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Chapter 1

Forests, Colourings and Acyclic
Orientations of the Square Lattice

There is no known polynomial time algorithm which generates a random forest or

counts forests or acyclic orientations in general graphs. On the other hand, there is

no technical reason why such algorithms should not exist. These are key questions in

the theory of approximately evaluating the Tutte polynomial which in turn contains

several other specialisations of interest to statistical physics, such as the Ising, Potts,

and random cluster models.

In this chapter we shall be considering three closely related counting problems on

the square lattice.

These are the enumeration of k-colourings, acyclic orientations and forests. Apart

from their intrinsic interest, our original motivation was the following. They are all

key points of the Tutte plane and exact evaluation has been proved to be #P-hard

even for planar bipartite graphs, see Vertigan and Welsh [?]. It is also the case that

the square lattice is the fundamental separation point between the classes of graphs

of bounded tree width and unbounded tree width, in the sense of Robertson and

Seymour [?].

Thus, in a very technical sense, it can be regarded as the separation point between

hard and easy problems. All evaluations of the Tutte polynomial are known to be in

polynomial time for graphs of bounded tree width ( see Andrzejak [?] and Noble [?] ).

Not only are the quantities considered here hard to determine exactly but most

of them have resisted all attempts to find good approximation schemes. There are a

few exceptions. From Annan [?], see also [?], we know that the number of forests in a

graph G has a fully polynomial randomised approximation scheme (fpras) whenever

G is sufficiently dense, however the square lattice is not dense.
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Also, Jerrum [?] and Salas and Sokal [?], using different Markov chain approaches,

have obtained an fpras for the number of k-colourings of a graphG of maximum degree

∆ whenever k is at least 2∆.

We obtain some asymptotic counting results about the number of forests and the

number of acyclic orientations on the n×n section of the square lattice together with

some properties of the structure of the random forest.

Most of this material is a joint work with D.J.A. Welsh and it has been already

published in [?]. Most recently, we have managed to improve our previous numerical

results by using a completely different method. Here we include both methods, and

their numerical results, as there is evidence [?] that there exists a computer program

that can improve the numerical results of the first method but not necessarily the

results of the second one. Also, better use of computer memory could improve our

computer programs, and therefore our numerical results for the second method, but

without given numerical results for the first method.

This is a long chapter, it includes two different methods for the same problem,

but we decided not to divide it because, although different, the methods are closely

related.

Section 1.1 gives the formalisation of these enumeration problems. Section 1.2

is devoted to known asymptotic enumeration results for the number of colourings of

the square lattice, that gives some insight into the current research on the subject.

The problem of the asymptotic behaviour of the number of acyclic orientations is

treated in Section 1.3. Then, Section 1.4 does the same for the number of forests.

Section 1.5 is about random forests on the square lattice. In Section 1.6 we use the

transfer matrix method to help us with the computation of specific values of the Tutte

polynomial of the n × n section of the square lattice. The two final sections include

some improvements to the previous results of the chapter by using this approach of

the transfer-matrix method.

1.1 Computational Complexity and

the Square Lattice

The vertices of the square lattice Ln can be identified with the set of ordered pairs

{(i, j) ∈ N2| 0 ≤ i, j ≤ n− 1}. There is an edge between the vertices (i, j) and (i′, j′)

if |i− i′|+ |j − j′| = 1. Thus, the graph Ln has n2 vertices and 2n(n− 1) edges. See

figure 1.1 for an example.
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Figure 1.1: The square lattice L11.

In this chapter we analyse the behaviour of the Tutte polynomial of the square

lattice. It is easy to show that for any fixed (x, y), T (Ln;x, y) is O(θn
2
) for a suitable

θ = θ(x, y). We are particularly interested in the limit of the sequence

{(T (Ln, i, j))
1/n2}

for certain values of the integers i and j.

We first note that we already know from the results of Grimmett [?, ?] and

Biggs [?], that except in certain special cases, these limits exist. The proof is a

straightforward argument using submultiplicativity. In [?, ?], the author deals with

the ( Whitney ) rank generating function of Ln, denoted by W (Ln;x, y) but this is

just a reparametrisation of the Tutte polynomial by the identity

W (G;x− 1, y − 1) = T (G;x, y),

which holds for any graph G.

We highlight in particular the special hyperbola (x − 1)(y − 1) = 2 of the Tutte

plane where T is a reparametrisation of the partition function of the Ising model with

zero external magnetic field. Thus on the positive branch of this hyperbola, which

corresponds to the ferromagnetic version of the Ising model, convergence is to the

classical limit of the Onsager solution, see for example [?].

When discussing complexity questions about the square lattice care must be taken

over the exact formulation of the question.
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In many or perhaps almost all cases, a statement such as “Problem Π is NP-hard

for the square lattice” should be read as “Problem Π is NP-hard for the class of grid

graphs”. A graph is a grid graph if it can be embedded in the square lattice or more

precisely, if it is isomorphic to a subgraph of the square lattice.

In what follows, we consider that the grid graphs are given already embedded in

the square lattice. Here we have to notice that the problem of given a graph G, decide

if G is a grid graph is NP-complete. This is a consequence of the following theorem

in [?].

Theorem 1.1.1. Given a tree T with vertices of degree at most 4, determining

whether or not T has a VLSI layout with unit-length edges is NP-complete.

The relation between a VLSI layout of G and an embedding of G in the square

lattice is also explained in [?], from where we take it. A VLSI layout for a graph G

is formally specified by mapping vertices of G to vertices of the square lattice Ln, for

some n, together with an ( incidence-preserving ) assignment of edges of G to paths

in the grid. The paths are restricted to follow edges in Ln and may not overlap one

another, although they may cross at a point. Finally, a path may not cross a vertex

to which the corresponding edge is not incident. The VLSI layout has unit-length if

every edge of G goes to a path of length 1 in Ln.

We know of no problem which is NP-hard for Ln. Indeed it is not easy to see how

one can be.

The square lattice is a planar bipartite graph, so several of the well known com-

putational decision problems are “easy”, either for being planar or bipartite. The

following are some of the polynomial time decidable problems for grid graphs which

are NP-hard in general. All are mentioned in [?]. They include stable set, clique,

clique partition, chromatic number, chromatic index and max cut. Also,

graph isomorphism, which is a long-standing open problem for general graphs, is

polynomial time computable for the grid graphs.

We know of just one problem that is polynomial time decidable for the square

lattice, but is NP-complete for planar and bipartite graphs in general. This is the

problem partition into 4 cycles, see [?, ?].

However, we should point out that there are a few decision problems which are

NP-complete for grid graphs, three of them are hamilton circuit [?], domination

set [?] and steiner tree [?]. These three problems are certainly easy for Ln so our

arguments in support of Ln being a threshold are perhaps not totally convincing.
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Nevertheless, we do believe that because of its importance in statistical physics a

better understanding of why so many problems on Ln are so hard is of fundamental

interest.

1.2 The Number of Colourings

Let χ(Ln; k) be the number of k-colourings of the square lattice Ln. Clearly the

number of 2-colourings of Ln is 2. Hence

lim
n→∞

(χ(Ln; 2))1/n2

= 1.

For k > 2 the problem becomes much harder and exact results are not known. By

starting at the bottom corner and colouring the vertices in order from left to right

and bottom to top we see that the number of k-colourings of Ln must lie between

k(k − 1)2n−2(k − 2)(n−1)2
and k(k − 1)n

2−1. This argument gives

k − 2 ≤ (χ(Ln; k))1/n2 ≤ k − 1.

For the rest of this section we assume n > 2 to avoid trivialities. Let LTn be

the graph obtained from the square lattice Ln+1 by identifying the boundary vertices

(i, 0) and (i, n), for 0 ≤ i ≤ n, and the vertices (0, j) and (n, j), for 0 ≤ j ≤ n, and

deleting any parallel edges. So LTn can be embedded in the torus and every vertex

has degree four. This is often referred to as the toroidal square lattice. Let χ(LTn ; k)

be the number of k-colourings of LTn . It is known [?] that for a fixed integer k ≥ 3 the

limits of the sequences {(χ(LTn ; k))1/n2} and {(χ(Ln; k))1/n2} are equal and we call

this limit χ̂(k).

In a tour de force, Lieb [?] showed that the number of ice configurations of LTn to

the power 1/n2 is asymptotically (4/3)3/2.

An ice configuration is an orientation of the edges so that at each vertex exactly

two edges are directed in and two out. It is easy to see that this counts exactly the

number of nowhere zero 3-flows on LTn . If we now assume LTn is self dual, which is

not strictly true because it is nonplanar, it is generally accepted [?, pp. 56] that the

result of Lieb implies that

χ̂(3) = (4/3)3/2 ≈ 1.539600718.

Biggs and Meredith in [?] obtained the estimate

χ̂(k) ∼ 1

2
(k − 3 +

√
k2 − 2k + 5),
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where g(k) ∼ h(k) has its usual meaning that the limit as k →∞ of g(k)/h(k) is 1.

Lower and upper bounds for χ̂(k) were given by Biggs in [?]. He used the transfer-

matrix technique to obtain

k2 − 3k + 3

k − 1
≤ χ̂(k) ≤ 1

2
(k − 2 +

√
k2 − 4k + 8).

In [?], Nagel used an induced subgraph expansion for the chromatic polynomial

to obtain the first terms of a power series that converges to χ̂(k).

Kim and Enting [?] gave a more accurate approximation of the same power series

by combining an expansion of χ̂(k) due to de Neef and the transfer-matrix technique.

Their approximation is

(k − 1)2

k
[1 + x3 + x7 + 3x8 + 4x9 + 3x10 + 3x11 + 11x12 + 24x13+

8x14 − 91x15 − 261x16 − 290x17 + 254x18 + · · · ]

where x = (k − 1)−1. Numerical values obtained by using this approximation are

given in the following table.

Value of k χ̂(k)
3 1.53978474935
4 2.33605332564
5 3.25040489910
6 4.20009565692
7 5.16669659737
8 6.14286845544
9 7.12500489812
10 8.11111346089.

More recently Bakaev and Kabanovich [?] have extended the series of Kim and

Enting from 18 terms to 36.

1.3 Acyclic Orientations

There are intimate connections between colourings and orientations of the edge set of

a graph. The most well known result is that of Stanley [?] who proved that if α(G)

is the number of acyclic orientations of G then

α(G) = T (G; 2, 0) = (−1)|V (G)|χ(G;−1).
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Less well known is the connection between colourings and the number of acyclic

orientations of G in which there is exactly one given source. We denote this by α0(G),

and

α0(G) = T (G; 1, 0).

The proof can be found in [?].

Note that an immediate consequence of this is that α0(G) is independent of the

vertex chosen to be the unique source.

Let G be connected. Then, we know that

χ(G;λ) = |λT (G; 1− λ, 0)|

so that, if

χ(G;λ) = anλ
n + an−1λ

n−1 + . . .+ a1λ

then

T (G; 1, 0) = lim
λ→0

λ−1|χ(G;λ)|

= |a1|.

It follows that

• The number of acyclic orientations with exactly one source is equal to |a1|.

• Computing a1 is #P-hard, even for bipartite planar graphs.

Let α(n) be the number of acyclic orientations of Ln and α0(n) be the number of

acyclic orientations with (0,0) as the only source.

Consider the following partial orientation of Ln. The edges {(i, j), (i, j + 1)} are

oriented away from (i, j), for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 2. Also, orient the

edges {(i, 0), (i+ 1, 0)} away from (i, 0), for 0 ≤ i ≤ n−2. For any orientation of the

remaining edges we get an acyclic orientation of Ln with (0,0) as the only source. So,

2(n−1)2 ≤ α0(n)

and thus

2 ≤ lim
n→∞

(α0(n))1/n2

.

A better lower bound is the following

7



Theorem 1.3.1.

lim
n→∞

(α0(n))1/n2 ≥ 7

3

lim
n→∞

(α(n))1/n2 ≥ 22

7
.

Proof. We enumerate the vertices of Ln by assigning to vertex (i, j) the number

ni+ j + 1, for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1.

Let Ln,k be Ln \ {1, . . . , k} and Ln,0 = Ln. We prove that

α0(Ln,k−1) ≥ 7

3
α0(Ln,k),

for k < n(n− 1) and k 6= n, 2n, . . . , n(n− 2).

Once this result is proved, we apply it recursively in the order given to the vertices.

Notice that for k = n, 2n, . . . , n(n− 2), α0(Ln,k−1) = α0(Ln,k).

Consider an acyclic orientation of Ln,k−1 with the vertex labelled k as the only

source. If we restrict this orientation to Ln,k, then k + n and k + 1 are the only

possibilities for being a source in this restriction. Also, we know that this orientation

of Ln,k must have at least one source, as it is an acyclic orientation. So, we can

partition the set of acyclic orientations of Ln,k−1 with k as the only source into three

sets. The ones that restricted to Ln,k have k + n as the only source, the ones with

k + 1 as the only source and the ones with k + n and k + 1 as the only two sources.

