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Abstract. These lectures notes cover the following topics: (1) Motivation: total positivity (2)
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1. Total positivity

For n ∈ Z>0 let [n] := {1, . . . , n} and
([n]
k

)
be the set of k-element subsets of [n], k ≤ n.

Let M = (mij)i,j∈[n] ∈ Rn×n be a matrix and let I, J ∈
([n]
k

)
. Then

∆I,J(M) := det((mi,j)i∈I,j∈J)
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Figure 1. A planar network of order 3.

is called a minor of M . If all its minors are positive (resp. non negative) real numbers M is
called totally positive (resp. non negative) or TP (resp. TNN) for short.

Example 1.1. Take M =

(
a b
c d

)
. Then M is totally positive if and only if a, b, c, d and

∆ = ad−bc ∈ R>0. Observe that d = 1
a(∆+bc). Hence, it suffices to verify that a, b, c,∆ ∈ R>0.

The set {a, b, c,∆} is a positivity test.

Question:

(i) How can we efficiently test for total positivity?
(ii) How can we characterize totally positive matrices?

1.1. Planar networks. A planar network (G,ω) of order n consists of a planar directed cycle
free graph G with 2n vertices of valency one, of which n are sources and n are sinks; and a
vector ω assigning scalar weights ω(e) to edges e of G.

The weight matrix of a planar network (G,ω) of order n is an n × n matrix whose (i, j)th

entry is the sum of weights of all paths from i to j in G.

Exercise 1. Complete the weight matrix of the diagram depicted in Figure 1.1
(
d dh dhi
∗ ∗ ∗
∗ ∗ ∗

)
Lemma 1.2 (Lindström). Let (G,ω) be a planar network of order n and M its weight matrix.
The minor ∆I,J(M) equals the sum of weights of collections of vertex disjoint paths connect
source vertices in I with sink vertices in J .

Example 1.3. In Figure 1.1 we have ∆23,23(M) = bcdegh+ bdfh+ fe.

The following graph is denoted G0:

Its colored edges are called essential. A weightning ω of G0 is called essential if ω(e) 6= 0 for at
least one essential edge e and ω(e) = 1 for all non essential edges. It is called positive if all edge
weights are positive.

Theorem 1.4 (Whitney, Fomin–Zelevinsky). There is a bijection between the set of essential
positive weightnings of G0 and the set of all totally positive n× n matrices.

1.2. Grassmannians. The Grassmannian as a set is denfined for d ≤ n integers as

Grd,n := {V ⊂ Kn : dimK V = d}.

its elements can be represented by matrices:

(i) fix a basis e1, . . . , en for Kn;
(ii) fix a basis v1, . . . , vd ∈ Kn for V ∈ Grd,n;
(iii) express each vi =

∑n
j=imijej and define MV = (mij)i∈[n],j∈[d]
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Observe, MV is unique up to base change.

Given V ∈ Grd,n and I ∈
([n]
d

)
define the Plücker coordinate

pI(V ) := ∆[d],I(MV ).

If w1, . . . , wd is another basis for V yielding a coefficient matrix M ′V then ∃ A ∈ GLd(K) such
that AMV = M ′V and

∆[d],I(M
′
V ) = ∆[d],I(AMV ) = det(A)∆[d],I(MV ).

In particular, we deduce that Plücker coordinates are unique up to common rescaling. This
observation motivates the following result:

Theorem 1.5. The map V 7→ [pI(V ) : I ∈
([n]
d

)
] defines an embedding Grd,n ↪→ P(nd)−1 known

the Plücker embedding. This way Grd,n obtains the structure of a projective variety.

The proof may be found, for example in [LB15, Theorem 5.2.1].
Observe that by definition of the Plücker coordinates for σ ∈ Sn we have

pσ(i1),...,σ(id) = (−1)`(σ)pi1,...,id .

The Grassmannian in P(nd)−1 is cut out by Plücker relations. They are defined for I =
{i1, . . . , id−1} and J = {j1, . . . , jd+1} in [n] as

RI,J := pi1,...,id−1,j1pj2,...,jd+1
−

∑
2≤k≤d+1

pi1,...,id−1,jkpj1,...,ĵk,...,jd+1
.

The Plücker ideal is the ideal generated by all Plücker relations, that is Id,n := 〈RI,J : I ∈( [n]
d−1

)
, J ∈

( [n]
d+1

)
〉. As a consequence of the proof of Theorem 1.5 the homogeneous coordinate

ring of the Grassmannian with respect to the Plücker embedding, denoted K[Grd,n], is of form:

K[Grd,n] = K[pI : I ∈
([n]
d

)
]/Id,n.

Exercise 2. Verify that for d = 2 all Plücker relations are of form pijpkl − pikpjl + pilpjk where
1 ≤ i < j < k < l ≤ n

The Grassmannian admitds a stratification determined by combinatorial objects called ma-
troids.

Definition 1.6. A matroid is a pair (E,B) where E is a finite set and B 6= ∅ a collection of
subsets of E called bases such that for all distinct B1, B2 ∈ B and b1 ∈ B1 \ B2 there exists
b2 ∈ B2 \B1 such that (B1 \ {b1}) ∪ {b2} is a basis.

A point V ∈ Grd,n determines a matroid, denoted by M(V ), on [n] with bases
{
I∈([n]

d ): pI(V ) 6=0
}
.

Matroids of this form are called realizable (over K).

Example 1.7. Consider M =
(

1 0 −3 −6
0 1 1 2

)
∈ Grd,n then p12(M) = p13(M) = 1, p14(M) = 2,

p23(M) = 3, p24(M) = 6, and p34 = 0. Hence,

M(M) = ([4], {12, 13, 14, 23, 24}).

This way we obtain the matroid (or Gelfand–Serganova) stratification of the Grassmannian

Grd,n =
⋃

M⊆([n]
d ){V ∈ Grd,n : M(V ) = M},

see [GGMS87]. The topology of strata can be as complicated as any projective variety. Surpris-
ingly, this changes drastically if instead of focussing on the entire complex Grassmannian we
focus our attention on the positive part of the real Grassmannian. The study of this object was
pioneered by Postnikov.
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Figure 2. A plabic graph with perfect orientation and labelling of its faces.

1.3. Totally positive Grassmannians and positroids. For this section let K = R. Define
the totally positive (resp. totally non negative) Grassmannian as

Gr>0
d,n := {V ∈ Grd,n : pI(V ) > 0, I ∈ ([n]

d )},

Gr≥0
d,n := {V ∈ Grd,n : pI(V ) ≥ 0, I ∈ ([n]

d )}.
Recall that Plücker coordinates are defined up to overall scaling. In particular, the condition

pI(V ) > 0 for V ∈ Grd,n has to be understood as there exists a matrix MV representing V such
that pI(MV ) > 0. From now on we will use this abuse of notation.

Example 1.8. M =
(

1 0 −3 −6
0 1 1 2

)
∈ Gr≥0

d,n but A 6∈ Gr>0
d,n as p34(A) = 0.

Theorem 1.9 (Postnikov). For M ⊆
([n]
d

)
let SM := {V ∈ Gr≥0

d,n : pI(V ) > 0 ⇔ I ∈M}. Then

Gr≥0
d,n =

⋃
SM

is a cell decomposition (in fact, a regular CW decomposition), i.e. each SM is an open ball.

If SM 6= 0 then M is called a positroid and SM a positroid cell.

1.4. Plabic graphs.

Definition 1.10. A plabic graph G is a planar bicolored graph embedded in a disk with (non
colored) vertices in the boundary of the disk labelled 1, . . . , n in clockwise order, such that:

(i) each boundary vertex is incident to a single edge
(ii) each internal vertex is colored black or white
(iii) all vertices are connected to the boundary by some path
(iv) G has no internal leaves

We denote by F (G) the set of faces of G. Faces adjacent to the boundary are called boundary
faces, all other faces are called internal.

Definition 1.11. A perfect orientation of a plabic graph G is an orientation of its edges satis-
fying that every black vertex has a unique outgoing arrow and every white vertex has a unique
incoming arrow.

A plabic graph G is called of type (k,n) if it has n boundary vertices and

k − (n− k) =
∑

v vertex

col(v)(deg(v)− 2),

where col(v) = 1 if v is black and −1 if v is white. Denote by IO the set of boundary vertices
that are sources of a given perfect orientation O.

Exercise 3. Let G be perfect orientable of type (k, n). Show that |IO| = k for all perfect
orientations O.

We define the matroid of G as

M(G) := {IO ⊂ [n] : O perfect orientation of G}

Example 1.12. The source set of the perfect orientation depicted in Figure 1.4 is IO = {1, 2}.
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Let G be a plabic graph of type (k, n) with perfect orientation O and let y = (yf )f∈F (G) be

an assignment of weights yf ∈ RF (G)
>0 to faces f ∈ F (G) such that

∏
f∈F (G) yf = 1. The triple

(G,O, y) is called a plabic network.

For every pair of boundary vertices (i, j) we define the following number counting weighted
paths from i to j in (G,O, y):

Mij :=
∑

P :bi→bj

(−1)wind(P )
∏

f to the left of P

yf(1)

with wind(P ) counting the number of 360° turns of P .

