$ then $Z_{\mu}(X, t) = Z(X, t)$.
- If $k = \mathbb{C}$, $\mu = \chi_C$ then $Z_{\mu}(X, t) = (1 t)^{-\chi_C(X)}$.

- $Z_{\mu}(X \coprod X', t) = Z_{\mu}(X, t) \cdot Z_{\mu}(X', t).$
- If k is a finite field and $\mu[X] := \#X(k)$ then $Z_{\mu}(X, t) = Z(X, t)$.

• If
$$k = \mathbb{C}$$
, $\mu = \chi_C$ then $Z_{\mu}(X, t) = (1 - t)^{-\chi_C(X)}$.

If k = Q and X ∈ Obj(Var(k)) then X(F_p) is well defined for all but a finite number of primes. Therefore for p>>0 the universal Kapranov zeta function interpolates the Weil zeta functions of the reductions of X mod p.

Analogues of Weil's conjectures

If X is an smooth projective curve of genus g, then

• $Z_{\mu}(X, t)$ is a rational function of t.

Analogues of Weil's conjectures

If X is an smooth projective curve of genus g, then

• $Z_{\mu}(X, t)$ is a rational function of t.

•
$$Z_{\mu}(X,t) = \mathbb{L}^{g-1} t^{2g-2} Z_{\mu}\left(X,\frac{1}{\mathbb{L}t}\right).$$

Analogues of Weil's conjectures

If X is an smooth projective curve of genus g, then

• $Z_{\mu}(X, t)$ is a rational function of t.

•
$$Z_{\mu}(X,t) = \mathbb{L}^{g-1} t^{2g-2} Z_{\mu}\left(X,\frac{1}{\mathbb{L}t}\right).$$

• $Z_{\mu}(X,t) = \frac{P_{\mu}(X,t)}{(1-t)(1-Lt)}$ for some degree 2 polynomial P_{μ} .

Nevertheless..

Theorem (Larsen, Lunts)

If X is a product of two curves of genus g > 1 then the universal Kapranov zeta function is **not** rational.

$\mathsf{K}_0(M(k))$

The category M(k) of Chow motives over k is a monoidal category under sums:

$$(X, p) \oplus (Y, q) = (X \coprod Y, p+q)$$
.

Therefore, we can construct the Grothendieck group $K_0(M(k))$ over the monoid of isomorphism classes of motives. We will denote the class of the motive (X, p) by [X, p].

 $K_0(M(k))$ can be endowed with a ring structure with multiplication induced by the tensor product of motives.

Moreover, we have a ring morphism:

$$\eta: K_0(Var(k)) \to K_0(M(k))$$

[X] \mapsto [X, Δ_X]

The motivic zeta function is the Kapranov zeta function given by

$$Z_{mot}(X,t) := Z_{\eta}(X,t) = \sum_{n=0}^{\infty} [Sym^{n}(X)]t^{n} \in K_{0}(M(k))[[t]].$$

Remark. $Z_{mot}(M \oplus M', t) = Z_{mot}(M, t) \cdot Z_{mot}(M', t)$.

Finite dimensionality

We say a motive $M \in M(k)$ is finitely dimensional if it can be decomposed:

$$M \cong M_+ \oplus M_-$$

and there is a positive integer N such that

 $\Lambda^N M_+ = 0$

$$\operatorname{Sym}^N M_- = 0 \ .$$

Kimura-O'Sullivan conjecture

Every motive with \mathbb{Q} coefficients is finitely dimensional.

Consequences

• (Andre) Z_{mot} is rational.

- (Andre) Z_{mot} is rational.
- (Kahn) We have a functional equation

$$Z_{mot}(M^{\vee}, t^{-1}) = (-1)^{\chi_+(M)} \cdot \det(M) \cdot t^{\chi_-(M)} \cdot Z_{mot}(M, t)$$
.

where det(M) = $\Lambda^{\chi_+}M_+ \otimes (\operatorname{Sym}^{-\chi_-}M_-)^{-1}$.

Chow-Künneth decomposition

Definition

Let $X \in \operatorname{Obj}(Var(k))$ with $\dim X = d$. We say that X has a Chow-Künneth decomposition if we can find cycle classes $\pi_0(X), \ldots, \pi_{2d}(X) \in CH^d(X \times X, \mathbb{Q})$ such that

a)
$$\pi_i(X) \circ \pi_j(X) = \delta_{i,j}\pi_i(X).$$

b) $\Delta_X = \sum_{i=1}^{2d} \pi_i(X).$

 $\overline{i=0}$

c) (over
$$\overline{k}$$
) π_i modulo (co)homological equivalence
(for example, in étale cohomology) is the usual
Künneth component $\Delta_X(2d-i,i)$.

If we define $h^i(X) := (X, \pi_i(X))$, then we will say that

$$h(X) = \bigoplus_{i=0}^{2d} h^i(X)$$

(or equivalently, the collection $\pi_0(X), \ldots, \pi_{2d}(X)$) is a Chow-Künneth (CK) decomposition for X.

Murre's conjectures.

A) Every smooth projective *d* dimensional variety *X* has a Chow-Künneth decomposition:

$$h(X) \cong \bigoplus_{i=0}^{2d} (X, \pi_i(X))$$

B) For each j, π₀(X),...,π_{j-1}(X), π_{2j+1}(X),...,π_{2d}(X) act as zero on CH^j(X, Q).
C) If F^vCH^j(X) = ∩ i=0 cH^j(x) ∈ CH^j(X) then this descending filtration is independent of the choice of the π'_is.
D) F¹CH^j(X) = CH^j(X)_{hom}.

Theorem (Jannsen)

Murre's conjectures are equivalent to Bloch-Beilinson conjecture on a filtration for Chow groups. Moreover both filtrations coincide.

• A)-D) are true for curves and surfaces.

- A)-D) are true for curves and surfaces.
- A), B) and D) are true for threefolds of type $X = C_1 \times C_2 \times C_3$ with C_i curve and of type $X = S \times C$ with S a surface and C a curve.

- A)-D) are true for curves and surfaces.
- A), B) and D) are true for threefolds of type $X = C_1 \times C_2 \times C_3$ with C_i curve and of type $X = S \times C$ with S a surface and C a curve.
- For abelian varieties A) is true and part of B) is true. If B) is true then C) is also valid.

- A)-D) are true for curves and surfaces.
- A), B) and D) are true for threefolds of type $X = C_1 \times C_2 \times C_3$ with C_i curve and of type $X = S \times C$ with S a surface and C a curve.
- For abelian varieties A) is true and part of B) is true. If B) is true then C) is also valid.
- For uniruled threefolds A) and B) are true.

- A)-D) are true for curves and surfaces.
- A), B) and D) are true for threefolds of type $X = C_1 \times C_2 \times C_3$ with C_i curve and of type $X = S \times C$ with S a surface and C a curve.
- For abelian varieties A) is true and part of B) is true. If B) is true then C) is also valid.
- For uniruled threefolds A) and B) are true.
- If $\pi: Y \to X$ is a fibration locally trivial in the Zariski topology, and with fibers having a Bruhat decomposition then A) and B) are true.

Relations between all of these concepts

Thank You