Call these sets R, S and P , respectively.

As we noted before, the number of acyclic orientations with exactly one source is

independent of the vertex chosen as a source, therefore |R| = |S|.
Now, the set R can be partitioned further as follows. The orientations where the

vertex k+ 1 is a sink, the ones that have the directed path k+n+ 1→ k+ 1→ k+ 2

and the ones that have the directed path k + 2→ k + 1→ k + n+ 1. Call these sets

U , V and W respectively.

Clearly, any element of U can be transformed into a unique element of P , by

reversing the orientation of the edges (k + n + 1, k + 1) and (k + 1, k + 2). Thus

|P | ≥ |U |. By the same argument |P | ≥ |V | and |P | ≥ |W |. We conclude that

|P | ≥ 1
3
|R| and the claim follows.

Now, consider the graph L̂n,k, which is obtained from Ln,k by adding an apex a,

that is, V (L̂n,k) = V (Ln,k)∪{a} and E(L̂n,k) = E(Ln,k)∪{(a, v)|v ∈ V (Ln,k)}. There

is a clear bijection between acyclic orientations of Ln = Ln,0 and acyclic orientations

of L̂n,0 with a as the only source.
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We prove that

α0(L̂n,k−1) ≥ 22

7
α0(L̂n,k),

for k < n(n− 1) and k 6= n, 2n, . . . , n(n− 2).

As before, we apply the result recursively to the vertices V (L̂n,k) \ {a} in the

induced order given by V (Ln,k). It is important to note that here we are using again

that the number of acyclic orientations with exactly one source is independent of the

vertex chosen as a source.

Again, we partition the set of acyclic orientations of L̂n,k−1 with k as the only

source. This time we have four sets. The ones that restricted to L̂n,k have either

k + n, k + 1 or a as the only source, and the ones that have k + n and k + 1 as the

only two sources. Call these sets R1, R2, R3 and Q.

We have that |R1| = |R2| = |R3| because the number of acyclic orientations with

exactly one source is independent of the vertex chosen as a source. Similarly as the

previous argument, we partitione the set R1 into 7 sets obtained by considering the

possible orientations given to the edges (k+1, a), (k+1, k+n+1) and (k+1, k+2). If we

now call these sets R1,i, 1 ≤ i ≤ 7, we get that for a fixed i, any element of R1,i can be

transformed into a unique element ofQ, by reversing the orientation of the appropriate

edges. Thus |Q| ≥ |R1,i|, 1 ≤ i ≤ 7. We conclude that |Q| ≥ 1
7
|R1|. Summing these

quantities gives the required factor of 22
7
|R1| and completes the proof.

As far as upper bounds are concerned, there is the trivial upper bound of α(n) ≤
4n

2
obtained from all possible orientations of the edges. One rigorous improvement

which we have on this is derived from the following theorem.

Theorem 1.3.2. For any connected graph G with at least one cycle, α0(G) is strictly

less than the number of spanning trees and α(G) is strictly less than the number of

forests.

Proof. A basic property of T is that T (G;x, y) can be written as
∑
tijx

iyj with

all coefficients tij nonnegative integers. The coefficient tij counts the number of

spanning trees with internal activity i and external activity j, see [?] for definition

and a proof. Provided G is connected with at least one cycle we can find spanning

trees with positive external activity and this implies a strictly positive tij, for some

0 < j ≤ E(G)−V (G)+1. Since α0 = T (G; 1, 0) < T (G; 1, 1) and α(G) = T (G; 2, 0) <

T (G; 2, 1) which equals the number of forests, the result follows.

A better upper bound for α(n) is the following.
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Theorem 1.3.3. The number α(n) satisfies

lim
n→∞

(α(n))1/n2 ≤ 3.62330970816373 . . . .

We will prove this together with a similar result for the number of forests in our

proof of Theorem 1.4.1 in the next section.

We now turn to the generation and enumeration of forests in Ln.

1.4 Forests

As far as complexity issues are concerned, counting spanning trees is no problem. It

is one of the “easy points” of Theorem 2 in [?] and is easy for any graph by using the

Kirchhoff determinantal formula.

However, as far as this chapter is concerned an alternative approach gives us a

better idea of the asymptotics.

We use t(n) to denote the number of spanning trees of Ln. Let an be the number

of 1-factors or perfect matchings of L2n. It is shown in [?] that

lim
n→∞

ln an
n2

=
4

π2

∫ π
2

0

∫ π
2

0

ln(4 cos2 x+ 4 cos2 y)dxdy

= c ≈ 1.166243696.

We obtained the approximated value of c by using Mathematica version 2.2.

Now, let bn be the number of 1-factors in the graph L′n, which is obtained from the

(2n−1)×(2n−1) square lattice by taking out one corner vertex, that is, L′n = L2n−1\
(0, 0). In [?], a bijection has been established between the 1-factors of L′n and the

spanning trees of Ln. Since bn ≤ an ≤ bn+1 we get that limn→∞ a
1/n2

n = limn→∞ b
1/n2

n

and

lim
n→∞

(t(n))1/n2

= ec ≈ 3.209912556. (1.4.1)

The number of spanning forests of the square lattice Ln, which we denote by

f(n), seems an elusive quantity to approximate accurately. We found it difficult

to do better than the trivial upper bound until Colin McDiarmid [?] showed by a

probabilistic argument that there exists η > 0 such that

lim
n→∞

(f(n))1/n2 ≤ 4− η

where η was some unknown constant. An extension of his argument allows us to

obtain the following explicit bound for f(n) and similar techniques give us the proof

of Theorem 1.3.3.
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Theorem 1.4.1.

lim
n→∞

(f(n))1/n2 ≤ 3.78649853538319 . . . .

Proof. Let k be a fixed positive integer. From the lattice of side 2pk we select the 4p

small lattices of sizes k× k whose bottom left hand corners are the points (ik, jk) for

0 ≤ i, j ≤ 2p − 1. Call C this set of subgraphs of L2pk.

We construct a set of subgraphs of L2pk that properly contains all its forests.

Choose for every subgraph of C a spanning forest of this subgraph and then choose

any subset of the remaining 2(2p)(2p−1)k edges in L2pk, that is any subset of E(L2pk)\
∪C∈CE(C). Any forest of L2pk can be obtained in this way, we are, however, including

some subgraphs that are not acyclic, so this is an overcount, but nevertheless

f(2pk) ≤ 22(2p)(2p−1)k(f(k))4p .

Hence

(f(2pk))1/4pk2 ≤ 22/k

(
1

2

)2/2pk

(f(k))1/k2

,

and taking the limit as p→∞ we get

lim
n→∞

(f(n))1/n2

= lim
p→∞

(f(2pk))1/4pk2 ≤ 22/k(f(k))1/k2

.

In Subsection 1.6.1, we obtain the value for f(7) = 1.31592738937415 × 1024, by

computing 22/7(f(7))1/49 and using this we get the result.

Proof of Theorem 1.3.3. We use the same construction as in the above proof to get

the class C. Then we choose for every subgraph of C an acyclic orientation of this

subgraph and we orient the remaining edges in L2pk arbitrarily. Using the same

argument as before, we obtain

lim
n→∞

(α(n))1/n2 ≤ 22/k(α(k))1/k2

.

For k = 7, by substituting the value α(7) = 1.519663682749935 × 1023, that we will

obtain in Subsection 1.6.1, in the left hand expression, we get the result.

1.5 The random forest

In contrast with our very limited success in counting forests, we have made some

progress on the related problem of describing the random forest in Ln. Jerrum [?]

reports on the attempts ( with V. Gore ) to use the exact generation methods of

Propp and Wilson [?] to generate a random forest in L30. This appeared to be
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the computational limit. First we present one somewhat surprising property of the

random forest in general graphs.

Given a subset A ⊆ E(G) we denote by σ(A) the closure of A in the cycle matroid

of G. In other words, σ(A) consists of the unique maximal superset of A which

contains A and has the same rank as A. Alternatively, if we consider the subgraph

G : A = (V (G), A) ofG, and let C1, C2, . . . , Ck be its connected components, including

isolated vertices, then edge e ∈ σ(A) if and only if e ∈ A or e /∈ A but both its

endpoints are in the same connected component of G : A.

Theorem 1.5.1. For any graph G, if F denotes the edge set of a forest chosen

uniformly at random from all forests of G, then, if 〈 〉 denotes expected value,

〈|F |〉+ 〈|σ(F )|〉 = |E(G)|.

Proof. Theorem 5.1 of [?] gives the following identity about the Tutte polynomial of

any loop free matroid M = (E, r),

|E| T (M ;x, y) =
∑
A⊆E

(x|σ(A)|+ y(1− x)|σ(A) \ A|) t(A)

where t(A) = (x− 1)r(E)−r(A)(y − 1)|A|−r(A). Now take M to be the cycle matroid of

the graph G and put x = 2, y = 1. This gives

|E(G)|f(G) =
∑

A∈F(G)

(2|σ(A)| − |σ(A)|+ |A|)

where F(G) is {A ∈ E(G)|A is a forest}, and f(G) = |F(G)|. Dividing the last

equation by f(G), we get the result.

An alternative way of looking at this identity is the following. Consider a Markov

chain Xt with set of states the forests of G and suppose the transition probabilities

are governed by the following mechanism. At each epoch of time an edge e is picked

uniformly at random from E(G). If Xt contains e then Xt+1 = Xt \ e, if e 6∈ Xt and

Xt ∪ {e} is a forest then Xt+1 = Xt ∪ {e}. It is easy to see that Xt converges to a

uniform distribution on the set of forests of G. In equilibrium,

Pr{|Xt+1| = |Xt|+ 1} =
|E| − |σ(Xt)|

|E|

Pr{|Xt+1| = |Xt| − 1} =
|Xt|
|E|

.

Thus, intuitively, at equilibrium these probabilities should be equal. A formal proof

using this idea was given by Steve Noble in his D.Phil. thesis [?].
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Corollary 1.5.2. The expected number of connected components of a random forest

in Ln is at least n.

Proof. Consider the case where G = Ln. Let Fn be the random forest and suppose

it has kn components so that |Fn| = n2 − kn. Also |σ(Fn)| ≥ |Fn|. So applying the

identity, we get

2n2 − 2〈kn〉 ≤ |E(Ln)| = 2n2 − 2n.

Thus 〈kn〉 ≥ n as required.

However, asymptotically this is a very weak result because of the following.

Theorem 1.5.3. The expected number I(n) of isolated vertices of a random forest in

Ln satisfies

I(n) ≥ (n2 + 4n+ 4)/16.

Proof. For a graph G let G \ v denote the subgraph obtained by deleting v and all

edges incident with v. Consider the probability p0(v) that in a random forest of G, v

has degree zero.

But, given any forest of G \ v it may be augmented to a forest of G in at most

2d(v) ways. Hence,

p0(v) =
f(G \ v)

f(G)
≥ 1

2d(v)
,

where d(v) denotes the degree of v in G. Since I(n) =
∑

v∈Ln p0(v) the result follows.

It is almost immediate that the probability p1(v) that in the random forest of G,

vertex v has degree 1 is given by p1(v) = d(v)p0(v). Applying this to Ln gives.

Corollary 1.5.4. The expected number of degree 1 vertices of a random forest in Ln

is at least (n2 + 2n)/4.

1.6 A transfer-matrix approach

We now introduce the n×m lattice Ln,m. The vertices of Ln,m can be identified with

the set of ordered pairs {(i, j) ∈ N2| 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}. And there is an

edge between the vertices (i, j) and (i′, j′) if |i − i′| + |j − j′| = 1. Thus, the graph

Ln,m has nm vertices and m(n−1)+n(m−1) edges. Note that Ln,n = Ln. Figure 1.2

shows L15,11.
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We also define the m-comb graph, P ′m to be the subgraph of L2,m with the same

set of vertices and edges

{(1, j) ∼ (2, j)| 0 ≤ j ≤ m− 1} ∪ {(2, j) ∼ (2, j + 1)| 0 ≤ j ≤ m− 2}.

Figure 1.2 also shows the graph P ′11.

Any subset of edges in Ln,m can be seen as constructed from a subset of edges in

Ln−1,m and a subset of edges from the m-comb graph, we formalise this later, but the

intuitive idea shall be clear from Figure 1.2. This characteristic of Ln,m allows us to

compute the Tutte polynomial of Ln,m by means of the transfer-matrix method.

Figure 1.2: The lattice L15,11 and the 11-comb graph P ′11.

The theoretical background of the transfer-matrix method, taken from [?], is de-

scribed below.

A directed graph or digraph ~G is a triple (V,E, φ), where V = {v1, . . . , vp} is a set

of vertices, E is a finite set of directed edges or arcs, and φ is a map from E to V ×V .