Exercise 4. Consider the plabic network depicted in Figure 1.4. We have M14 = y1y2y3 +
y1y2y3y6. Compute the missing Mij for i, j ∈ [5].

Theorem 1.13 (Prop. 11.7, Cor. 16.7 in Postnikov). The assignment

(G,O, y) 7→ (Mij)i∈[k],j∈[n]

defines the boundary measurement map

Meas : {plabic networks of type (k, n)} → Gr≥0
k,n .

Restricting to the set of all plabic networks with fixed underlying plabic graph G yields MeasG :

RF (G)−1
>0 → Gr≥0

k,n with

MeasG(RF (G)−1
>0 ) = SM(G).

Plabic graphs admit certain combinatorial operations called moves. They are determined as
follows.

Definition 1.14. Two plabic graphs G,G′ are called (move) equivalent if they are related by
a sequence of moves (M1),(M2),(M3). If the reduction (R) can be applied to G′, it is called
reducible. A plabic graph is called reduced if there are no reducible plabic graphs in its move
equivalence class.

Exercise 5. Show that using (M1)-(M3) a plabic graph G can be transformed to either a
trivalent or a bipartite plabic graph G′.

Theorem 1.15 (Theorem 12.7 in [Pos06]). Let G be a reduced plabic graph. Then G is perfectly

orientable and the boundary measurement map MeasG : RF (G)−1
>0 → SM(G) gives a subtraction-

free rational parametrization of the corresponding totally nonnegative Grassmann cell SM(G).
Moreover,

(i) dimSM(G) = F (G)− 1
(ii) for any positroid cell S there exists G such that S = SM(G)

(iii) for any two different parametrizations MeasG and MeasG′ of the same cell, the plabic
graphs G and G′ are related by moves (M1) - (M3).
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2. Cluster algebras

2.1. Motivation: total positivity. We start with a motivational example of the totally posi-
tive Grassmannian Gr2,n. Let M =

( a1 a2 ... an
b1 b2 ... bn

)
be a 2×n matrix with real entries representing

a point in Gr2,n. Then M is contained in the totally positive Grassmannian Gr>0
2,n if all its

maximal minors (Plücker coordinates) satisfy

pij(M) := det
(
ai aj
bi bj

)
= aibj − ajbi > 0 for all i < j.

Example 2.1. Consider M =
(

1 0 −3 −5
0 2 1 1

)
∈ R2×4. We compute its maximal minors

p12 = det ( 1 0
0 2 ) = 2, p13 = det

(
1 −3
0 1

)
= 1, p14 = det

(
1 −5
0 1

)
= 1,

p23 = det
(

0 −3
2 1

)
= 6, p24 = det

(
0 −5
2 1

)
= 10, p34 = det

(−3 −5
1 1

)
= 2.

In particular, M ∈ Gr>0
2,4. We observe that the Plücker relation holds p12p34+p14p23 = 2·2+1·6 =

10 = p13p24.

Definition 2.2. A set of Plücker coordinates ∆ for Gr2,n is called a positivity test if given any
matrix M ∈ Gr2,n we have that pij(M) > 0 for all pij ∈ ∆ implies M ∈ Gr>0

2,4.
A positivity test is called efficient if it is of minimal cardinality.

Example 2.3. In the case of Gr2,4 if p12, p13, p14, p23, p34 > 0 then

p24 =
p12p34 + p14p23

p13
> 0.

Hence, the set {p13, p12, p14, p23, p34} is a positivity test. The same is true for
{p24, p12, p14, p23, p34} and we can visualize the two as the arcs and boundary edges of a tri-
angulation of a quadrilateral

1 2

34

p12

p23

p34

p14
p13

p12p34+p14p23
p13

= p24

flip

1 2

34

p12

p23

p34

p14
p24

(2)

The operation that exchanges one triangulation for another by changing the diagonal is called
a flip.

The above example can be extended to Gr2,n: there is a bijection between efficient positivity
test and triangulations of an n-gon. Hence, to determine whether a given matrix represents a
point in Gr>0

2,n or not it suffices to check a set of 2(n−2)+1 = dim Gr2,n+1 Plücker coordinates
for positivity.

The triangulations of an n-gon are organized in the associahedron, also called Stasheff polytope:
the vertices of this polytope are in correspondence with triangulations of the n-gon, two vertices
are connected by an edge if the two triangulations are related by a flip.

Example 2.4. For n = 5 the associahedron is depicted below:
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The positivity tests associated to each triangulation can be read off the labels of its edges
(diagonals and boundary edges). For example, in case of the triangulation at the top the
positivity test is {p13, p14, p12, p15, p23, p34, p45}.

2.2. Quivers and mutation. A quiver Q is a directed graph, consisting of a finite set of
vertices and arrows between them. Technical assumption: for us, a quiver Q does not contain
any loops (arrows starting and ending at the same vertex) or 2-cycles (directed cycles consisting
of two arrows).

We label the vertices 1, . . . ,m and divide the vertex set {1, . . . ,m + n} into two subsets:
{1, . . . , n} and {n+ 1, . . . , n+m} for some n ≤ m. The vertices 1, . . . , n are called mutable
while the vertices n+ 1, . . . , n+m are called frozen. When visualizing a quiver, frozen vertices
are depicted in a box, e.g. 1⇒ 2→ 3 .

Definition 2.5 (Quiver mutation). Given a quiver Q and a mutable vertex k, the mutation in
direction k µk(Q) is a quiver obtained from Q in three steps:

(i) for every path i→ k → j add an arrow i→ j;
(ii) invert every arrow incident to k;
(iii) remove a maximal set of disjoint 2-cycles and all arrows between frozen vertices that

have been created as a result of steps (i) and (ii).

Example 2.6. The mutation in direction 2 of the quiver 1⇒ 2→ 3 is

2

�� ��
1 //// 3

^^

Exercise 6. (i) Show that quiver mutation is an involution, that is µk(µk(Q)) = Q.
(ii) Go to Bernhard Keller’s website 1 and explore the mutation of the quivers

Q1 : 4 2oooo

��

5

1

OO @@

// 3

OO
and Q2 : 2

�� ��
1

@@@@

3oooo

What do you observe about the quivers you obtain as results of iterated mutations?

A quiver Q with n mutable vertices and all the quivers obtained from Q by iterated mutation
are in bijection with the vertices of the n-regular tree Tn: it is an infinite graph whose vertices
are all adjacent to exactly n edges labelled 1, . . . , n at every vertex. The bijection between the
mutation class of Q and the vertices of Tn is obtained as follows: place Q at a vertex of Tn,
then for every k ∈ {1, . . . , n} there is a unique vertex connected to Q via an edge labelled k.

1https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/

https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/
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Associate the quiver µk(Q) to this vertex. Now iterate this process with each of the quivers
µ1(Q), . . . , µn(Q). Notice that this is well defined as quiver mutation is an involution.

Q
• •1 •

•
2 •3

•
4

•
5

•

•

2

•
•3

•
•

4•

•
5
•• 1

•

•

3

•
•

4•

•
5
•• 1 •

•
2

•

•

4

•

•
5
•• 1 •

•
2

•
•3

•

•

5

•• 1 •

•
2

•
•3

•
•

4

Figure 3. The 5-regular tree depicted until depth four.

2.3. Seeds and mutation. From now on, we fix F to be a field of rational functions over Q of
transcendence degree m. It is called the ambient field and we will later define cluster algebras
as subalgebras of this field.

Definition 2.7. A seed s is a pair (x, Q), where x = (x1, . . . , xn, xn+1, . . . , xn+m) is a collection
of variables satisfying Q(x1, . . . , xm) ∼= F called a cluster and Q is a quiver with n mutable and
m frozen vertices.

Definition 2.8 (Seed mutation). Given a seed s = (x, Q) and a mutable vertex k of Q, the
mutation in direction k of s, denoted µk(s), is the pair (µk(x), µk(Q)), where µk(x) = x\{xk}∪
{x′k} with x′k determined by the exchange relation

xkx
′
k :=

∏
i→k∈Q

xi +
∏

k→j∈Q
xj .(3)

If the set of vertices {i ∈ Q : ∃i→ k ∈ Q} is empty, the product is set to 1 (similar for vertices
j with arrows k → j).

Two seeds are called mutation equivalent is there exists a finite sequence of mutations from
one to the other. We denote this as (Q,x) ∼ (Q′,x′).

Notice that the products in (3) are indexed by arrows in Q. In particular, if there are
multiple arrows say from a vertex i to the mutation vertex k then the variable xi appears with
the exponent equal to the number of arrows i→ k on the right hand side.

Exercise 7. Verify that seed mutation is an involution: µk(µk(s)) = s.