If φ(e) = (u, v), then e is called an edge from u to v, with initial vertex u and final

vertex v. A directed walk Γ in ~G of length n from u to v is a sequence e1, . . . , en of n

edges such that the final vertex of ei is the initial vertex of ei+1, for 1 ≤ i ≤ n− 1.

Now let w : E → R be a weight function on E with values in some commutative

ring R. If Γ = e1, . . . , en is a walk, then the weight of Γ is defined by w(Γ) =

w(e1) · · ·w(en). For 1 ≤ i, j ≤ p and n ∈ N, we define

Ai,j(n) =
∑

Γ

w(Γ),

where the sum is over all walks Γ in ~G of length n from vi to vj. In particular,

Ai,j(0) = δij. The fundamental problem treated by the transfer-matrix method is the
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evaluation of Ai,j(n). The idea is to interpret Ai,j(n) as an entry in a certain matrix.

Define a p× p matrix T = (Ti,j) by

Ti,j =
∑
e

w(e),

where the sum is over all edges e satisfying that its initial vertex is vi and its final

vertex is vj. In other words, Ti,j = Ai,j(1). The matrix T is called the adjacency

matrix of ~G, with respect to the weight function w.

Theorem 1.6.1. Let n ∈ N. Then the (i, j)-entry of T n is equal to Ai,j(n). (Here

we define A0 = Ip even if A is not invertible, where Ip is the identity matrix).

Proof. See [?].

Now, we formalise the intuitive idea at the beginning of the section. Here we

denote by En,m the edge-set of Ln,m. We also use Ek
m, k ≥ 2, for the set of edges

{(k − 2, i) ∼ (k − 1, i)| 0 ≤ i ≤ m− 1} ∪ {(k − 1, i) ∼ (k − 1, i− 1)| 1 ≤ i ≤ m− 1}

of Ln,m, n ≥ k. In the case k = 1, we define E1
m = E1,m, that is the edges of a

path of length m. By our definition of Ln,m, we have that En−1,m ⊆ En,m, and also

Ek
m ⊆ En,m, for all k ≤ n.

The right-row decomposition of a set of edges A in Ln,m is the set {Ai}ni=0 of subsets

of edges of Ln,m, where Ai = A∩Ei,m, 1 ≤ i ≤ n, and A0 = ∅. In particular, An = A.

The block decomposition of A is the partition of the set A given by {Bi}ni=1, where

Bi = A ∩ Ei
m = Ai \ Ai−1, for 1 ≤ i ≤ n.

A way to compute the Tutte polynomial of Ln,m is to compute for every subset of

edges A ⊆ En,m, the term

(u− 1)r(E(Ln,m))−r(A)(v − 1)|A|−r(A),

and then sum over all possible subsets A. First we make the change of variable

u − 1 = x and v − 1 = y, and we also factor the term xr(E(Ln,m)). So, we want to

compute, for every set A ⊆ En,m,

xr(E(Ln,m))(x−r(A)y|A|−r(A)). (1.6.1)

Here is where our decompositions become useful.
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Lemma 1.6.2. Let A be a subset of edges of Ln,m, then

x−r(A)y|A|−r(A) = x−r(B1)y|B1|−r(B1)

n−1∏
i=1

x−r(Ai+1)+r(Ai)y|Bi+1|−r(Ai+1)+r(Ai), (1.6.2)

where {Ai}ni=0 is the right-row decomposition of A and {Bi}ni=1 is the block decompo-

sition of A.

Proof. Equation 1.6.2 is a consequence of the following:

n−1∑
i=1

(−r(Ai+1) + r(Ai)) = −r(An) + r(A1) = −r(An) + r(B1),

as B1 = A1. Thus, the exponent of x in the right-hand side of equation 1.6.2 is

−r(B1)− r(An) + r(B1) = −r(A), as An = A.

Also,

n−1∑
i=1

(|Bi+1| − r(Ai+1) + r(Ai)) = (
n−1∑
i=1

|Bi+1|)− r(An) + r(B1)

= (
n∑
i=1

|Bi|)− |B1| − r(An) + r(B1)

= |A| − |B1| − r(An) + r(B1).

The reason for the equality
∑n

i=1(|Bi|) = |A| is that {Bi}ni=1 is a partition of A. Thus,

the exponent of y in the right-hand side of equation 1.6.2 is

|B1| − r(B1) + |A| − |B1| − r(An) + r(B1) = |A| − r(A).

An advantage of equation 1.6.2 is that each factor of the right-hand side expression

can be computed using very little information from A, and this will save us having

to keep track of all subsets of edges of Ln,m.

To formalise this, we denote the set of vertices {(r, j)|0 ≤ j ≤ m− 1} of Ln,m by

Vr, with 1 ≤ r ≤ n. Consider an arbitrary subgraph H of Ln,m. We enumerate the

connected components of H, seen as a spanning graphs of Ln,m, and we label every

vertex with the number of the component it belongs to. For a fixed r, the r-state of

H is the ordered m-tuple of labels of Vr, (lm, . . . , l1), where li is the label of vertex

(r, i− 1), with 1 ≤ i ≤ m. We denote the r-state of H by σr(H). We also define the

r-phase of H, ψr(H), to be the set of connected components to which the vertices

Vr∪Vr−1 belong to. For an r-state β, we denote by |β|, the number of different labels

in β = σr(H), that is, the cardinality of the set of components of H to which the

vertices Vr belong.
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Lemma 1.6.3. Let n,m ≥ 2 be two integers. Let A ⊆ En,m, with right-row decom-

position {Ai}ni=0, then, for 1 ≤ i ≤ n,

−r(Ai+1) + r(Ai) = |ψi+1(Ai+1)| − |σi(Ai)| −m. (1.6.3)

Proof. Let {Bi}ni=1 be the block decomposition of A. By definition of rank in a graph,

for 1 ≤ i ≤ n,

r(Ai) = (nm− 1)− ω(Ai),

where, for a subset of edges H of Ln,m, ω(H) is the number of connected components

of H, see Chapter ??.

But the set of connected components of Ai+1 can be partitioned into the set of

components which the vertices Vi ∪ Vi+1 belong to, that we denote by A, and the

set of components left, denoted by B. On the other hand, the set of connected

components of Ai can be partitioned into the set of components which the vertices

Vi−1∪Vi belong to, that we denote by A′, and the set of components left, denoted by

B′. As Ai+1 = Ai ∪Bi+1, the connected components of Ai that do not contain any of

the vertices in Vi ∪ Vi+1 are not going to change when we put the edges of Bi+1, so

|B′| = |B|. Thus,

−r(Ai+1) + r(Ai) = ω(Ai+1)− ω(Ai)

= |A|+ |B| − |A′| − |B′|

= |A| − |A′|.

But every vertex in Vi+1 is a connected component of Ai, so |A′| = |σi(Ai)| + m,

and by definition, |A| = |ψi+1(Ai+1)|. So the result follows.

Observe that, for 1 ≤ i ≤ n, the right-hand side of equation 1.6.3 depends only

on m, the number of different labels of the i-state of Ai and the i+ 1-phase of Ai+1.

In fact, the i + 1-phase of Ai+1 depends just on the distribution of the labels in the

i-state of Ai and the set of edges Bi+1.

We are going to make this more precise by considering a standard form of an r-

state of a subset of edges of Ln,m. Given an r-state β = (lm, . . . , l1) of H, we consider

the different labels {la1 , . . . , lap}, where we assume ai is the first ocurrence in β of the

label lai , that is, for all n ≤ i ≤ ai, li 6= lai , the standard form of β is the ordered set

obtained by relabelling lai → i. We denote the standard form of β by β. Note that,

as we are just relabelling, |β| = |β|.
For a given m, the set

Sm = {σr(H)|H ⊆ En,m, n ≥ 2, r ≤ n}
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is finite, as it is contained in the set of all ordered m-tuples of the elements 1, . . . ,m,

thus |Sm| ≤ mm. It is known that |Sm| is the (m + 1)-Catalan number, cm+1, [?].

The Catalan numbers have several equivalent definitions [?], here we just note that

cm+1 =
1

m+ 1

(
2m

m

)
.

Now, for an element β = (β1, . . . , βm) ∈ Sm and a subset of edges B of P ′m, we

construct a graph with vertices

{(1, i)| 0 ≤ i ≤ m− 1} ∪ {(2, i)| 0 ≤ i ≤ m− 1}

and edges B ∪B′, where B′ is the set of edges

{(1, i) ∼ (1, j)| βi = βj, 1 ≤ i, j ≤ m− 1}.

We denote this graph by Gβ,B.

Lemma 1.6.4. Let m ≥ 2 be a fixed integer. If β ∈ Sm and B is a subset of edges of

P ′m, then there exists a subset H ∈ En,m, for some n ≥ 2 such that :

1. if H1 = H ∩ En−1,m, then σn−1(H1) = β.

2. |ψn(H)| = ω(Gβ,B).

Proof. As β ∈ Sm, we know that there exists H ′ ∈ En,m, for some n, such that

σr(H ′) = β, for some r ≤ n. We take n and r such that r = n − 1. Now, there

is a natural isomorphism in graphs between B and a subset of edges in En
m, by our

definition of En
m, call this set C. Thus, the graph H = H ′ ∪ C has the property that

H ′ = H ∩ En−1,m, with σn−1(H ′) = β.

The vertices of Gβ,B can be identified with Vn−1 ∩ Vn, just by changing (1, j) →
(n − 1, j) and (2, j) → (n, j), for 0 ≤ j ≤ m − 1. Even more, there is an edge

(1, i) ∼ (1, j) in Gβ,B if and only if there is a path from (n − 1, i) to (n − 1, j) in

H ′, by definition of Gβ,B and σn−1(H ′). And by construction of C, there is an edge

(1, j) ∼ (2, j) or (2, j) ∼ (2, j′) in B if and only if there is an edge (n− 1, j) ∼ (n, j)

or (n, j) ∼ (n, j′) in C

Therefore, if the vertices a, b of Gβ,B are in the same connected component, then

the corresponding vertices in Vn−1 ∪ Vn will be in the same connected component of

H. Thus, |ψn(H)| = ω(Gβ,B).

A converse of the previous result is also true.
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Lemma 1.6.5. If H ⊆ En,m, where n,m ≥ 2 are integers, then for the standard state

β = σn−1(H1), where H1 = H ∩ En−1,m, and the subset of edges B = H ∩ En
m, we

have that

|ψn(H)| = ω(Gβ,B).

Proof. This follows directly from the definition of a standard form and the graph

Gβ,B.

Now, it is more clear what we meant at the end of Lemma 1.6.3; the evaluation

of the exponent of the variables in the right-hand side of equation 1.6.3 will be done

by using just the information of the standard forms of the Ai’s and the Bi’s, then

the evaluation of the product in Lemma 1.6.2 will be done by the transfer-matrix

method.

For a fixed m ≥ 2, we define a transformation of an element β ∈ Sm by a subset

of edges B ∈ P ′m. The new standard state will be γ = σn−1(H), where n and H are

defined by Lemma 1.6.4. This element depends only on β and B and not the choice

of n or H, as H was constructed using just β and B, also n was determined by β.

We denote this by β
B−→ γ.

It is also convenient to have the following notion. For a standard state γ ∈ Sm,

we say that it is realizable if there exists B ⊆ E1,m such that σ1(B) = γ, and we call

B the realization of γ. Observe that not every element of Sm has to be realizable, for

example, with m = 3, (1, 2, 1) is not realizable. Also, it is worth noticing that the

realization of a standard state γ is unique.

Finally, we are ready to use the transfer-matrix method. Let m ≥ 2, consider the

directed graph ~Gm, whose vertices are the standard states in Sm, and if β, γ ∈ Sm is

a pair of standard states such that exists B, a subset of edges of P ′m, with β
B−→ γ,

then there is an edge β → γ. We assign to this edge the weight

xω(Gβ,B)−|β|−my|B|+ω(Gβ,B)−|β|−m.

The weights are elements of the ring of polynomials Z[x, x−1, y], where we assume

xx−1 = 1. Observe that there may be many directed edges from β to γ, all with

different weight.

Consider the adjacency matrix Tm of ~Gm with respect to this weight assignment,

then we have the following

Theorem 1.6.6. Let β and γ be elements of Sm, where β has realization B1, then

xnm−1x|B1|(T n−1
m )β,γ =

∑
A⊆En,m
σ1(A)=β
σn(A)=γ

xr(E(Ln,m))−r(A)y|A|−r(A)
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Proof. Let A be a subset of En,m, with σ1(A) = β and σn(A) = γ. Consider its

right-row decomposition {Ai}ni=0 and its block decomposition {Bi}ni=1, we show that

the path Γ in ~Gm defined by

β = γ1
B2−→ · · · Bn−→ γn = γ

where γi = σi(Ai), is such that

xr(E(Ln,m))−r(A)y|A|−r(A) = xmn−1x|B1|w(Γ). (1.6.4)

As the term |B1| − r(B1) = 0, because B1 is an independent set of edges, see

page ??, we can introduce to the right-hand side expression of equation 1.6.4 the

factor y|B1|−r(B1), we also expand w(Γ), so the right-hand side of equation 1.6.4 is

equal to

xmn−1x|B1|y|B1|−r(B1)

n−1∏
i=1

xω(Gγi,Bi+1
)−|γi|−my|Bi+1|+ω(Gγi,Bi+1

)−|γi|−m.

By Lemma 1.6.4, this expression is equal to

xmn−1x|B1|y|B1|−r(B1)

n−1∏
i=1

x|ψi+1(Ai+1)|−|σi(Ai)|−my|Bi+1|+|ψi+1(Ai+1)|−|σi(Ai)|−m,

and by Lemma 1.6.3, this is equal to

xmn−1x|B1|y|B1|−r(B1)

n−1∏
i=1

x−r(Ai+1)+r(Ai)y|Bi+1|−r(Ai+1)+r(Ai).

Finally, by Lemma 1.6.2, this last expression is equal to

xnm−1x−r(A)y|A|−r(A) = xr(E(Ln,m))−r(A)y|A|−r(A).

But every path Γ from β to γ gives an A ⊆ En,m such that σ1(A) = β and

σn(A) = γ. If Γ is the path

β
B2−→ · · · Bn−→ γ,

take A =
⋃n
i=1Bi. Therefore, to every path Γ there exists by construction a unique

A such that equation 1.6.4 holds. By summing over all paths we get the result.

We define the vector
−→
Xm of cm+1 entries over Z[x] by

(
−→
Xm)γ =

{
x|B| if γ has realization B,

0 otherwise.
(1.6.5)

Now, we have the main theorem of this section.

20



Theorem 1.6.7. For integers n,m ≥ 2 we have

T (Ln,m;x+ 1, y + 1) = xnm−1−→Xm
tT n−1
m

~1, (1.6.6)

where ~1 is the cm+1 vector with all entries equal to 1 and
−→
Xm is the vector defined by

equation 1.6.5.

Proof. The definition of the Tutte polynomial implies that

T (Ln,m;x+ 1, y + 1) =
∑

A⊆En,m

xr(E(Ln,m))−r(A)y|A|−r(A).

On the other hand,

xnm−1−→Xm
tT n−1
m

~1 =
∑
β

∑
γ

∑
A⊆En,m
σ1(A)=β
σn(A)=γ

xr(E(Ln,m))−r(A)y|A|−r(A),

where the first sum runs over all realizable elements β of Sm, and the second sum

runs over the all elements of Sm. Because the last term of the previous sequence of

equations includes the term xr(E(Ln,m))−r(A)y|A|−r(A) exactly once for every A ⊆ En,m,

as we show at the end of the proof of Theorem 1.6.6, we obtain the result.

1.6.1 Numerical values

In principle, the above method can be used to compute the Tutte polynomial of the

lattice Ln,m, n,m ≥ 2, but computationally it is not feasible, as the required space

to store the transfer-matrix grows exponentially, as an example, for m = 10 the

transfer-matrix is a 16792-by-16792 matrix. Even for small values of n and m, the

above computation involves storing large polynomials for each entry of the transfer-

matrix, so that although possible, it is very cumbersome. Other possibility is to

evaluate the polynomial at sufficient many points and then interpolate, this is more

practical but we have not implemented this option in our programs.

However, for some small values of n and m we can evaluate the Tutte polynomial

at particular points easily. By Theorem 1.6.7, to evaluate T (Ln,m;x0 + 1, y0 + 1), we

just have to evaluate

xnm−1
0

−→
Xm

t|x=x0 (Tm|x=x0
y=y0

)n~1

where
−→
Xm

t|x=x0 is the vector defined in 1.6.5 with the substitution x = x0, and Tm|x=x0
y=y0

is the transfer matrix defined in page 32 with the substitution, x = x0 and y = y0.
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For small m, the matrix Tm|x=x0
y=y0

can be created by using the programs indices.c

in Section B.1 and matrix.c in Section D.1; also the vector
−→
Xm

t|x=x0 can be created

by using the program vector.c in Section F.1. Using this procedure with the values

(x0, y0) = (1, 0) and (x0, y0) = (1,−1), for the square lattices of side n, 2 ≤ n ≤ 7,

we compute f(n) and α(n) for 2 ≤ n ≤ 7. The values are shown in Table 1.1

and Table 1.2. Unfortunately, this method of evaluating the Tutte polynomial at a

particular point does not allow us to compute values with a substitution involving

x0 = 0, as the entries of the matrix Tn may have polynomials with terms in x−1, thus

we cannot compute evaluations of the Tutte polynomial at the points (1, y0), y0 ∈ R.

Forests

Side n Number of forests f(n) Upper bound 22/nf(n)1/n2

2 15 3.93597934253086
3 3102 3.87834878392052
4 8790016 3.84161954194043
5 3.410086174080000e+11 3.81700397677008
6 1.810755082420676e+17 3.79951640436763
7 1.315927389374152e+24 3.78649853538319

Table 1.1: This table displays the values of f(n) and 22/nf(n)1/n2
for 1 ≤ n ≤ 7.

The following tables display the values of f(n) and α(n) for 1 ≤ n ≤ 7. Table 1.1

also show the values 22/nf(n)1/n2
, which give upper bounds for limk→∞(f(k))1/k2

by

Theorem 1.4.1. And Table 1.2 shows the values 22/nα(n)1/n2
which are upper bounds

for limk→∞(α(k))1/k2
by the proof of Theorem 1.3.3.

Acyclic orientations

Side n Number of acyclic orientations α(n) Upper bound 22/nα(n)1/n2

2 14 3.86867284053534
3 2398 3.76899413308793
4 5015972 3.70925927917375
5 1.280914342660000e+11 3.67039497637590
6 3.993185613821266e+16 3.64326780246972
7 1.519663682749935e+23 3.62330970816373

Table 1.2: This table displays the values of α(n) and 22/nα(n)1/n2
for 1 ≤ n ≤ 7.
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1.7 Forests and acyclic orientations again

The procedure described in subsection 1.6.1 allows us to actually compute the num-

ber of forests of Ln,m, that from now on we denote by f(n,m), for a fixed m and

an arbitrary n. In fact, it allows us more, namely, to have a very good bound on

limn→∞ f(n,m)1/n by using linear algebra.

During this section we denote Tm|x=1
y=0

by Am. To compute f(n,m) we have to

evaluate
−→
Xm

t|x=1A
n−1
m

~1, but the vector
−→
Xm

t|x=1 has just 0-1 entries, as
−→
Xm

t is given

by 1.6.5. Then, we are interested in evaluating aAn−1
m

~1, where a is a 0-1 vector.

The first observation is that aA~1 ≤ ‖A‖1, where a is a 0-1 vector, A is a k×k real

matrix and ‖·‖1 is the l1 matrix norm, that is ‖A‖1 =
∑

i

∑
j |Aij|. This is clear as

aA~1 =
∑
i:ai=1

k∑
j=1

Aij ≤
k∑
i=1

k∑
j=1

|Aij| = ‖A‖1. (1.7.1)

Also, there is a well known result in linear algebra, see [?], that relates any matrix

norm of a matrix with its spectral radius. If A is a k × k matrix, the spectral radius

of A is defined by

ρ(A) = max{|λ| | λ is an eigenvalue of A}

Theorem 1.7.1. Let ‖·‖ be a matrix norm on Mk, the k × k real matrices. Then,

for A ∈Mk,

ρ(A) = lim
k→∞
‖Ak‖1/k.

Combining these two results we obtain the following theorem

Theorem 1.7.2. For any fixed natural number m,

lim
n→∞

f(n,m)1/n ≤ ρ(Am).

Proof. From the above discussion we have

f(n,m) = aAn−1
m

~1 ≤ ‖An−1
m ‖1,

for some 0-1 vector a. Now, using this and that 1
n

= 1
n−1

+ −1
n(n−1)

we get

lim
n→∞

f(n,m)
1
n ≤ lim

n→∞
‖An−1

m ‖
1
n
1 .

= lim
n→∞
‖An−1

m ‖
1

(n−1)

1 ‖An−1
m ‖

−1
n(n−1)

1

=
limn→∞‖An−1

m ‖
1

(n−1)

1

limn→∞

(
‖An−1

m ‖
1

(n−1)

1

) 1
n

.
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By Theorem 1.7.1, the sequence ‖An−1
m ‖1/(n−1)

1 converges to ρ(Am) > 0. Therefore,

the limit in the denominator of the last expression converges to 1 and the above limit

converges to ρ(Am).

The upper bound for limn→∞ f(n,m)1/n has a direct implication on limn→∞ f(n)1/n2
,

as we prove in the following theorem.

Theorem 1.7.3. For k ≥ 1,

lim
n→∞

f(n)1/n2 ≤ 21/k(ρ(Ak))
1/k.

Proof. Let k be a fixed integer. From a square lattice of side kp we select p lattices

Lp,pk, whose bottom left-hand corners are the points (ki, 0), 0 ≤ i ≤ p − 1. Call C
this set of subgraphs.

Choose for every subgraph in C a spanning forest and then choose any subset of

the remained (p− 1)kp edges in Lkp. Any forest of Lkp can be obtained in this way,

but this is clearly an over counting, so, as in Theorem 1.4.1, we conclude that

f(kp) ≤ 2(p−1)kp(f(k, kp))p ≤ 2kp
2

(f(k, kp))p.

Hence

f(kp)1/(kp)2 ≤ 21/kf(k, kp)1/k2p

By taking the limit as p→∞ we get the result using Theorem 1.7.2.

Using the programs indices.c and matrix.c together with matlab, we compute

the values of ρ(An) for 2 ≤ n ≤ 7. In table 1.3 we show the values of ρ(An) and

21/n(ρ(An))1/n, 1 ≤ n ≤ 7. These numerical values and Theorem 1.7.3 imply the

following.

Corollary 1.7.4.

lim
n→∞

f(n)1/n2 ≤ 3.7469814013994.

We now turn to acyclic orientations. If we denote by A′m the matrix Tm| x=1
y=−1

, we

can apply the above observation 1.7.1 and Theorem 1.7.1 to obtain a similar result

to Theorem 1.7.2 but for the number of acyclic orientations of Ln,m, that we denote

by α(n,m).

Theorem 1.7.5. For any fixed natural number m,

lim
n→∞

α(n,m)1/n ≤ ρ(A′m).
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Forests

Side n Spectral radius of An Upper bound 21/n(ρ(An))1/n

2 7.46410161513775 3.8637033051563
3 27.66113326848412 3.8103656631516
4 1.023825083033856e+02 3.7828048765881
5 3.788239653174334e+02 3.7661142283605
6 1.401519651761211e+03 3.7549561053822
7 5.184904556369020e+03 3.7469814013994

Table 1.3: This table displays the spectral radius of An and the bound 21/n(ρ(An))1/n

for 1 ≤ n ≤ 7.

Proof. The proof is the same as in Theorem 1.7.2, but with the matrix A′m.

Also, the same technique as used to prove Theorem 1.7.3 can be used for the proof

of the following.

Theorem 1.7.6. For k ≥ 1,

lim
n→∞

α(n)1/n2 ≤ 21/k(ρ(A′k))
1/k.

Proof. Let k be a fixed integer. We again partition the square lattice of side kp

into p smaller lattices Lp,k, whose bottom left-hand corners are the points (ki, 0),

0 ≤ i ≤ p− 1. Call C ′ this set of subgraphs.

We choose for every subgraph in C ′ an acyclic orientation and then choose any

arbitrary orientation for the remained (p−1)kp edges in Lkp. Any acyclic orientation

of Lkp can be obtain in this way, but again we have over counted, so we conclude that

α(kp) ≤ 2(p−1)kp(α(k, kp))p ≤ 2kp
2

(α(k, kp))p.

Hence

α(kp)1/(kp)2 ≤ 21/kα(k, kp)1/k2p

By taking the limit as p→∞ we get the result using Theorem 1.7.5.

In table 1.4 we show the values of ρ(A′n) and 21/n(ρ(A′n))1/n, 1 ≤ n ≤ 7. Using

these values and Theorem 1.7.6 we get the following.

Corollary 1.7.7.

lim
n→∞

α(n)1/n2 ≤ 3.5632215047716.
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Acyclic orientations

Side n Spectral radius of A′n Upper bound 21/n(ρ(A′n))1/n

2 7 3.7416573867740
3 24.46585609973064 3.6576050153895
4 85.48940334443925 3.6160595209437
5 2.987015449475036e+02 3.5913149457935
6 1.043650023238710e+03 3.5749020517894
7 3.646445690249791e+03 3.5632215047716

Table 1.4: This table displays the spectral radius of A′n and the bound 21/n(ρ(A′n))1/n

for 1 ≤ n ≤ 7.