Example 2.9. Consider the quiver 1 → 2 without frozen vertices. To simplify the notation of
a seed ({x1, x2}, 1 → 2) we write x1 → x2. We explore the mutation class of the seed x1 → x2

iterating mutations at the vertices 1 and 2, starting with mutation at 1:
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x1 → x2

1

1+x2
x1
← x2

2

1+x2
x1
→ 1+x1+x2

x1x2

1

1+x1
x2
← 1+x1+x2

x1x2

2

1+x1
x2
→ x1

1

x2 ← x1

∼=

For example, after performing the mutation in direction 1 at 1+x2
x1
→ 1+x1+x2

x1x2
the new cluster

variable is obtained from the exchange relation (3) by(
1 +

1 + x1 + x2

x1x2

)
÷ 1 + x2

x1
=
x1x2 + 1 + x1 + x2

x2(1 + x2)
=

1 + x1

x2

After five mutations we arrive at the seed x2 ← x1. Up to a permutation of the vertices this
seed coincides with x1 → x2 and the mutation pattern will repeat itself after this point. In
particular, we have discovered a periodic mutation pattern.

2.4. Cluster algebra. If s = (x, Q) is a seed with x = (x1, . . . , xn+m) and let s′ =
(x′, Q′) be a seed obtained from s by a sequence of mutations, then the cluster x′ =
(x′1, . . . , x

′
n, xn+1, . . . , xn+m) satisfies

Q(x′1, . . . , x
′
n, xn+1, . . . , xn+m) = F.

Definition 2.10. The cluster algebra defined by the initial quiver Q is the F-subalgebra

AQ := 〈
⋃

(x′,Q′)∼(x,Q) x′〉 ⊂ F.

A first fundamental result is the following.

Theorem 2.11 ([FZ02]). The cluster algebra AQ only depends on the mutation class of Q.

Example 2.12. Continuing Example 2.9, we find the associated cluster algebra AQ =〈
x1, x2,

1+x2
x1

, 1+x1+x2
x1x2

, 1+x1
x2

〉
⊂ Q(x1, x2).

To every (mutable) cluster variable Fomin and Zelevisnky associate its ŷ-variable defined as

ŷk =

∏
i→k∈Q xi∏
k→j∈Q xk

.(4)

Notice that if x′k = µk(xk) then the ŷ-variable associated with x′k satisfies

ŷ′k = ŷ−1
k .(5)

More generally, the tuple (ŷ1, . . . , ŷn) associated with a seed (x, Q) is an example of a Y -seed,
(also called coefficients) introduced in [FZ07]. We revisit this notion in Example 2.15. It also
plays an important role in the application of cluter algebras to scattering amplitudes in section
3.3.

We close this subsection with the definition of a cluster subalgebra: a subalgebra that is also a
cluster algebra which has a compatible cluster structure. The following definition may be found
in the preliminary version of a text book authored by Fomin, Williams and Zelevinsky [SF].

Definition 2.13. Let (Q, (xi : i ∈ Q0)) be a seed, and let I ∪ J be a partition of the vertex set
of Q such that there are no arrows between mutable vertices in I and vertices in J . Let Q′ be
the quiver obtained from Q by deleting all vertices in J (i.e. the vertex set of Q′ is I). Then
the seed (Q′, (xi : i ∈ I)) is called a restricted seed of (Q, (xi : i ∈ Q0)).

Passing to a restricted seed commutes with mutation, hence yields a seed subpattern and
induces a cluster subalgebra.
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2.5. From triangulations to quivers. Recall the Grassmannian Gr2,n with its
(
n
2

)
Plücker

coordinates pij and the correspondence{
efficient positivity
tests for Gr2(Cn)

}
1−1←→

{
triangulations
of an n-gon

}
.

Definition 2.14. Given a triangulation T of the n-gon we define the associated quiver QT as
follows:

(i) introduce a mutable vertex of QT for every diagonal of T ;
(ii) introduce a frozen vertex of QT for every boundary edge;
(iii) add arrows between the vertices corresponding to each triangle inside T in clockwise

order, see Figure 2.5;
(iv) eliminate arrows between frozen vertices.

Further we define the seed associated with T as the pair (xT , QT ) where

xT = (pij : ij ∈ T ),

where ij ∈ T runs over all diagonal and boundary edges of T .

Step (ii) of the rule for adding arrows to QT is depicted in Figure 2.5.

Figure 4. How to add arrows to QT in between vertices corresponding to a
single triangle in T .

Example 2.15. Consider a triangulation T containing a quadrilateral with vertices i < j <
k < l and diagonal jl. So xT contains the Plücker coordinates pij , pjk, pkl, pil and pik. Then the
ŷ-coordinate associated to pik is

ŷik =
pijpkl
pjkpil

.

Example 2.16. In Figure 2.5 we depict a triangulation T of the pentagon and its associated
quiver as well as the triangulation T ′ obtained by performing a flip at the diagonal 13. The
mutation at the vertex of QT corresponding to the diagonal 13 results in the quiver associated
to the triangulation T ′, so that quiver mutation and flip are compatible.

T

1

2

3 4

5

flip13

flip13(T )

1

2

3 4

5

1

2

3 4

5 QT

µ13

Qflip13(T )

1

2

3 4

5 = µ13(QT )

Figure 5. A triangulation of the pentagon, its associated quiver, a flip and the
mutated quiver.

The above example hints at the following bijection{
triangulations T

of an n-gon
, f lip

}
1−1←→

{
quivers of the cluster

algebra AQT

, mutation

}
.
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Moreover, efficient positivity tests for Gr2,n are in bijection with clusters of the cluster algebra
AQT

. The corresponding cluster algebra is

AQT
= Q[pij : 1 ≤ i < j ≤ n]/Plücker relations.

2.6. Laurent phenomenon and finite type classification. We very briefly summarize some
fundamental results about cluster algebras. In the following let x1, . . . , xn denote the mutable
variables of an initial seed and let xn+1, . . . , xm denote the frozen variables.

Theorem 2.17 (Laurent Phenomenon [FZ02]). All cluster variables are Laurent polynomials
in the cluster variables of the initial seed with integer coefficients. More precisely, they are
contained in

Z[x±1 , . . . , x
±
n , xn+1, . . . , xn+m].

This result is extremely powerful and opens up the way to a geometric viewpoint on cluster
algebras that we will see more about in the following section. However, the Laurent phenomenon
is insufficient for the applications in total positivity, as those need more control about the signs of
the coefficients appearing in the Laurent expressions. In fact, Fomin and Zelevisnky conjectured:

Theorem 2.18 (Positivity conjecture in [FZ02]). All cluster variables are contained in
N[x±1 , . . . , x

±
n , xn+1, . . . , xn+m].

The positivity conjecture has gained a lot of interest due to its importance in total positiv-
ity and was approached successfully in varying generality by numerous mathematicians using
representation theoretic techniques. In our setting (where a cluster algebra is associated to a
quiver) it was proven by Lee and Schiffler.

Theorem 2.19 ([?]). The positivity conjecture is true.

There is a more general notion of cluster algebra associated with a skew-symmetrizable matrix.
The proof in all generality however was obtained using techniques from birational geometry, more
precisely log Calabi–Yau varieties, inspired by mirror symmetry, [GHKK18].

In Example 2.9 we observed a periodicity in the mutation pattern. As a result this cluster
algebra only has a finite number of clusters, namely five, see Example 2.12. More generally, we
call a cluster algebra of finite type if its set of cluster variables is finite, or equivalently, if its set
of seeds is finite. Fomin and Zelevinsky classified cluster algebras of finite type as follows.

Theorem 2.20 (Fomin–Zelevinsky 2003). A cluster algebra AQ is of finite type if and only if
(the mutable part of) Q is mutation equivalent to an orientation of a type ADE Dynkin diagram:

An(n ≥ 1) : • • · · · •

Dn(n ≥ 4) :

•
• • · · · •

•

E6 : •

• • • • •

E7 : •

• • • • • •

E8 : •

• • • • • • •

2.7. Quivers from plabic graphs. In section 1 we have seen the totally positive Grassmannian
and how reduced plabic graphs yield parametrizations of its positroid cells. In the case of the
Grassmannian Gr2,n we have seen how triangulations of the n-gon and bijectively cluster of
the associated cluster algebra provide positivity tests. It is therefore a natual question to ask
whether the observations made for Gr2,n extend to arbitrary Grassmannians. In this section we
summarize some of the results based on [Sco06] and [Pos06].
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Recall from Exercise 5 that every reduced plabic graph may be transformed into either a
trivalent or a bipartite plabic graph.

Definition 2.21. Let G be a bipartite reduced plabic graph. We define its associated quiver
QG as follows:

• mutable vertices of QG correspond to internal faces of G
• frozen vertices of QG correspond to boundary faces of G
• arrows of QG are perpendicular to internal edges of G and oriented so that the white

vertex is on its left

Figure 6. A reduced plabic graph of type (3, 5) and its associated quiver.

The aim of this section is to associate a cluster algebra to a plabic graph. To define the cluster
we need another combinatorial tool introduced by Postnikov, called trips, building on previous
work of Kenyon who called it zig-zag paths [Ken04].

Definition 2.22. Let G be a reduced plabic graph of type (d, n). For each i ∈ [n] we define
the trip Ti as the oriented path starting at the boundary vertex i and following the rules of the
road

• turning maximally right at a black vertex
• turning maximally left at a white vertex

until it arrives at another boundary vertex j =: σG(i). The resulting map σG : [n] → [n] is in
fact a permutation called the trip permutation of G.