1.8 Some improvement on the lower bounds

In the last section we used the transfer-matrix method to improve the upper bounds

given in [?]. In this section we improve the lower bounds of the same reference.

The n-fan graph Fn is the graph whose vertices are {0̂}∪{(j, 1)|0 ≤ j ≤ n−1} and

whose edge set consists of all the edges 0̂ ∼ (j, 1), 0 ≤ j ≤ n−1, and (j, 1) ∼ (j+1, 1),

0 ≤ j ≤ n− 2, see Figure 1.3. By computing the generating function of the number

of forests of Fn, denoted f(Fn), Marc Noy [?] proved the following

Theorem 1.8.1.

lim
n→∞

f(n)1/n2 ≥ 2 +
√

2.

Marc Noy and I later extend this to get better lower bounds, here we include this

work.

Figure 1.3: The 15, 5-fan graph F5
15 and the 9-fan graph F9.

We define the n, k-fan graph Fkn , k ≥ 1, as the graph with vertex set {0̂} ∪
{(i, j)|0 ≤ i ≤ n − 1, 1 ≤ j ≤ k − 1}. There is an edge between vertices (i, j) and
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(i′, j′) if |i − i′| + |j − j′| = 1, for all 0 ≤ i ≤ n − 1, 1 ≤ j ≤ k; also we have all the

edges 0̂ ∼ (i, 1), for 0 ≤ i ≤ n− 1. See Figure 1.3.

Thus, the n, 1-fan graph F1
n is the n-fan graph. The number of forests of Fkn will

be denoted by f(Fkn) and the number of acyclic orientations by α(Fkn).

For the proofs of the following two theorems one more definition is required. We

define the n, k-comb graph P k
n to be the graph with vertex set {(i, j)|0 ≤ i ≤ n−1, 0 ≤

j ≤ k}. And there is an edge between vertices (i, j), (i′, j′) if |i − i′| + |j − j′| = 1,

0 ≤ i, i′ ≤ n−1, 0 ≤ j, j′ ≤ k; also we have all the edges (i, 0) ∼ (i, 1), 0 ≤ i ≤ n−1,

see Figure 1.4. Observe that the n, 1-comb graph is the n-comb graph P ′n defined in

page 25. Also note that there is a natural bijection, φn,k, from the set of edges of P k
n

to the set of edges of Fkn given by the identity function on all the edges (i, j) ∼ (i′, j′)

with 0 ≤ i ≤ n− 1, 1 ≤ j ≤ k, and the edge (i, 0) ∼ (i, 1) goes under φn,k to the edge

0̂ ∼ (i, 1), for 0 ≤ i ≤ n− 1.

Figure 1.4: The 15, 5-comb graph P 5
15.

Theorem 1.8.2. For an arbitrary but fixed integer k,(
lim
m→∞

(f(Fkm))1/m
)1/k

≤ lim
n→∞

f(n)1/n2

.

Proof. From a square lattice of side kp+1 we select p different kp+1, k-comb graphs,

Gi, 0 ≤ i ≤ p−1, whose bottom left-hand corners are the points (0, ki), 0 ≤ i ≤ p−1.

Call C this set of subgraphs. Observe that there are kp edges left at the bottom of

Lkp+1 that do not belong to any of the Gi’s.

Choose for every subgraph Gi in C a spanning forest B′i in Fkkp+1 and take the

edges in Gi that correspond ( under the bijection φkp+1,k ) to this forest, say Bi,

0 ≤ i ≤ p− 1.
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The set of edges B =
⋃p−1
i=0 Bi forms a forest. The reason is the following: suppose

there is a cycle C in B, then it would intersect some of the subgraphs Bi. The cycle

C cannot be inside some Bi, as this would contradict our choice of B′i. Let j0 be the

maximum j such that Bj intersects C. Thus, Bj0 contains a path from (l, j0k) to

(h, j0k) for some 0 ≤ l, h ≤ kp. This path in Bj0 maps under φkp+1,k onto a cycle in

Fkkp+1 and this contradicts our choice of B′j0 . Therefore there is not such a cycle C.

Any such choice of the B′i, 0 ≤ i ≤ p− 1 will give a different forest of Lpk+1, so(
f(Fkkp+1)

)p ≤ f(kp+ 1),

then ((
f(Fkkp+1)

) 1
pk+1

) p
kp+1 ≤ (f(kp+ 1))

1
(pk+1)2 ,

and by taking the limit when p→∞ we get the result.

With some changes, the last proof also gives a proof of the following

Theorem 1.8.3. For an arbitrary but fixed integer k,(
lim
m→∞

(α(Fkm))1/m
)1/k

≤ lim
n→∞

α(n)1/n2

.

Proof. Choose for every subgraph Gi in C, as defined in the proof of Theorem 1.8.2,

an acyclic orientation A′i in Fkkp+1 and consider the (acyclic) orientation in Gi that

corresponds ( under the bijection φkp+1,k ) to this orientation, say Ai, 0 ≤ i ≤ p− 1.

Orient the remaining kp edges in any arbitrary but fixed way. This orientation, say

A, is an acyclic orientation of Lkp+1. To see this, we suppose there is an oriented cycle

C in A. The oriented cycle C cannot be part of the orientation Ai, as this would

contradict the choice of A′i, for all 0 ≤ i ≤ p− 1. Let j0 be the maximum j such that

Aj contains part of C. Then, Aj0 contains a directed path from (l, j0k) to (h, j0k) for

some 0 ≤ l, h ≤ kp. But this means that there is an oriented cycle in A′j0 which is

not possible. Thus, there is not such an oriented cycle in A.

Again, any such choice of the A′i, 0 ≤ i ≤ p− 1, will give an acyclic orientation of

Lpk+1, so (
α(Fkkp+1)

)p ≤ α(kp+ 1),

and the proof follows as in Theorem 1.8.2.

It is easy to find and solve the recurrence relation for the sequence f(Fm). The

recurrence relation is given by

f(Fm) = 4f(Fm−1)− 2f(Fm−2),
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with initial conditions f(F1) = 2 and f(F2) = 7. The solution is given by

f(F1
m) = f(Fm) =

1 +
√

2

4
(2 +

√
2)m +

1−
√

2

4
(2−

√
2)m.

Theorem 1.8.1 follows by Theorem 1.8.2 and the last expression.

It is also relatively easy to find a recurrence relation for α(F2
m), namely

α(F2
m) = 13α(F2

m−1)− 27α(F2
m−2),

with the initial conditions α(F2
1 ) = 4 and α(F2

2 ) = 42. By solving this recurrence we

get

α(F2
m) = c1

(
13 +

√
61

2

)m

+ c2

(
13−

√
61

2

)m

,

where c1 ≈ 0.3890957718 and c2 ≈ 0.01872540139. Then, by Theorem 1.8.3 we obtain

Corollary 1.8.4.

lim
n→∞

α(n)1/n2 ≥

√
13 +

√
61

2
.

Using contraction and deletion, we could find, in principle, recurrence relations for

the sequences f(Fkm) and α(Fkm) for a fixed k > 1 and m = 1, . . ., then we solve the

recurrence to obtain an explicit expression of these sequences. This is, however, very

cumbersome. Already for f(F2
m) we have to express f(F2

m) as a solution of several

linear recurrence relations with many variables, [?].

Here, we prefer to use the transfer-matrix method already developed and compute

limn→∞(f(Fkn))1/n for some small values of k.

Let H = {e1, . . . , en−1} be the set of edges e1 = (0, 0) ∼ (1, 0), . . ., en−1 =

(n − 2, 0) ∼ (n − 1, 0). Clearly, the graphic matroid M(Fk−1
n ) is isomorphic to the

graphic matroid M(Ln,k/H), where Ln,k/H is the graph Ln,k with the edges in H

contracted. Even more, we can consider their ground sets the same as the identified

vertices in M(Ln,k/H) can be considered to be 0̂, the same vertex as in Fk−1
n , so, we

consider here E(Fk−1
n ) = E(Ln,k/F ). If r denotes the rank function of M(Ln,k) and

r′ denotes the rank function of M(Fk−1
n ), for a set B ⊆ E(Fk−1

n ), these functions are

related by

r′(B) = r(B ∪ {e1, . . . , en−1})− r({e1, . . . , en−1})

= r(B ∪ {e1, . . . , en−1})− (n− 1), (1.8.1)

where the first equality follows from Proposition ??. In particular

r′(E(Fk−1
n )) = r(E(Ln,k))− (n− 1). (1.8.2)

29



The definition of the Tutte polynomial gives for M(Fk−1
m ) that

T (Fk−1
n ;x+ 1, y + 1) =

∑
B⊆E(Fk−1

n )

xr
′(E(Fk−1

n ))−r′(B)y|B|−r
′(B). (1.8.3)

If for each B ⊆ E(Fk−1
n ) we take A = B ∪ {e1, . . . , en−1}, then, for a particular

B, the exponent of x in 1.8.3 equals, by equations 1.8.1 and 1.8.2,

r(E(Ln,m))− (n− 1)− r(A) + (n− 1) = r(E(Ln,m))− r(A)

and the exponent of y equals

|A| − (n− 1)− r(A) + (n− 1) = |A| − r(A).

So, we obtain

T (Fk−1
n ;x+ 1, y + 1) =

∑
A=B∪{e1,...,en−1}

B⊆E(Fk−1
n )

xr(E(Ln,k))−r(A)y|A|−r(A). (1.8.4)

We use again the transfer-matrix method to give an expression for this Tutte

polynomial. For k ≥ 2, we define a subdigraph ~G′k of the digraph ~Gk considered

in page 32. Its vertices are the standard forms in Sk, and there is a directed edge

β → γ, for β, γ ∈ Sk if β
B−→ γ as defined in page 32, where B is a subset of edges

of P ′k containing the edge (1, 0) ∼ (2, 0). The weights of the edges are the same as in

page 32.

Consider the adjacency matrix T ′k of ~G′k with respect to these weights. We have

the following analogue of Theorem 1.6.6

Theorem 1.8.5. Let β and γ be elements of Sk, where β has realization B1, then

xkn−1x|B1|(T ′k)
n−1
β,γ =

∑
A⊆En,k

{e1,...,en−1}⊂A
σ1(A)=β
σn(A)=γ

xr(E(Ln,k))−r(A)y|A|−r(A)

Proof. It follows from the proof of Theorem 1.6.6 by considering just subsets A of

E(Ln,k) = En,k such that A contains all the edges {e1, . . . , en−1}.

Take the vector
−→
Xk as defined in 1.6.5, then the analogue to Theorem 1.6.7 is the

following
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Theorem 1.8.6. For k, n ≥ 2 two integers we have

T (Fk−1
n ;x+ 1, y + 1) = xkn−1−→Xk

t(T ′k)
n−1~1, (1.8.5)

where ~1 is the vector with all entries equal to 1.

Proof. By 1.8.4, we have

T (Fk−1
n ;x+ 1, y + 1) =

∑
A=B∪{e1,...,en−1}

B⊆E(Fk−1
n )

xr(E(Ln,k))−r(A)y|A|−r(A).

Now, the proof continues as the proof of Theorem 1.6.7 where now we just consider

sets A containing the edges {e1, . . . , en−1}.

As explained in Subsection 1.6.1, we can now evaluate for a particular point (x0 +

1, y0 + 1) the polynomial T (Fk−1
n ;x0 + 1, y0 + 1) by computing

xkn−1
0

−→
Xk

t|x=x0 (T ′k|x=x0
y=y0

)n−1~1.

But due to Theorem 1.8.2 and Theorem 1.8.3, we are more interested in evaluating

the limn→∞(f(Fk−1
n ))1/n and limn→∞(α(Fk−1

n ))1/n. So, we consider here just the

evaluations x0 = 1 and y0 = 0 or y0 = −1. We denote for the rest of this section the

square real matrix T ′k|x=1
y=0

by Dk; the matrix T ′k| x=1
y=−1

by D′k; and the column vector
−→
Xk

t|x=1 by ak.

Before going into the main theorems of the second part of this section, we take a

detour on the Perron-Frobenius Theorem. Most of this is from [?].

Definition 1.8.7. Let A = (aij) be an n × n real matrix. We say that A ≥ 0, that

is A is nonnegative, if all its entries aij are nonnegative. We say that A > 0, A is

positive, if all its entries aij are positive.

Later in the section we show that the matrices Dk and D′k are nonnegative. First

an important definition for the Perron-Frobenius Theorem.