The trip permutation is an invariant of the move equivalence class of a plabic graph [Pos06,
Theorem 13.4] Notice that each trip divides the disk into two parts: left and right with respect
to the orientation of Ti.

Lemma 1 ([Pos06]). Placing an i in every face of G to the left of Ti for every 1 ≤ i ≤ n yields
a face labelling of G so that every face contains a d-element subset of [n].

Define the permutation σd,n := [n− d+ 1, . . . , n, 1, . . . , n− d]. Given a reduced plabic graph
of type (d, n) with trip permutation σG = σd,n we define a cluster

xG := (pI : I is the face label of some face in G).

Theorem 2.23 ([Sco06]). Given a reduced plabic graph G with trip permutation σd,n and
associated quiver QG and cluster xG. Then (QG,xG) is a seed for the cluster algebra Ad,n which
is isomorphic to Q[Grd,n].

A seed (x, Q) satisfying that x consists only of Plücker coordinates is called a Plücker seed.
There is a bijectionreduced plabic graphs

G with σG = σk,n,
squaremoves

 1−1←→
{

Plücker seeds (Q,x) in Ak,n,
mutations at 4-valent vertices

}
Scott further established the following finite type classification for Grassmannian cluster al-

gebras.

Theorem 1 ([Sco06]). The only finite type Grassmannian cluster algebras (assuming k ≤ n)
are the following:

(i) Gr2,n is of cluster type An−3,
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(ii) Gr3,6 is of cluster type D4,
(iii) Gr3,7 is of cluster type E6,
(iv) Gr3,8 is of cluster type E8.

All other Grassmannian cluster algebras are of infinite cluster type.

2.8. Cluster varieties. Shortly after cluster algebras were introduced by Fomin and Zelevinsky,
Fock and Goncharov introduced the geometric analogue, cluster varieties, algebraic schemes that
generalize algebraic tori [FG06, FG09]. Much of the geometric theory of cluster varieties is similar
to toric geometry, for example cluster varieties come in dual pairs, and can be compactified by
certain generliazations of polytopes and fans [GHKK18, CMNC22]. In this section we very
briefly summarise the definition of type A cluster varieties and their tropical geometry.

Definition 2.24 (§1.2 in [FG09]). Given a seed s = (Q,x) define the seed torus Ts := (C∗)n+m
x =

((C∗)n+m,x) as the algebraic torus (C∗)n+m endowed with coordinates x = (x1, . . . , xn+m). The
A-cluster variety associated to given seed s0 = (Q0,x0) is defined as the scheme glued from seed
tori

As0 :=
⋃

s mutation equivalent to s0

Ts

subject to the transition functions induced by the mutation rule (3) , that is, for s, s′ two seeds
related by mutation in direction k we have µs,s′ : Ts 99K Ts′

(t1, . . . , tn+1) 7→

t1, . . . , 1

tk

 ∏
i→k in Q

ti +
∏

k→j in Q

tj

 , . . . , tn+m

 .(6)

The seed tori are glued along the biggest open subset where the transition functions are well
defined.

Example 2.25. The affine cone of the Grassmannian Gr2(C4), denoted by G̃r2(C4) contains
the cluster variety

(C∗)5
p13,p12,p23,p34,p14 ∪ (C∗)5

p24,p12,p23,p34,p14

with gluing given by

(t13, t12, t23, t34, t14) 7→
(
t12t34 + t14t23

t13
, t12, t23, t34, t14

)
.

2.9. Tropicalization. Observe that the transition fundtions (6) does not involve any substrac-
tion. In particular, the transition functions are well defined over a semifield : a set P equipped
with the operations of addition and multiplication, so that addition is commutative and asso-
ciative, multiplication makes P an abelian group, and they are compatible in the sense that
(a + b)c = ac + bc for a, b, c ∈ P . Examples include R>0 or Zt = (Z,min,+). Denote by Ts(P )
the P -points of Ts for any semifield P . For example, we have an identification as sets

Ts(ZT )≡Ns ⊗Z (Zt)×,

with Ns denoting the cocharacter lattice of Ts and (ZT )× denoting the multiplicative group of
Zt, see e.g. [GHKK18, §2]. Let s, s′ be two seeds related by mutation in direction k. Then the
transition functions (6) over ZT are piecewise linear maps µTs,s′ : Ns → Ns′

(a1, . . . , an) 7→

a1, . . . ,−ak + min

∑
i→k

ai,
∑
k→j

aj

 , . . . , an

(7)

Definition 2.26. The Fock-Goncharov tropicalization (or FG tropicalization, for short) of the
cluster variety As is As(ZT ) :=

⋃
s′∼sNs′ glued along the tropical transition functions of form

µTs,s′ as given in (7).

Given a mutation sequence s
k1→ s1 → · · · → sr−1

kr→ s′ denote by µTs,s′ the composition of

tropical transition functions µTs,s1 ◦ · · · ◦ µ
T
sr−1,s′

. A point in the FG tropicalization As(ZT ) is
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therefore an equivalence class of points (as′ ∈ Ns′)s∼s′ , one for each seed s′ mutation equivalent
to s such that the maps µTs,s′ map one representative to another.

The following construction may be found in [GHKK18, §2]: denote by N+
s the positive orthant

in Ns ⊗Z R. Each µTs,s′ yields a fan (of linear domains) in Ns′ ⊗Z R and the pullback of N+
s′ is a

cone in this fan.

Definition 2.27 (Definition 2.9 in [GHKK18]). For a given seed s define the fan Σs ⊂ Ns ⊗ R
as the union of the full dimensional cones (µTs,s′)

−1(N+
s′ ) for all s′ mutation equivalent t s. This

fan is called the (Fock-Goncharov) cluster complex.

Moreover, the cluster complex is contained in the fan obtained as the common refinement of
all the fans that are domains of linearity of all the tropical transition functions. Notice that, if s
does not determine a cluster algebra of finite type, then the cluster complex is infinite. In fact,
Σs is a complete fan if and only if s is of finte type.

Example 2.28. In Example 2.25 we have seen the cluster variety inside G̃r2(C4), namely two
copies of (C∗)5 with two sets of coordinates given by the two seeds as depicted in (2). The
cluster complex is a union of two cones determined by the domains of linearity of the tropical
transition function

(a13, a12, a14, a23, a34) 7→ (−a13 + min (a12 + a34, a14 + a23) , a12, a14, a23, a34) .

So the cluster complex consists of the two cones

σs = {(u13, u12, u14, u23, u34) ∈ R5 : u12 + u34 ≥ u14 + u23}
and

σs′ = {(u13, u12, u14, u23, u34) ∈ R5 : u12 + u34 ≤ u14 + u23}

Let A be a finite type cluster algebra of rank d and x1, . . . , xN all its cluster variables, so that

A ∼= Z[x1, . . . , xN ]/I(8)

There is an interesting connection between the positive part of the tropicalization of the ideal I
and the FG tropicalization of the cluster variety A. Before stating the theorem it is necessary to
recall some notions regarding the tropicalization of an ideal. For more details consider [MS15].

Definition 2.29. Let f =
∑

m∈ZN
≥0
amxm ∈ k[x1, . . . , xN ] be a polynomial. The for w ∈ RN we

define its initial form with respect to w as

inw(f) =
∑

n∈ZN
≥0:n=min(m·w:m∈inZN

≥0 with am 6=0)

anx
n.

For an ideal I ⊂ k[x1, . . . , xN ] its initial ideal with respect to w is defined as inw(I) = 〈inw(f) :
f ∈ I〉.

Then the Gröbner fan of I, defined in [MR88], is a full dimensional fan in RN whose cones
are determined by inital ideals of I, that is by the equivalence relation

w ∼ v if and only if inw(I) = inv(I).

Maximal cones in the Gröbner fan have monomial initial ideals associated to them. Monomial
initial ideals can equivalently (and more classically) be obtained by monomial orders instead
of weight vectors. For a generic weight vector w the initial ideal is monomial. There is an
interesting non generic locus in the Gröbner fan, it is called the tropicalization of I, denoted by
T(I), and it is the subfan consisting of only those cones with initial ideals that do not contain
any monomials.

If the ideal I is defined over the real numbers positivity questions can also be addressed in
the tropicalization.

Definition 2.30 ([SW05]). An ideal I ⊂ R[x1, . . . , xN ] is called totally positive if it does not
contain any nonzero polynomial in R≥0[x1, . . . , xN ]. The totally positive part of T(I) is the
subfan of T(I) consisting only of those cones which have totally positive initial ideals.
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The definition of totally positive ideal is motivated by the fact that an ideal is totally positive
if and only if there exists a weight vector w ∈ RN such that V (inw(I)) ∩ RN>0 6= ∅ [ET01].

Coming back to the setup of (8) where the ideal I presents a rank d cluster algebra of finite
type and x1, . . . , xN are all its cluster variables, then V (I) ⊂ AN contains the corresponding
cluster variety A. Fixing an initial seed s = (Q, (x1, . . . , xd)) determines an embedding

ιs : A ↪→ V (I) (a1, . . . , ad) 7→ (a1, . . . , ad, Xd+1(a), . . . , XN (a))

where Xj ∈ N[x±1
1 , . . . , x±1

d ] is the Laurent polynomial expression of the cluster variable xj in
the variables ob the initial seed s. Moreover, denote by B the exchange matrix of the quiver Q
associated to s, that is the entry bij of B is given by the number of arrows between i and j in
Q. Precisely, bij = #{i→ j} −#{j → i}.

Theorem 2.31 ([Bos22]). Assuming B is of full rank, the induced map between tropical spaces
ιTs : Rd → RN yields an isomorphism of fans

ιT (Σs) = T+(I).

In particular, there is a bijection between the rays of T+(I) and cluster variables and between
maximal cones in T+(I) and seeds.

Example 2.32. In Example 2.28 we have seen the FG tropicalization of the cluster variety

inside G̃r2(C4). The ideal presenting the corresponding cluster algebra is generated by a single
Plücker relation

p12p34 − p13p24 + p14p23

The tropicalization of this ideal consists of three maximal cones that are in correspondence with
the three monomials of the relation, namely

τ12 = {w ∈ R6 : w12 + w34 ≤ w13 + w24 = w14 + w23},

τ13 = {w ∈ R6 : w12 + w34 = w14 + w23 ≥ w13 + w24},
τ14 = {w ∈ R6 : w12 + w34 = w13 + w24 ≥ w14 + w23}.

It is not hard to verify that only τ12 and τ14 belong to T+(I). The tropicalization of the map ι
is ιT : R5 → R6 given by (

u13
u12
u23
u34
u14

)
7−→

 u13
max{u12+u34,u14+u23}−u13

u12
u23
u34
u14


Observe that in fact ιT (σs) = τ14 and ιT (σ|s

′) = τ12, so that ι(Σ) = Trop+(I2,4), as predicted
by Theorem 2.31.

2.10. Partial flag varieties. Consider 1 ≤ d1 < · · · < dk < n ∈ N and define the partial flag
variety

Fd1,...,dk;n := {0 ∈ V1 ( · · · ( Vk ( Kn : dimK Vi = di}.
Partial flag varieties admit a natural embedding into a product of Grassmannians given by

Fd1,...,dk;n ↪→ Grd1;n× · · · ×Grdk;n, V 7→ (V1, . . . , Vk).

Also, when k = 1 this is a Grassmannian and similar as in the case of Grassmannians partial
flag varieties admit a parametrization induced by minors of matrices representing flags. The
Plücker embedding of a partial flag variety is given by concatenating the above embedding with
the Plücker embedding of each Grassmannian. More precisely,

Fd1,...,dk;n ↪→ P( n
d1

)−1 × · · · × P( n
dk

)−1

Let C[Fd1,...,dk;n] denote the (multi-)homogeneous coordinate ring. Plücker coordinates can also

be contructed directly as follows. Associate to V ∈ Fd1,...,dk;n a matrix MV = (mij) ∈ Kdk×n

such that Vi is generated by the first di rows of M for all 1 ≤ i ≤ k. Then Plücker coordinates
are defined as before: Let 1 ≤ j ≤ k and {i1, . . . , idj} ⊂ {1, . . . , n}, define the Plücker coordinate

Pi1,...,idj (V) := det(mab)1≤a≤dj , b∈{i1,...,id`}
.
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Example 2.33. Let MV =
[

1 1 0 0
0 0 2 0
1 0 0 −3

]
represent a point in F1,2,3;4. Then, for example, P134(V) =

det
([

1 0 0
0 2 0
1 0 −3

])
= −6.

Geiss, Leclerc and Schröer generalized Scott’s result about the cluster structure on Grass-
mannians to partial flag varieties. The following is a summary of the construction of an initial
seed for the cluster algebra. For more details on this construction see [BL24]. The combinato-
rial gadgets used in the construction are pseudoline arrangements (sometimes also called wiring
diagrams). For Fd1,...,dk;n the pseudoline arrangement Pd1,...,dk;n is a pictorial presentation of the
permutation σ ∈ Sn whose one-line presentation is

σ = [dk + 1, dk + 2, . . . , n, dk−1 + 1, dk−1 + 2 . . . , dk, . . . , 1, . . . , d1].

Notice that σ is the permutation corresponding to the minimal representative of the coset of the
longest word in Sn/(si : i 6∈ {d1, . . . , dk}).
Algorithm 1: Pseudoline arrangement

We draw Pd1,...,dk;n inside a two-dimeinsional positive orthant.

(i) Label the x- and y-axes by 1, . . . , n
(ii) For each i draw a line segment from (i, 0) to (i, σ(i)) and another line segment from

(0, σ(i)) to (i, σ(i)). The union of the two line segments is called the pseudoline (or
wire) `i.

An example of the resulting pseudoline arrangement P2,5;7 is given in Figure 7.
We associate a quiver Qd1,...,dk;n to Pd1,...,dk;n that determines a seed in the cluster structure

of the multi-homogeneous coordinate ring C[Fd1,...,dk;n] with respect to the Plücker embedding,
compare to [?, §9.3.2].

Algorithm 2: From pseudoline arrangement to quiver

(i) Vertices of Qd1,...,dk;n:
(a) mutable vertices of Qd1,...,dk;n correspond to bounded faces of Pd1,...,dk;n;
(b) there are two types of frozen vertices: n− 1 of them correspond to the unbounded

faces along the y-axis; additionally there are k frozen vertices, we denote them by
vd1 , . . . , vdk .

(ii) Arrows of Qd1,...,dk;n: There are four types of arrows:
(a) from left to right perpendicular to a vertical straight lines segment connecting

adjacent faces of Pd1,...,dk;n;
(b) from top to bottom perpendicular to a horizontal straight line segment connecting

adjacent faces of Pd1,...,dk;n;
(c) diagonally from bottom right to top left through a crossing of two straight line

segments connecting faces of Pd1,...,dk;n that share a vertex;
(d) arrows to and from the extra frozen vertices vd1 , . . . , vdk : there is an arrow from the

face bounded by `di−1, `di vertically and by `di+1, `di+2 horizontally to the vertex
vdi , and an arrow from vdi to the face bounded by `di on the left, by `di+1 on the
top and right (this is where `di+1 bends) and by `di+2

on the bottom2.

The quiver Q2,5;7 is depicted in Figure 7. The frozen vertices v2, v5 are labelled ω2, ω5,
respectively.

Every face of the pseudoline arrangement Pd1,...,dk;n can be associated with a minor of an
n × n-matrix. The minors are of form form ∆I,J with I, J ⊂ [n] of the same size. In our case,
the column index set J is always of form {n−|I|−1, . . . , n}. We associate index sets IF to faces
F of Pd1,...,dk;n:

IF := {i : `i passes north-east of F} and ∆IF := ∆IF ,{n−|IF |+1,...,n}.(9)

Observe that all index sets associated to Pd1,...,dk;n are all of form [ij , dj ]∪ [ij+1, dj+1]. Plücker
coordinates are top bound minors, that is for I an index set of cardinality d we have PI = ∆[d],I .
Using Laplace expansion minors associated to Pd1,...,dk;n are translated to Plücker coordinates

2In case that `di+2 does not exists the latter arrow also does not exist.
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7 = σ(2)

6 = σ(1)

{1, 2} {2} ω2

5 = σ(5)

{1, 2, 5} {2, 5} {5}

4 = σ(4)

{1, 2, 4, 5} {2, 4, 5} {4, 5}

3 = σ(3)

{1, 2, 3, 4, 5} {2, 3, 4, 5} {3, 4, 5}

2 = σ(7)

{1, 2, 3, 4, 5, 7} {2, 3, 4, 5, 7} {3, 4, 5, 7} {4, 5, 7} {5, 7} ω5

1 = σ(6)

1 2 3 4 5 6 7

Figure 7. The pseudoline arrangement P2,5;7 and its quiver Q2,5;7 together with
the index sets IF of the initial minors and the additional frozen vertices corre-
sponding to d1 = 2, d2 = 5 labelled by ω2 and ω5.

Proposition 2.34 (Proposition 3.4 in [BL24]). Consider an arbitrary flag variety Fd1,...,dk;n and
an arbitrary initial minor ∆[ij ,dj ]∪[ij+1,dj+1] with 1 ≤ ij ≤ dj < ij+1 ≤ dj+1 ≤ n and 0 ≤ j < k

(recall, that d0 := 0, dk+1 := n). Set ` = n− dj − dj+1 + ij + ij+1 − 1. Then

∆[ij ,dj ]∪[ij+1,dj+1] =
∑

J∈( [`,n]
dj−ij+1), J ′=[`,n]\J

(−1)Σ(ij ,dj ,J)P[ij−1]∪JP[ij+1−1]∪J ′(10)

where Σ(ij , dj , J) :=
∑dj

q=ij
q +

∑
j∈J j.

In particular, the initial minors are well defined elements in C[Fd1,...,dk;n].

Exercise 8. For the partial flag variety F2,3;5 we obtain the following initial seed:

P45 P15 P12

P345 P145 P125

P234 P134 P124 P123

Show that the mutable part of the quiver is of type D4.