Definition 1.8.8. An n× n real matrix A is said to be reducible if either

(a) n = 1 and A = 0; or

(b) n ≥ 2, there is an n × n permutation matrix P ( that is a square matrix, all of

whose entries are 0 or 1 and in each column and each row of P there is precisely

one 1), and there is some integer l with 1 ≤ l ≤ n− 1 such that

P tAP =

(
B1 B3

0 B2

)
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where B1 is an l× l matrix, B2 is an (n− l)× (n− l) matrix, B3 is an l× (n− l)
matrix and ~0 is the l × (n− l) zero matrix.

Definition 1.8.9. An n× n real matrix A is irreducible if it is not reducible.

We are going to prove later that the matrices Dk and D′k are irreducible, but for

that we need a criteria based on a graph associated to any matrix.

Definition 1.8.10. The directed graph of an n× n real matrix A, denoted by Γ(A),

is the directed graph on n nodes c1, . . . , cn such that there is a directed arc in Γ(A)

from ci to cj if and only if (A)ij 6= 0.

Then there is the following theorem, see [?].

Theorem 1.8.11. Let A be a n × n nonnegative real matrix. Then A is irreducible

if and only if Γ(A) is strongly connected.

In order to state the Perron-Frobenius Theorem, we also need the notion of prim-

itivity.

Definition 1.8.12. An n × n nonnegative real matrix A is said to be primitive if it

is irreducible and has only one eigenvector of maximum modulus.

Theorem 1.8.13 (Perron-Frobenius Theorem). Let A be an n × n real matrix and

suppose that A is primitive and nonnegative. Then

(a) ρ(A) > 0;

(b) ρ(A) is an eigenvalue of A;

(c) There is a positive vector x such that Ax = ρ(A)x; and

(d) limm→∞(ρ(A)−1A)m = L > 0,

where L = xyt, Ax = ρ(A)x, Aty = ρ(A)y, x > 0, y > 0 and xty = 1.

Proof. See [?].

To check that a large matrix is primitive will be very difficult by using just the

definition, fortunately from Lemma 8.52 and Lemma 8.55 in [?] one can obtain a more

manageable test for primitivity.

Lemma 1.8.14. If A is an n× n nonnegative and irreducible real matrix, and if all

the main diagonal entries of A are positive, then A is primitive.
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Now, we apply this powerful theory to the matrices Dk and D′k, for k ≥ 2.

First recall that we have the notation β
B−→ γ, β, γ ∈ Sk, and B is a subset

of edges of P ′k, see page 31. As mentioned before, we are interested in subsets of

edges of P ′k that contain the edge (1, 0) ∼ (2, 0), that is subsets of E(P ′k/e0), where

e0 = (1, 0) ∼ (2, 0). We introduce the set

Uβγ = {B ⊆ E(P ′k/e0)|β B−→ γ}.

Now, the entry (β, γ) in T ′k is a non-zero polynomial if and only if Uβγ is non-

empty. To prove that Dk is a nonnegative matrix we need the following technical

lemma.

Lemma 1.8.15. Let k ≥ 2 and β, γ ∈ Sk. If Uβγ is non-empty, the evaluation of

(T ′k)βγ is positive.

Proof. The entry (T ′k)βγ is the sum of the terms

xω(Gβ,B)−|β|−ky|B|+ω(Gβ,B)−|β|−k

over all B in Uβγ. Every term, when evaluated at x = 1, y = 0 is either 1 or 0. It

is enough to prove that there exists B in Uβγ such that the corresponding term is 1.

For that, it is enough to prove that there exists B in Uβγ such that

|B|+ ω(Gβ,B)− |β| − k = 0. (1.8.6)

Suppose that there is no edge of B belonging to a cycle of Gβ,B. Thus, the removal

of any edge in B increases the number of connected components by exactly 1. By

this argument it follows that ω(Gβ,B \B) = ω(Gβ,B) + |B|. But by definition of Gβ,B,

see page 30, Gβ,B \ B has |β| + k connected components. Thus, if B has no edge

belonging to a cycle of Gβ,B, B satisfies 1.8.6.

We now show that we can find such a B in Uβγ. By hypothesis, Uβγ is non-empty,

so there exists C0 ∈ Uβγ. If C0 has no edge belonging to a cycle of Gβ,C0 , we have

the result. Suppose that C0 has the edge a0 in a cycle of Gβ,C0 , note that such an

edge can be taken to be different from e0, and consider C1 = C0 \ a0. We claim

that C1 also belongs to Uβγ. By definition of β
C0−→ γ, there exists H and m such

that σm−1(H1) = β and σm(H) = γ, where H1 = H ∩ Em−1,k; also, this H has the

property that if it has block decomposition {Bi}mi=1, then Bm is isomorphic to C0.

Thus, the edge a′0 of Bm corresponding to the edge a0 in C0 is in a cycle of H and

its removal does not change the connected components of H. So, σm−1(H1 \ a′0) = β,

33



σm(H \ a′0) = γ and B′m is isomorphic to C1, where H \ a′0 has block decomposition

{B′i}mi=1. We can now repeat the argument with C1 instead of C0. As this process

is finite, we end up with a set B with no edges in a cycle of Gβ,B and the proof is

complete.

Lemma 1.8.16. Let k ≥ 2. The real matrix Dk is nonnegative. Even more, the main

diagonal entries of Dk are positive.

Proof. The matrix Dk is the evaluation of T ′k at x = 1, y = 0. For every entry

(β, γ) of T ′k, β, γ ∈ Sk, there are two possibilities. Either Uβγ is empty, in which case

(T ′k)βγ is the zero polynomial and (Dk)βγ is zero; or Uβγ is non-empty, in which case,

by Lemma 1.8.15, (T ′k)βγ when evaluated at x = 1, y = 0 is positive and (Dk)βγ is

positive. We conclude that Dk is nonnegative.

To see that the main diagonal entries of Dk are positive, we just have to check,

by Lemma 1.8.15, that Uβγ is non-empty. But this is clear as the set BI

BI = {(1, j) ∼ (2, j)|0 ≤ j ≤ k − 1}

is always in Uβ,β.

A similar result is true for the matrix D′k but the proof involves so much notation

that we decided to omit it, and instead we analyse the matrix D′k for the particular

values of 2 ≤ k ≤ 8 that we need for the main result of the section.

Theorem 1.8.17. Let 2 ≤ k ≤ 8. If β, γ ∈ Sk, then (D′k)βγ is positive if and only if

(Dk)βγ is positive and (D′k)βγ is zero if and only if (Dk)βγ is zero.

Proof. This was done by computing for 2 ≤ k ≤ 8 the matrices D′k and Dk and

comparing entry by entry.

The goal is to prove that Dk is a primitive matrix, for k ≥ 2. In view of Theo-

rem 1.8.11 we need the following

Lemma 1.8.18. The digraph Γ(Dk) is strongly connected, for k ≥ 2.

Proof. By definition 1.8.7, the digraph Γ(Dk) has ck+1 = 1
k+1

(
2k
k

)
vertices that we

identify with the set Sk, and there is an arc from β to γ if (Dk)β,γ is non-zero. Then,

by Lemma 1.8.15, there is an arc β −→ γ if Uβ,γ is not empty. So, to prove that Γ(Dk)

is strongly connected, we just have to give, for every pair (β, γ) with Uβ,γ non-empty,

a sequence β = β0, . . . , βp = γ, such that Uβi,βi+1
is non-empty for 0 ≤ i ≤ p− 1.
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Observe that we always have Uβ,1 6= ∅, where 1 is the standard form in Sk with

all the entries equal to 1. This is because 1 is a realizable standard form, see page 32

for the definition, with realization

A1 = {(2, j) ∼ (2, j + 1)|0 ≤ j ≤ k − 2}.

Then, A1 ∪ {e0} belongs to Uβ,1.

Thus, it is enough to prove that for every γ in Sk, there is a sequence 1 =

β0, . . . , βp = γ, such that Uβi,βi+1
is non-empty for 0 ≤ i ≤ p − 1. For this it is

enough to give a subset H ⊆ Ep,k with σ1(H ∩ E1,k) = 1 and σp(H) = γ, where H

contains all the edges (0, 0) ∼ (1, 0), . . ., (p− 2, 0) ∼ (p− 1, 0).

In order to avoid complicated notation with subindices, we make the following

consideration. Take a standard form γ ∈ Sm, then there exists H ⊆ En,m such that

σn(H) = γ. Now, construct H⊥ as the reflection along the horizontal symmetry axis

of Ln,m, that is, vertex (i, j) goes to vertex (i,m − j), and we obtain the standard

form γ⊥ = σn(H⊥). Observe that if γ = (γ1, . . . , γm) with labels 1 = l0 < · · · < lq,

then γ⊥ = (R(γm), . . . , R(γ1)), where R is the relabelling such that if γi = lj0 then

R(γi) = lp−j0 .

So, the previous claim is equivalent to the following. For all γ ∈ Sk, there exists

H ⊆ Ep,k, for some p ≥ 1, with σ0(H ∩ E1,k) = 1 and σp(H) = γ, where H contains

all the edges (0, k − 1) ∼ (1, k − 1), . . ., (p− 2, k − 1) ∼ (p− 1, k − 1).

The case γ = 1 is trivial. Suppose γ = (γ1, . . . , γk) 6= 1 has p different labels,

1 < l2 < · · · < lp, p > 1. Construct for 1 ≤ s ≤ p − 1 the set of edges Bs consisting

of all the edges

{(s, (k − 1)− j) ∼ (s+ 1, (k − 1)− j)|0 ≤ j ≤ k − 1, γj+1 ∈ {1, . . . , s}},

and all the edges

{(s+ 1, (k− 1)− j) ∼ (s+ 1, (k− 1)− (j − 1))|1 ≤ j ≤ k− 1, γj, γj−1 6∈ {1, . . . , s}},

(recall the definition of r-state in page 28 ). We also take the set B0 as the already

defined set A1 ∪ {e0}. The difficulty of understanding the subindices can probably

be overcome by looking at Figure 1.5, where we show an example of the construction

with the standard form (1, 2, 3, 1, 4, 5, 6, 4, 1).

We claim that H =
⋃p−1
s=0 Bs is such that σ1(H ∩ E1,k) = 1 and σp(H) = γ. The

first part was already discussed.

For the second part, we first observe that any standard form β = (β1, . . . , βm)

satisfies the following property: If βi = βj, with 1 ≤ i < j ≤ m, then there is no
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Figure 1.5: Example of the construction in the proof of Lemma 1.8.18.

1 ≤ i′ < j′ ≤ m with βi′ = βj′ such that i < i′ < j < j′ and βi 6= βi′ . We call this

the parenthesis property. This follows as there exists H0 ⊆ En,m, for some n ≥ 2,

such that σn(H0) = β. Then if βi = βj, the vertices (m − 1, i) and (m − 1, j) are

in the same connected component of H0; also, if βi′ = βj′ , the vertices (m − 1, i′)

and (m − 1, j′) are in the same connected component of H. Thus, i < i′ < j < j′

implies that the four vertices are in the same connected component; the path from

(m− 1, i) to (m− 1, j) has to intersect the path from (m− 1, i′) to (m− 1, j′). Also,

any standard form β = (β1, . . . , βm) satisfies that if βj = l > 1, then for all 1 ≤ i ≤ l,

there exists ji < j such that βji = i.

Now, returning to the proof, it is just left to prove that σp(H) = γ.

First, take 1 ≤ i < j ≤ k such that γi = γj = ls. We claim that there is a path

in Bs−1 from (s, i) to (s, j). If there was no such a path, there would be a vertex

(s, h) with i < h < j and ls′ = γh < ls; but as we pointed out, there would be an h′

with γh′ = ls′ and h′ < i, that contradicts the parenthesis property. Hence, no such a

vertex exists and there is the mentioned path in Bs−1. Thus, it is clear that there is

a path from (p, i) to (p, j) ( that goes through vertices (s, i) and (s, j) ).

Now, take 1 ≤ i, j ≤ k such that ls = γi < γj = ls′ . By construction, a path from

the vertex (p, i) to any other vertex (p, j′), 1 ≤ j′ ≤ k, has to pass through (s, i).

By the same reason, a path from vertex (p, j) to any other vertex (p, i′), 1 ≤ i′ ≤ k,

has to go through vertex (s′, j). But by construction, there is no path from (s, i) to

36



(s′, j) as s < s′. We conclude that there is no path from vertex (p, i) to vertex (p, j),

if γi 6= γj.

Thus, vertices (p, i) and (p, j) are in the same connected component in H if and

only if γi = γj, 1 ≤ i, j ≤ k. Therefore σp(H) = γ and the proof is complete.

Theorem 1.8.19. For k ≥ 2, the matrices Dk is a nonnegative primitive matrix.

Also, for 2 ≤ k ≤ 8, D′k is a nonnegative primitive matrix.

Proof. From the previous lemma and Theorem 1.8.11, we know that Dk is irreducible.

Also Lemma 1.8.16 says that Dk is nonnegative and have its main diagonal entries

are positive. Thus, by Lemma 1.8.14, Dk is primitive.