Theorem 2 ([GLS08]). The quiver Qd1,...,dk;n together with the cluster (∆IF :
F face of Pd1,...,dk;n) form an initial seed for the cluster algebra Ad1,...,dk;n which has the property
that

Ad1,...,dk;n ⊗Z C ∼= C[Fd1,...,dk;n].

The expression of initial minors in terms of Plücker coordinates (10) in fact also reveals the
tableau associated to these cluster variables. Cluster variables are elements of Lusztig’s dual
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Figure 8. LHS: The initial seed for Grassmannian Gr4;n+2. RHS: a seed ob-
tained by mutating (11), (7), (11) of the seed on LHS and freeze (7). The full
subquiver on RHS on all vertices but (3), (4), (15) coincides with the initial seed
for F2,4;n.

canonical basis which is parametrized by Young tableaux of appropriate shape [Lus90, CP96,
HL21, Li24]

Recall the notion of cluster subalgebras from Definition 2.13.

Theorem 3 ([BL24]). Consider the partial flag variety Fd1,...,dk;n with Plücker coordinates

{PI : I ∈
([n]
di

)
, i ∈ [k]}, and the Grassmannian Grdk;N with N = n + dk − d1 with Plücker

coordinates {pJ : J ∈
([N ]
dk

)
}. Then the natural map

ϕ : PI 7→ pI∪{n+1,...,n+dk−|I|}

extends to an embedding of cluster algebras C[Fd1,...,dk;n] ↪→ C[Grdk;N ].

The proof follows the simple idea of constructing a seed of Grdk;N containing the initial seed
of Fd1,...,dk;n as a restricted seed (up to applying the above map ϕ). This is done by exhibiting an
explicit mutation sequence starting from the initial seed [BL24, §3]. Figure 8 demonstrates this
for the partial flag varieties F2,4;n where the mutation sequence is of length three. In the figure,
cluster variables are represented by their tableaux which may be thought of as the leading term
of their expression in Plücker coordinates (the number of columns indicating the degree of the
expression, a one column tableau correspond to Plücker coordinates with index set the filling of
the tableau, see [BL24, §4]).

The result is unexpected from a mathematical point of view and was in fact inspired by the
application of cluster algebras in particle physics which is the topic of the last section.

3. Scattering amplitudes

A scattering amplitude is a function used in particle physics to calculate the likelihood of
a specific particle interaction. It is proportional to the scattering cross-section, a measurable
quantity at particle accelerators which makes it relevant for experiments. Feynman systematized
the calculation of scattering amplitudes expressing them in terms of Feynman integrals: they
are infinite sums of such integrals indexed by Feynman graphs.

3.1. Symbol calculus. In this section I mostly follow the reference [DGR12], however I use
the definition of the symbol map as originally given in [GSVV10]. As a function a scattering
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amplitude is a multiple polylogarithm defined recursively by

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t),

with G(x) = G(;x) = 1 unless x = 0 then G(0) = 0, n ≥ 0 and ai ∈ C. The vector (a1, . . . , an)
is called the vector of singularities of G, its length n is called the weight of G. These func-
tions were studied already by Poincar´e and of Lappo- Danilevsky [LD35] who called them
hyperlogarithms and by Chen [Che77] in his study of iterated integrals. In the physics liter-
ature they are often called Goncharov polylogarithms due to Goncharov’s extensive work on
the subject [Gon98, Gon99, GSVV10, Gon13]. Alternatively, they are also known as multiple
polylogarithms. Multiple polylogarithms form a shuffle algebra with shuffle product defined as

G(a1, . . . , an1 ;x)G(an1+1, . . . , an1+n2 ;x) =
∑

σ∈Σ(n1,n2)

G(aσ(1), . . . , aσ(n1+n2);x),

where Σ(n1, n2) ⊂ Sn1+n2 denotes all possible shuffles. More generally, multiple polylogarithms
form a Hopf algebra over Q [?, §6].

Example 3.1. The following well known functions have expressions as multiple polylogarithms.
Let an := (a, . . . , a) ∈ Cn for a ∈ C.

G(0n;x) =
1

n!
logn(x),

G(an;x) =
1

n!
logn

(
1− x

a

)
,

G(0n−1, a;x) = Lin

(x
a

)
,

G(0n,ap;x) = (−1)pSn,p

(x
a

)
,

where Sn,p denoted the Nielsen polylogarithm [Nie09].

The recursive definition of a Goncharov polylogarithm is inherit in its differential structure
as well. In the generic case (all ai are distinct and non zero) we obtain

dG(an−1, . . . , a1; an) =
∑n−1

i=1 G(an−1, . . . , âi, . . . , a1; z)d log
(
ai−ai+1

ai−ai−1

)
.

This motivates the definition of the symbol map: a linear map that associates an element in the
n-fold tensor product of a certain vector space of 1-forms with a multiple polylogarithm.

Definition 3.2 (Equation 12 in [GSVV10]). Given a multiple polylogarithm G(an−1, . . . , a1; an)
its symbol is defined as

S(G(an−1, . . . , a1; an)) =
n−1∑
i=1

S(G(an−1, . . . , âi, . . . , a1; z))⊗ ai − ai+1

ai − ai−1
.(11)

The simple tensors in S(G(an−1, . . . , a1; an)) are called the (symbol) words of G(an−1, . . . , a1; an),
the tensor factors appearing are called (symbol) letters and a complete set of (a choice of) letters
is called the symbol alphabet of G.

When G is a multiple polylogarithm and a function on a manifold M , then its symbol S(G) lies
in the vector space

⊗n
i=1 O

∗
M,an, where O∗M,an denotes the multiplicative group of the invertible

analytic functions on M . Then the symbol map given by (11) is a linear map.

Example 3.3. We have seen in Example 3.1 that the polylogarithmic fuction Lik(z) =
∑∞

j=1
zj

jk

is a multiple polylogarithm. It satisfies Li1(z) = − log(1− z) and

Lik(z) =

∫ z

0
Lik−1(t)d log(t).

From this presentation we obtain the symbols S(Li1(z)) = −(1− z) and S(Lik(z)) = −(1− z)⊗
z ⊗ · · · ⊗ z, where the factor z appears (k − 1)-many times.
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Each tensor factor is understood as a logarithmic one form, that is d log(ai) ≡ dai
ai

. This yields

the following identities (obtained from multilinearity and shuffle product) with the only caveat
that we are switching from multiplicative to additive notation

Proposition 3.4. The symbol of a multiple polylogarithm satisfies the following identities.

(i) Distributivity. We have C⊗(ab)⊗D = C⊗a⊗D+C⊗b⊗D and hence, C⊗an⊗D =
n (C ⊗ a⊗D) for n ∈ Z.

(ii) Neglecting torsion. For n ∈ Z and ξ an nth root of unity we set C⊗ ξ⊗D = 0 which
corresponds to working up to torsion.

(iii) Shuffle product Recall the shuffle product of two simple tensors is defined as

(a1 ⊗ · · · ⊗ an1)q (an1+1 ⊗ · · · ⊗ an1+n2) =
∑

σ∈Σ(n1,n2)

aσ(1) ⊗ · · · ⊗ aσ(n1+n2),

then the symbol satisfies

S (G(a1, . . . , an1 ;x)G(b1, . . . , bn2);x) = S(G(a1, . . . , an1 ;x))q S(G(b1, . . . , bn2 ;x)).

Exercise 9. Using the following identity (valid for a, b distinct and non zero)

G(a, b;x) = Li2

(
b− x
b− a

)
− Li2

(
b

b− a

)
+ log

(
1− x

a

)
log

(
x− a
b− a

)
compute the symbol S(G(a, b;x)).

Example 3.5. This is an example of a function relevant for scattering amplitudes: in [GSVV10,
Equation (3)] Goncharov, Spradlin, Vergu and Volovich present a compact expression of the
remainder function for a six particle scattering amplitude in N = 4 super Yang–Mills theory
(computed up to loop level two). The innovative idea of this paper was to use a change of
coordinates following twistor theory which lead to an expression much simpler than the ones
known before which mainly relied on Feynman integral. We get back at this example in the
following subsection, but for now want to compute its symbol alphabet. The function is defined
as

R
(2)
6 =

3∑
i=1

(
Li −

1

2
Li4(−vi)

)
− 1

8

(
3∑
i=1

Li2(−vi)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
,(12)

in terms of

Li =
1

384
P 4
i +

3∑
m=0

(−1)m

(2m)!!
Pmi

(
(`4−m(x+

i ) + `4−m(x−i )
)
,

Pi = 2Li1(−vi)−
3∑
j=1

Li1(−vj),

J =
3∑
i=1

`1(x+
i )− `1(x−i ),

`n(x) =
1

2

(
Lin(−x)− (−1)nLin

(
1

x

))
.

Notice that all functions are combinations of Lin with n ≤ 4. Therefore, with Example 3.3 we

deduce that the symbol alphabet of R
(2)
6 is given by

{vi, x+
i , x

−
i : i = 1, 2, 3}.

In the next subsection we explain what there variables are and where they are defined.
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3.2. Twistor theory. Twistor theory was introduced by Penrose in his seminal 1967 paper
[Pen67]. Essentially it refers to clever changes of variables from 4-dimensional real Minkowski
space to twistor space, a projective 3-space. Points in Minkowski space are transformed to
Riemann spheres while rays of lights translate to point in twistor space. Among other things,
this change of variables revealed symmetries, such as conformal invariance, that are hard to
detect in Minkowski. Problems such as solving certain differential equations on the real side
are translated to problems in terms of complex and algebraic geometry that can be attacked
using tools such as sheaf cohomology [AW77] (Einstein’s field equations), [PR84]. And most
interesting to us, twistor theory was successfully applied to find new compact expressions of
scattering amplitudes [Wit04]. Example 3.5 is an illustration of this phenomenon.

In what follows I will present two parametrizations for spaces of particle configurations (i.e.
configuration spaces) that rely on twistor theory. More precisely, these are parametrizations in
terms of momentum twistors and helicity spinors.

Figure 9. A cartoon depicting twistor theory ©https://twistor.li/

3.3. Momentum twistors. A popular approach to twistor theory was initiated by Hodges in
[Hod13] using so called momentum twistors. For details on the precise coordinate transformation
we refer to loc.cit..

In N = 4 super Yang–Mills theory a massless particle p in Minkowski space R4 as an input
and yields a point Z in twistor space P3 called the momentum twistor of p. So, a particle
configuration p1, . . . ,pn ∈ R4 is transformed to a configuration of n points Z1, . . . , Zn in P3.
In this theory dual conformal invariance holds which translates to a planar symmetry on the
point configuration: the cycle action c6 = (123456) ∈ S6 given by Zi 7→ Zi+1 (indices are taken
modulo n) leaves the point configuration invariant.

Choose representatives Z̄i ∈ C4 for each Zi and consider these as columns of a 4× n-matrix.
The configuration space is then parametrized by 4× 4-minors pijkl for 1 ≤ i < j < k < l ≤ n

pijkl := det(Z̄iZ̄jZ̄kZ̄l),(13)

satisfying determinantal identities, i.e. Plücker relations. Up to column rescaling, which does not
change the point configuration a matrix represents, the configuration space is the Grassmannian

Gr4,n. In fact, the configuration space is a quotient of the affine cone G̃r4(Cn).

Example 3.6. Recall the remainder function of the two loop N = 4 super Yang–Mills scattering
amplitude for six particles from Equation 12. The variables vi, x

+
i , x

−
i are coordinates on the

configuration space, more precisely we have

(14) v1 =
p1245p1346

p1245p1346
, x+

1 =
p1456p2356

p1256p3456
, x−1 =

p2356p1234

p1236p2345
.

The missing variables vi, x
+
i , x

−
i for i 6= 0 are obtained from the above by applying the cycle

c6 to the indices of Plücker coordinates. There is an isomorphism Gr2(C6) ∼= Gr4(C6) induced
on Plücker coordinates by pijkl 7→ ppq where p, q are such that {i, j, k, l, p, q} = {1, . . . , 6}.
Rewriting the variables (14) with this isomorphism we have the following expressions for the

symbol alphabet of R
(2)
6 :

v1 =
p35p26

p23p56
, v2 =

p13p46

p16p34
, v3 =

p15p24

p45p12
,

https://twistor.li/
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x+
1 =

p14p23

p12p34
, x+

2 =
p25p16

p56p12
, x+

3 =
p36p45

p34p56
,

x−1 =
p14p56

p45p16
, x−2 =

p25p34

p23p45
, x−3 =

p36p12

p16p23
.

These coordinates are in fact nine out of the twelve ŷ-variables associated with Gr2(C6) up to
taking inverse. See (5) and Example 2.15. Notice that Plücker relations induce relations among
ŷ-variables. The nine ŷ-variables represent an minimal set in the sense that it is not possible
to eliminate one of the variables using the relations that hold among all twelve ŷ-variables.
The symbol alphabet may equivalently be expressed as the complete set of twelve ŷ-variables, a
different set of nine ŷ-variables or even as the set of all Plücker coordinates. These reformulations
are possible due to the identities that hold for symbols, see Proposition 3.4.

5 4

3

21

6 v1

x−2

x+2

5

3

2

6 v1 v1 = p35p26
p23p56

Figure 10. Identifying letters in the symbol alphabet of R
(2)
6 with quadrilater-

als, i.e. ŷ-variables. See Example 3.6.

Example 3.6 generalizes to the case of n = 7 and yields the following result.

Theorem 4 ( [GSVV10]). In planar N = 4 super Yang–Mills with n = 6 the symbol alphabet
for the remainder function of the scattering amplitude (up to loop level two)3 consists of the
cluster variables of the Grassmannian Gr4,6.

In fact for n = 7 the analogous result has been verified in [DDH+17]. Higher loop orders
have been studied in [DDH11, DDvHP13] for ` = 3, in [DDDP14] for ` = 4, in [CHDMvH16]
for ` = 5, and in [CHDD+19] for ` = 6, 7.

We have seen the finite type classification of Grassmannians in Theorem 1. The only finite
type Grassmannians Gr4,n are those for n = 6 and n = 7. So it is natural to expect that the
above Theorem cannot generalize as is for n ≥ 8: the set of cluster variables is infinite while the
symbol alphabet remains a finite set (at any given loop level). However, the symbol alphabet
may still be recovered from the cluster structure. Drummond, Foster, Gürdo ‘gan and Kalousios
show the following

Theorem 5 ([DFGK21]). The 272 letters of the symbol alphabet for Gr4,8 are obtained by

(i) a finite set of cluster variables, and
(ii) square root expressions obtained as limits of cluster variables along infinite mutation

sequences of Kronecker type.

In section 3.5 we describe expressions obtained in (ii) with more detail. It is worth mentioning
that the main tool used in[DFGK21] is the positive part of the tropicalization of Gr4,8 in its
Plücker embedding. A generalization of Theorem 2.31 explains the relationship between rays
and cluster variables.

Remark 3.7. These findings have gauged wide interested in symbol calculus which is now called
the (cluster) boostrap programme, initiated by Lance Dixon and several collaborators. The
programme addresses the question whether a multiple polylogarithm on a given configuration
space is uniquely determined by its symbol. It has been verified in numerous cases that this is
in fact true for scattering amplitudes in N = 4 super Yang–Mills. Besides the works already
cited above important contributions are [DvH14, DvHM16] (studying the NMHV for ` = 3
resp. ` = 4), [DPS15] addressing uniqueness of the bootstrapped amplitude, [DFGP19, DFG18]
recovering the rules for how to form word from symbol letters– called adjacencies from exchange
relations in the cluster algebras.

3The notion of loop level is explained at the beginning of section 3.6.
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3.4. Beyond dual conformal symmetry. The success of the bootstrap programme (Re-
mark 3.7) opened up ways to new research questions, including questions if this could also
work outside of the supersymmetric toy model N = 4 super Yang–Mills. This model–while
very popular in theoretical physics due to its mathematical beauty incarnated, for example, in
additional symmetries– is often critiqued for being ’too far’ from the real world modelled by the
standard model and QCD. The real challenge–so critics– is taking symbol calculus to QCD.

Mathematically speaking, this translates to dropping the dual conformal invariance which is
present in the momentum twistor parametrization as the cyclic symmetry or planarity. This
is solved by introducing two more points Zn+1, Zn+2 ∈ P3 to the configuration of n points
Z1, . . . , Zn ∈ P3. These dummy points are present to break the cyclic symmetry. Physically
speaking the line spanned by Zn+1, Zn+2 represents an infinity twistor. A configurations of n
lightlike particles p1, . . . ,pn ∈ R4 (without assuming dual conformal invariance) translates in
momentum twistors to a a configuration of n points Z1, . . . , Zn and a line Zn+1Zn+2 in complex
projective space P3.

The corresponding configuration space also admits a parametrization in terms of minors.
Similar to (13) consider choose representatives Z̄i ∈ C4 for each Zi ∈ P3 and set

pijkl := det(Z̄iZ̄jZ̄kZ̄l), and additionally pab := det(Z̄aZ̄bZ̄n+1Z̄n+2),

for 1 ≤ i < j < k < l ≤ n and 1 ≤ a < b ≤ n. The relations satisfied by the pijkl and pij are
exactly the Plücker relations satisfied by the partial flag variety F2,4;n+2. This motivates the
following definition.

Definition 3.8. The momentum twitsor variety for configurations of n lightlike particles without
assuming dual conformal invariance is the partial flag variety F2,4;n+2

3.5. Spinor helicity variety. The spinor helicity formalism is an example of a change of
coordinates in twistor theory. It has proven itself highly useful in computations of scattering
amplitudes of massless particles. It relies on minimal assumptions for the model of particle
configurations (only the on-shell condition) and describes all helicities (gluons, fermions, scalars)
of massless particles. For more details see [HP14]. In particular, it applies in quantum chromo
dynamics, which is part of the standard model modelling real world phenomena.