Let 2 ≤ k ≤ 8, by Claim 1.8.17 and definition of Γ(D′k), Γ(D′k) = Γ(Dk), thus

Γ(D′k) is strongly connected and by Theorem 1.8.11, we know that D′k is irreducible.

Also, by the same claim and Lemma 1.8.16, D′k is nonnegative and has its main

diagonal entries positive. Thus, by Lemma 1.8.14, D′k is primitive.

Theorem 1.8.20. Let k ≥ 2, then

lim
m→∞

(f(Fk−1
m ))1/m = ρ(Dk).

Proof. We know by our discussion in page 47 that

f(Fk−1
m+1) = akD

m
k
~1.

Now, we apply the Perron-Frobenius Theorem to obtain the following result.

lim
m→∞

f(Fk−1
m+1)

ρ(Dk)m
= lim

m→∞

akD
m
k
~1

ρ(Dk)m

= ak

(
lim
m→∞

Dm
k

ρ(Dk)m

)
~1

= akL~1.

where L = zyt, Dkz = ρ(Dk)z, Dt
ky = ρ(Dk)y, z > 0, y > 0 and zty = 1. The last

equation follows from Theorem 1.8.13 part (d) and Theorem 1.8.19

Notice that ak > 0 and L > 0 thus the real number θ = akL~1 is positive and we

obtain

lim
m→∞

f(Fk−1
m+1)

ρ(Dk)m
= θ > 0.

Then

lim
m→∞

f(Fk−1
m+1)1/(m+1) = lim

m→∞
θ1/(m+1)ρ(Dk)

m/(m+1) = ρ(Dk).
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Forests

Value k Spectral radius of Dk Lower bound ρ(Dk))
1/(k−1)

2 3.41421356237309 3.41421356237309
3 12.44247067856202 3.52738864864109
4 45.81188435340786 3.57815694155781
5 1.691398651379422e+02 3.60629703655053
6 6.251093502414258e+02 3.62402511724480
7 2.311325901206500e+03 3.63616457160850
8 8.547958845274989e+03 3.64497565338648

Table 1.5: This table displays the spectral radius of Dk and the value ρ(Dk))
1/(k−1)

for 2 ≤ k ≤ 8.

A similar proof gives the following

Theorem 1.8.21. Let 8 ≥ k ≥ 2, then

lim
m→∞

(α(Fk−1
m ))1/m = ρ(D′k).

Finally, using Theorem 1.8.2 and Theorem 1.8.3 together with the last two theo-

rems we obtain the following

Corollary 1.8.22. For any fixed k ≥ 2, we have that

ρ(Dk)
1/(k−1) ≤ lim

n→∞
f(n)1/n2

,

and for 2 ≤ k ≤ 8

ρ(D′k)
1/(k−1) ≤ lim

n→∞
α(n)1/n2

.

The programs indices.c in Section B.1 and matrix2.c in Section D.2 can gen-

erate the matrices Dk and D′k for small values of k. We did this and then we

used matlab to obtain the values shown in Table 1.5 and Table 1.6. Observe that

the lower bound for k = 2 in Table 1.5 is 3.41421356237309 ≈ 2 +
√

2, which

corresponds to Theorem 1.8.1; and the lower bound for k = 3 in Table 1.6 is

3.2256975738518 ≈
√

(13 +
√

61)/2, which corresponds to Corollary 1.8.4. Now,

we have the main Theorem of the section.

Theorem 1.8.23.

3.64497565338648 . . . ≤ lim
n→∞

f(n)1/n2

3.41358097503492 . . . ≤ lim
n→∞

α(n)1/n2

.
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Acyclic orientations

Value k Spectral radius of D′k Lower bound ρ(D′k))
1/(k−1)

2 3 3.00000000000000
3 10.405124837953 3.22569757385180
4 36.28240963973893 3.31053899212290
5 1.266819950037992e+02 3.35489338669197
6 4.425006985929521e+02 3.38207155765814
7 1.545892644925946e+03 3.40039906808105
8 5.400966279211179e+03 3.41358097503492

Table 1.6: This table displays the spectral radius of D′k and the value ρ(D′k))
1/(k−1)

for 2 ≤ k ≤ 8.

1.9 Conclusion and Open Problems

To sum up, the above arguments show that

7

3
≤ lim

n→∞
(α0(n))1/n2 ≤ lim

n→∞
(t(n))1/n2 ≈ 3.209912556,

3.41358097503492 . . . ≤ lim
n→∞

(α(n))1/n2 ≤ 3.5632215047716 . . . ,

and

3.64497565338648 . . . ≤ lim
n→∞

(f(n))1/n2 ≤ 3.7469814013994 . . . .

We close by highlighting a tantalising problem on trees and acyclic orientations,

namely which of α(n) and t(n) is bigger. We know by Theorem 1.8.23 and (1.4.1)

that

lim
n→∞

(t(n))1/n2

< lim
n→∞

(α(n))1/n2

.

So, for some big N and all n ≥ N , t(n) < α(n). Also, we have checked using table 1.2

that t(n) < α(n) for 2 ≤ n ≤ 7. Therefore, it is very likely that α(n) is strictly bigger

than t(n) for all n, but we do not see a way to prove this.

A more general form of this problem is to decide for which graphs the number

of acyclic orientations is bigger than the number of spanning trees. The extreme

cases are the complete graph Kn, where the number of spanning trees, nn−2, is more

than the number of acyclic orientations, n!, and the cycle Cn, where the number of

spanning trees is n and the number of acyclic orientations is 2n − 2.

Consider the evaluation of the Tutte polynomial at (2, 0) and (0, 2), which are dual

evaluations in the sense of ??, for the complete graph Kn and the cycle Cn. These
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quantities are T (Kn; 2, 0) = n!, T (Kn; 0, 2) = (n − 1)!2
n(n−1)

2
−n, T (Cn; 2, 0) = 2n − 2

and T (Cn; 0, 2) = 1, so T (Kn; 0, 2) ≥ T (Kn; 1, 1) and T (Cn; 2, 0) ≥ T (Cn; 1, 1). This

suggest that either the number of the acyclic orientations or the number of totally

cyclic orientations should be greater that the number of spanning trees. In other

words we believe that the following is true

Conjecture 1.9.1. Let G be a connected graph with no loops and no edges belonging

to every spanning tree, then

max{T (G; 2, 0), T (G; 0, 2)} ≥ T (G; 1, 1).

An even stronger form of this conjecture is that for this same class of graphs the

Tutte polynomial is a convex function on the line segment joining (2, 0) to (0, 2).
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Chapter 2

The chip firing game and the Tutte
polynomial

We have considered approximations for some values of the Tutte polynomial on the

square lattice. Now, we turn to a new interpretation of the Tutte polynomial for

general graphs. This interpretation consists of a process on the given graph, that is

called the chip firing game which since its appearance in 1983 has been proved to be

fruitful for different fields such as graph theory, algebraic combinatorics, self-organized

criticality and statistical physics.

First we describe the game in one of its versions. Then we restate some known

properties of the critical configurations of the game and prove them in a slightly

different way by making use of the theory of greedoids. In section 2.5 we prove a

relation of the chip firing process with the Tutte polynomial. More precisely, that

the generating function of the critical configurations is an evaluation of the Tutte

polynomial along the line {(1, y)|y ∈ R}. This result has been published in [?].

We close with two applications of the main result. One is another approach to the

interpretation of abelian sandpiles as the limit when Q→ 0 of the Potts model. The

other is a proof for graphic matroids of one long standing conjecture in the context

of matroid complexes due to Richard Stanley.

2.1 Introduction

In 1983, Joel Spencer [?] was studying the following problem: Given k ∈ N and

n vectors {V1, . . . , Vn} in Rm, ‖Vi‖∞ ≤ 1, 0 ≤ i ≤ n, do there exist e1, . . . , en,

ei ∈ {−1, 1} for 1 ≤ i ≤ n, such that ‖
∑n

i=1 eiVi‖∞ ≤ kn1/2?

His answer uses a “balancing game”. We have a pile of N chips in the centre of

a long path, at each move we take dN/2e chips to the right and bN/2c to the left.

41



Now, the game continues with these two new piles and so on. Later, Anderson et. al.

in [?] extended the game by allowing the player to move one chip at a time either to

the right or to the left, and starting in an arbitrary distribution of chips.

In 1991, Björner, Lovász and Shor [?] studied the natural generalisation of this

game to simple graphs. We put some chips on each vertex of G; we say that a vertex

is ready if it has at least as many chips as its degree, in which case we can fire it

and the result is that it distributes one chip to each of its neighbours, this can cause

another vertex to be ready and so on. This game was called the chip firing game.

Here, they were mainly interested in the final distribution of chips after a sequence

of moves that follow the rules, we called this a legal game, and the duration of the

process. Even though they were working in the context of simple graphs, exactly the

same analysis can be done for graphs with multiple edges, and we state their main

results in this more general context.

Theorem 2.1.1 (Björner, Lovász and Shor). Given a connected multi-graph and

an initial distribution of chips, either every legal game can be continued indefinitely,

or every legal game terminates after the same number of moves with the same final

position. The number of times a given vertex is fired is the same in every legal game.

Theorem 2.1.2 (Björner, Lovász and Shor). Given a connected multi-graph G and

an initial distribution of N chips:

1. If N > 2|E(G)| − |V (G)|, then the game is infinite.

2. If |E(G)| ≤ N ≤ 2|E(G)| − |V (G)|, then there exists an initial configuration

which terminates after a finite number of firings and also one which continues

indefinitely.

3. If N < |E(G)|, the game is finite.

It was Norman Biggs [?] who came up with a process that was related to this game

and to what is known in self-critical systems as Abelian sandpiles. In this game we

also have a graph G, but this time we are given a special vertex q. The rules of this

new game are as above for every vertex except for q, but q has a debit of chips equal

to the number of chips on the graph and is ready only when every other vertex is

not, then q is fired until some vertex is ready. The last rule ensures an infinite game.

In [?], the game is called the dollar game, and dollars are used instead of chips. The

vertex q plays the role of the government and the whole game is a simulation of the

economy. Here, however, we stick to the term chip firing game for this new game.
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2.2 The chip firing game

We consider throughout this section labelled connected graphs which may have loops

and multiple edges, so it is useful for a graph G and a vertex v ∈ V (G) to denote

by indeg(v) twice the number of loops at v, and by exdeg(v) the number of edges

that are incident to v but are not loops, so deg(v) = indeg(v) + exdeg(v). Also, for

v, w ∈ V (G), we define ν(v, w) to be the number of edges joining v and w.

We restate the definition of the chip firing game with some mathematical notation.

Let G be a graph and q ∈ V (G). A configuration is a function

θ : V (G)→ Z

where θ(v) ≥ 0 for all v 6= q and θ(q) = −
∑

v 6=q θ(v). A vertex v 6= q is ready if

θ(v) ≥ deg(v), q is ready if every other vertex is not ready. For a configuration θ and

a ready vertex w, firing w results in the new configuration θ′ defined by:

θ′(v) =

{
θ(v) + ν(v, w), if v 6= w,

θ(w)− exdeg(w), if v = w.

Notice that if we have a loop at vertex w, a firing of the vertex w sends two chips

through the loop that return again to the vertex, so loops do not affect the redistri-

bution of chips, but to define the process for graphs with loops is important as we

are working with the Tutte polynomial.

An example of the firing of two vertices is shown in Figure 2.1. The two vertices

with a circle around them are fired one after the other and the number next to each

vertex corresponds to its number of chips.

Figure 2.1: An example of the firing of two vertices in a chip firing game.
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We can express the firing rule by means of the Laplace matrix of the graph. For a

graph G, its Laplace matrix Q is the |V (G)|× |V (G)| matrix whose rows and columns

are indexed by the vertices of G and

Qv,w =

{
−ν(v, w), if v 6= w,

exdeg(w), if v = w.

Then, if we consider a configuration θ as a vector in R|V | indexed by the vertices,

firing vertex w corresponds to taking the new vector θ − Qew, where the vector ew

is zero in every entry except in entry w that is 1. And in general, a sequence s of

firings can be represented as θ−Q[s], where the value of [s] at entry w is the number

of times we have fired vertex w. Of course, all this can be done only if the firings are

legal.

A legal sequence for a configuration θ = θ1 is a sequence σ of vertices (v1 ,. . . ,

vk), such that v1 is ready in θ1 and at each moment i, vi is ready in θi, and θi is

obtained from θi−1 by firing vi−1, 2 ≤ i ≤ k, so a legal sequence is a sequence of

vertices that can be fired in a game with starting configuration θ. If we can go

from an initial configuration θ to a configuration θ′ by a legal sequence we write

θ → θ′. A configuration θ is stable if for every vertex v 6= q, θ(v) < deg(v), so,

in a stable configuration, the only vertex that is ready is q. Suppose we start with

a configuration θ and after a legal sequence of length k, where k ≥ 1 if the graph

does not consists just of loops, we arrive at the same configuration, we say that θ

is a recurrent configuration. A stable configuration that is also recurrent is called a

critical configuration. The following statement is known but we supply a proof for

the sake of completeness.