Recall that a particle p in Minkowski space is presented as a vector (p0, p1, p2, p3) ∈ R4. Define
a linear map

α : R4 → C2×2, p = (p0, p1, p2, p3) 7→
(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
.(15)

Minkowski space has an inner product with sign (+,−,−,−). The product of a particle vector
with itself reveals the mass m of the particle

p · p = m2;

this is known as the mass-shell condition in the physics literature. Using (15) we obtain

det(α(p)) = p2
0 − p2

3 − p2
1 − p2

2 = p · p = m2.

In particular, when p is a lightlike particle, that is m = 0, then α(p) has rank less or equal one

and hence, may be written as λλ̃T for two vectors λ̃, λ ∈ C2 = C2×1. More precisely,

λ =
1√

p0 + p3

(
p0 + p3

p1 + ip2

)
, λ̃ =

1√
p0 + p3

(
p0 + p3

p1 − ip2

)
.

The vectors λ, λ̃ associated with a particle p are called its helicity spinors.

Exercise 10. Verify that momentum conservation holds, that is λ̃Tλ = 0.

Let {p1, . . . ,pn} ⊂ R4 be a configuration of n lightlike particles. Then its helicity spinors are

n pairs (λi, λ̃i) ∈ C2×2 satisfying λ̃Ti λi = 0. Define Λ = (λ1, . . . , λn), Λ̃ = (λ̃1, . . . , λ̃n) ∈ C2×n.

As Λ and Λ̃ are (generically) of full rank we may interpret them as points in Gr2(Cn). This
motivates the following definition.

Definition 3.9 ([MPS24]). The spinor helicity variety is

SHn := {(Λ, Λ̃) ∈ Gr2;n ×Gr2;n : ΛΛ̃T = 0}
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The Plücker coordinates for Gr2(Cn) induce a parametrization of SHn. For 1 ≤ i < j ≤ n set

Pij := det(λiλj) y P̃ij := det(λ̃iλ̃j).

These satisfy the Plücker relations of Gr2(Cn) (also known as Schouten identities in the physics
literature)

0 = PijPkl − PikPjl + PilPjk = P̃ijP̃kl − P̃ikP̃jl + P̃ilP̃jk(16)

and momentum conservation

0 =
n∑
s=1

PisP̃sj (⇔ ΛΛ̃T = 0).(17)

These are in fact the generators of the vanishing ideal of SHn ⊂ P(n2)−1 × P(n2)−1. Recall the
partial flag variety F2,n−2;n from §2.10.

Proposition 3.10. The map F2,n−2;n → SHn defined via pull-back by

Pij 7→ Pij and P̃ij 7→ (−1)i+j−1P[n]−ij ,

where [n]− ij := {1, . . . , n} − {i, j} is an isomorphism.

The relations (16) and (17) translate to the following Plücker relations of F2,n−2;n:

PijPkl − PikPjl + PilPjk = 0

P[n]−ijP[n]−kl − P[n]−ikP[n]−jl + P[n]−ilP[n]−jk = 0
n∑
s=1

(−1)s+j−1PisP[n]−js = 0

Moreover, that dim SHn=4(n − 3) = dimF2,n−2;n holds is shown in [MPS24], so that we have
an isomorphism of the defining ideals.

3.6. Symbol alphabet for scattering in QCD. We start with the case of five particles. The
configuration space is the spinor helicity variety SH5

∼= F2,3;5.
Analytic computations have found a symbol alphabet of 31 letters [GHLP16, CHM18]. These

computations are done by approximating the scattering amplitude by a finite sum of Feynman
integrals. Recall that the occuring Feynman integrals are indexed by Feynman graphs. The
approximation (of the scattering amplitude) of loop level ` is the sum of all relevant Feynman
integrals that are indexed by Feynman graphs with at most ` loops. This leads to a phenomenon
called spurious letters: letters appearing in the symbol alphabet of the approximation of loop
level ` that are not letters in the symbol alphabet of the approximation of loop level `+ 1. One
of the 31 letters in the alphabet in this case is expected to be spurious.

Reformulated in spinor helicity variables the symbol alphabet is given by

W1 = P12P̃12,

W6 = P12P̃12 − P35P̃35,

W11 = P12P̃12 − P45P̃45,

W16 = P13P̃13,

W21 = P13P̃13 + P34P̃34,

W26 =
P45P̃15P12P̃24

P̃45P15P̃12P24

,

with their cyclic copies induced by the action of c5 = (12345) ∈ S5 on the indices, for example
W2 = c5(W1), and

W31 = P̃45P15P̃12P24 − P45P̃15P12P̃24.

We have seen in Proposition 3.10 that SH5 is isomorphic to F2,3;5 which is of finite cluster type
D4, see Exercise 8. In this case we have 16 cluster variables and 6 frozen variables. Among
the 16 mutable cluster variables, 14 are Plücker coordinates and two are quadratic binomials in
Plücker coordinates.
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Recall that in N = 4 super Yang–Mills dual conformal symmetry manifests as cyclic symmetry
in the momentum twistor parametrization. This is also manifest in the corresponding cluster
algebra for Gr4,n: the set of cluster variables is closed under the action of the cycle cn =
(12 · · ·n) ∈ Sn. This is no longer true for partial flag varieties: for example in Exercise 8 we
see that P12, P15, P45 are frozen variables, while P23, P34 are not. In order to recover the symbol
alphabet we have to consider the orbit of cluster variables with respect to the cyclic action. The
main result is summarized below

Theorem 6 ([BDG23]). The symbol alphabet of the scattering amplitude for 5 light like
particles can be recovered from the cluster algebra structure on the spinor helicity variety
SH5

∼= F2,3;5. More precisely,

• the letters W1, . . . ,W5,W16, . . . ,W20,W26, . . . ,W30 are multiplicative combinations of
Plücker coordinates (cluster variables of degree one and their cyclic copies)
• the letters W6, . . . ,W10,W11, . . . ,W15,W21, . . . ,W25 are cluster variables of degree two

and their cyclic copies
• the letter W31 is not recovered by the cluster algebra.

Six particles. The relevant cluster structure of the momentum twistor variety F2,4;6 if affine

type D
(1)
6 , hence the cluster type is inifite (also for the spinor helicity variety). However using

methods similar to those used in [DFGK21] some results have been achieved simultaneously but
independently in [PSVW25] and [BDG+25].

As for n = 5 these rely on previous analytic computations that have found a symbol alphabet
of 289 letters that split into 38 permutation classes [HMM+25]. A direct analysis reveals that
there are 54 cluster variables that are letters and give 11 permutation classes. The embedding
C[F2,4;6] ↪→ C[Gr4,8] from Theorem 3 combined with the known results and methods that worked
for Gr4,8 are the main tools. Letters that are sqare roots (and therefor cannot be cluster
variables) are recovered as follows: a seed for Gr4,8 (without frozen variables depicted) that
restricts to a seed for F2,4;6:

z0

a0 a2 b3 b2 b1 a4 a3

w0

where the cluster variables are

z0 = p1236p1578 − p1235p1678 w0 = p1356

b1 = p1236p3578 − p1235p3678 a1 = p1345

b2 = p1256 a2 = p1346

b3 = p1346p1578 − p1345p1678 a3 = p1237

a4 = p1236p4578 − p1235p4678 + p1234p5678

Mutating consecutively at w0 and z0 yields a sequencen of cluster variables zi that satisfy

zi+2zi = b1b2b3F + z2
i+1,

where F is a monomial in frozen variables. Solving the equation for zi we get an expression
containing the squareroot of

∆ = P 2
12P

2
3456−2P1256P12P3456P34+P 2

1256P
2
34−2P1234P12P3456P56−2P1234P1256P3478P56+P 2

1234P
2
56

which is a letter in the alphabet. In summary, in [BDG+25] we recover a total of 32 out of the
38 permutation classes
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[DFGP19] James Drummond, Jack Foster, Ömer Gürdoğan, and Georgios Papathanasiou. Cluster adjacency
and the four-loop NMHV heptagon. JHEP, 03:087, 2019.

[DGR12] Claude Duhr, Herbert Gangl, and John R. Rhodes. From polygons and symbols to polylogarithmic
functions. J. High Energy Phys., (10):075, front matter + 77, 2012.

[DPS15] James M. Drummond, Georgios Papathanasiou, and Marcus Spradlin. A Symbol of Uniqueness:
The Cluster Bootstrap for the 3-Loop MHV Heptagon. JHEP, 03:072, 2015.

[DvH14] Lance J. Dixon and Matt von Hippel. Bootstrapping an NMHV amplitude through three loops.
JHEP, 10:065, 2014.

[DvHM16] Lance J. Dixon, Matt von Hippel, and Andrew J. McLeod. The four-loop six-gluon NMHV ratio
function. JHEP, 01:053, 2016.

[ET01] Manfred Einsiedler and Selim Tuncel. When does a polynomial ideal contain a positive polynomial?
volume 164, pages 149–152. 2001. Effective methods in algebraic geometry (Bath, 2000).

[FG06] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller

theory. Publ. Math. Inst. Hautes Études Sci., (103):1–211, 2006.
[FG09] V. V. Fock and A. B. Goncharov. Cluster ensembles, quantization and the dilogarithm. Ann. Sci.
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