Theorem 2.2.1. For a connected graph G and initial configuration θ, there exists a

legal firing which produces a critical configuration.

Proof. This follows by the pigeon-hole principle. We start firing vertices as long as

we obey the rules of the game. First note that the vertices V (G) \ q cannot be fired

infinitely without firing q. Such a sequence of firings would imply that a vertex is

fired infinitely often and, because there is only a finite number of chips, so are all

its neighbours. As G is connected, this argument implies that a neighbour of q is

fired infinitely often but that would mean an infinite loss of chips and this contradicts

the finiteness of the number of chips. Therefore, at some moment we have to fire

q and we have arrived at a stable configuration. Now we can fire q as many times

as necessary and start again until another stable configuration is reached and so on.
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But the number of stable configurations is finite, therefore at some point we have to

repeat one, say θ′. Then, the legal sequence from θ to the first time we obtain θ′

satisfies the statement.

2.3 Greedoids with repetition

Before continuing with the chip firing game we summarise some results of the theory

of greedoids with repetition. Greedoids were invented around 1980 by B. Korte and L.

Lovász as a generalization of the matroid concept within the context of combinatorial

optimization. A greedoid is defined as a collection of ordered sets satisfying a version

of the matroid axioms where the order of the sets is important, see [?]. Greedoids

with repetition were introduced by allowing that these ordered sets have repetition

of elements. For more about greedoids see [?] and for greedoids with repetition see

[?]. Here we follow [?] as we just need results that deal with the chip firing game.

Let E be a finite set of cardinality n. A word over E is any finite sequence of

elements of E and we denote the set of all possible words by E∗. A language L over

E is any non-empty finite subset of E. A subword v of a word w is any subsequence

of w. For a word w, we denote by |w| the length of w, and by [w] its score, that is,

the vector in Zn which is defined by

[w]i = k, if i ∈ E occurs k times in w.

A language L is left-hereditary if whenever a word w belongs to L, then any prefix

of w also belongs to L . The language is locally free if the following holds:

• Let w ∈ L and i 6= j be two elements of E such that wi and wj belong to L,

then wij also belongs to E.

We said that L is permutable if whenever w and w′ are two words in L such that

[w] = [w′] and wi ∈ L, for some i ∈ E, then we also have w′i ∈ L.

The importance of these properties is that they imply a very strong exchange

property on the language L. The property is the following:

ST If w and w′ belong to L, then w contains a subword v such that w′v ∈ L and

[w′v] = [w] ∨ [w′], where for two vectors a and b in Zn, [a] ∨ [b] denotes the

coordinate-wise maximum.

The property (ST) implies, for example, that:

45



GE If w and w′ belong to L and |w| > |w′|, then there exists an element i in w such

that w′i ∈ L.

If L is just left-hereditary and satisfies this last property, then it is a greedoid with

repetition [?]. We call the property (GE), the greedoid property.

The following lemma states the equivalence between the first three properties and

(ST); the proof is in [?].

Lemma 2.3.1. Every locally free, permutable, left-hereditary language has the strong

exchange property. Conversely, every language with the strong exchange property is

locally free and permutable.

As with matroids, some greedoids and greedoids with repetition have special ele-

ments that work as bases. We say that a word w ∈ L is basic if it is not the prefix of

any other word in L. Suppose that L has a basic word w, then any other basic word

has to have the same length as w and there is no word of greater length by (GE).

This common length is called the rank of the language. If there is not a basic word

in L, then its rank is infinite as every word can be extended indefinitely, but here we

just work with languages with finite rank.

If we further suppose that L is a left-hereditary language that satisfies (ST), then

we can conclude that all basic words have the same score. This is all that we need for

our analysis of the chip firing game, however, the last observation has been generalised

in [?] as follows. Two words w and w′ in a left-hereditary language are said to be

equivalent, w ∼ w′, if for every string v such that wv ∈ L, we also have w′v ∈ L. The

equivalence classes of this relation are called flats. We can assign an order relation to

the set of flats of L by saying that a flat A is a subflat of a flat B, if every word in A

can be extended to a word in B.

Lemma 2.3.2. Let L be a locally free, permutable, left-hereditary language of finite

rank and w and w′ be two words in L. Then, the flat defined by w is a subflat of

the flat defined by w′ if and only if [w] ≤ [w′]. In particular, w ∼ w′ if and only if

[w] = [w′].

Again, the proof can be found in [?].

2.4 Critical configurations

We now return to the chip firing game to analyse very closely the critical configu-

rations of a given graph. The results we are presenting here have been proved in
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different ways. One approach is to use direct counting arguments as in [?]. Another

is to apply group theory arguments to the Picard group as in [?]. We use an approach

hinted at in [?] based on the theory of greedoids with repetition. First we notice that

Theorem 2.2.1 allows us to define the following language:

L(θ) = {σ|σ is a legal firing such that starting from θ it can be extended to a legal

firing that produces a critical configuration and any configuration produced

during this firing is not critical}.

We now apply the theory of greedoids with repetition to L(θ).

Lemma 2.4.1. For a graph G and initial configuration θ, the language L(θ) is locally-

free, permutable and left-hereditary.

Proof. Clearly, if σ ∈ L(θ) and σ′ is a prefix of σ, then σ′ can be extended to σ and

then to a critical configuration, so L(θ) is left-hereditary.

Note that if we have two legal firings σ and σ′ with the same score, that is [σ] = [σ′],

then θ − Q[σ] = θ − Q[σ′], where Q is the Laplace matrix, and both sequences lead

to the same configuration. Therefore, if there exists a vertex w such that σw is a

member of L(θ), σ′w can be extended to produce a critical configuration as σw and

σ′w lead to the same configuration. Also after the firing of σ we cannot arrive at

a critical configuration, as σw is in the language, so σ′ cannot arrive at a critical

configuration. We conclude that the language is permutable.

Let σ ∈ L(θ). Suppose there exist two different vertices w and w′ such that σw

and σw′ can be extended to produce a critical configuration; this implies w,w′ 6= q

by the rules, so after the legal firing σ we cannot arrive at a critical configuration,

that is stable by definition. Also, vertices w and w′ have at least as many chips as

their degrees, so we can fire both and the firing σww′ produces a configuration that

can now be extended to a critical configuration by Theorem 2.2.1. This proves L(θ)

is locally-free and completes the proof of the lemma.

Theorem 2.4.2. For a graph G and a configuration θ, there exists a unique critical

configuration c such that θ → c. In particular, if θ is critical, then θ = c.

Proof. We know by the proof of Theorem 2.2.1 that L(θ) is not empty. This language

has as basic words all the legal firings that starting from θ finish in a critical config-

uration and they do not pass through any other critical configuration; lets take one

of these configurations, say c.
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As L(θ), by Lemma 2.3.1 has the greedoid exchange property, all basic words have

the same length; also any two basic words are equivalent, thus, by Lemma 2.3.2, they

have the same score and lead to the same critical configuration. We conclude that

this c is unique.

For a critical configuration θ, we called the basic words of L(θ) critical sequences.

Critical sequences have been studied before [?, ?] for loopless graphs with multiple

edges. We include a minor extension of Lemma 3.6 from [?, pp. 5] that we require

later.

Lemma 2.4.3. Let G be a graph and c be a critical configuration, then any critical

sequence consists of firing all the vertices of G exactly once.

Proof. For a graph G with loops and a critical starting configuration c, we have a

legal sequence that arrives at the same starting configuration, but as G is connected

this means that every vertex must be fired at least once. Not firing a vertex means

not firing any of its neighbours and so on. During a firing, once two chips travel

through a loop, they stay in the vertex of that loop and because c is a recurrent

configuration, these chips should have been there since the beginning, therefore, for

all v 6= q, c(v) ≥ indeg(v). We construct the graph Ĝ from G by removing all the

loops and the configuration c′ from c by defining c′(v) = c(v)− indeg(v) for all v 6= q,

the above argument proves that c′ is in fact a configuration. It is clear that any legal

sequence for c in G is one for c′ in Ĝ and so c is a critical configuration for G if and

only if c′ is one for Ĝ. The result of the theorem follows now from the loopless case

in [?].

For a configuration θ, we define its weight, w(θ), to be

w(θ) =
∑
v 6=q

θ(v).

If θ is critical, we also define its level as

level(θ) = w(θ)− |E(G)|+ deg(q).

This definition seems less natural but shortly we explain why it is the right quantity

to be associated to a critical configuration.

We want to view a critical configuration as a configuration in the general chip firing

game of Björner, Lovász and Shor in order to apply the powerful Theorem 2.1.1. For

a graph G and a stable configuration θ of the chip firing game, we get a configuration

for the general chip firing game by redefining the value of θ(q) to be deg(q); this

configuration θq of the general chip firing game is called the extension of θ.
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Lemma 2.4.4. Let G be a graph and θ be a stable configuration for the chip firing

game. If θ is critical, then the corresponding extension θq produces an infinite chip

firing game.

Proof. We know that θ has a firing consisting of firing each vertex once, and the

vertex q is the first in this sequence. This will produce the same configuration θ. If

we mimic this firing for θq, that has enough chips to start this sequence, we arrive at

the same configuration θq. We keep on repeating this sequence and we get the infinite

firing.

Theorem 2.4.5. Let G be a graph and θ a critical configuration, then

0 ≤ level(θ) ≤ |E(G)| − |V (G)|+ 1.

Proof. By Lemma 2.4.4, we can associate to θ a configuration θq for the general chip

firing game that produce an infinite game, so, by Theorem 2.1.2, the total number of

chips on θq is at least |E(G)|. But θq and θ have the same number of chips at every

vertex except for q, so w(θ) + deg(q) ≥ |E(G)| and then level(θ) ≥ 0.

For the right inequality just note that as every critical configuration is stable,

w(θ) ≤
∑
v 6=q

(deg(v)− 1) = 2|E(G)| − deg(q)− |V (G)|+ 1.

As an example we consider the graph G in Figure 2.2. If c is one critical configura-

tion, then we consider it as a point of R2, we simply take the point (c(a), c(b)) as c. In

Figure 2.3, we have drawn all the critical configurations of G using this identification

together with their corresponding level.

Figure 2.2: A graph used to show the levels of its critical configurations
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Figure 2.3: The critical configurations of the graph in Figure 2.2.
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2.5 Critical configurations and the Tutte polyno-

mial

Already in [?, ?] it is proved that for a graph G, the number of critical configurations

equals the number of spanning trees. Also for a loopless graph, using the proof of

Theorem 2.1.2 in [?], we can infer that there is an injection from the set of acyclic

orientations with exactly one predefined source to the set of critical configurations

of level 0. These quantities are, respectively, evaluations of the Tutte polynomial at

the points (1, 1) and (1, 0). So, it was natural to try to count the number of critical

configurations of a given level and expect a relation with the Tutte polynomial. For a

graph G, we define, for every i ≥ 0, ci to be the number of critical configurations with

level i. Of course, by Theorem 2.4.5, ci = 0 for all i > |E(G)| − |V (G)|+ 1. We now

take the generating function of the critical configurations, that is, the polynomial

Pq(G; y) =

|E(G)|−|V (G)|+1∑
i=0

ciy
i.

All these definitions were proposed by Biggs [?]. We now prove his conjecture

that the above polynomial is an evaluation of the Tutte polynomial.

Theorem 2.5.1. For a graph G and a vertex q, we have that the generating function

of the critical configurations is the Tutte polynomial of G along the line x = 1, that

is,

Pq(G; y) = T (G; 1, y).

Thus, the polynomial on the left side is independent of the choice if the special vertex

q.

Proof. Let G be a graph and q a vertex in V (G). Take an edge e that has q as an

endpoint, and let u be the other end, where u could be equal to q. First, we prove

some relations among critical configurations and then we use induction to prove the

statement.

Let us suppose G has e as its only edge. Then there are just two possible cases.

If e is an isthmus, the only critical configuration θ has value zero at u and level(θ) =

−|E(G)| + deg(q) = 0, so Pq(G; y) = 1 = T (G; 1, y). If e is a loop, the only critical

configuration θ, and in fact the only configuration, assigns a value of 0 to q, and

level(θ) = −|E(G)|+ deg(q) = −1 + 2 = 1. So, Pq(G; y) = y = T (G; 1, y).

Now suppose G has at least 2 edges. We now analyse the possibilities for e. First,

the case that the edge e is a coloop. From a critical configuration θ′ of G/e, we get a
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configuration θ of G by defining θ(w) = θ′(w) for every w 6= u, q and θ(u) = deg(u)−1;

the value at q is determined by using the definition of configuration. The configuration

θ is critical as after firing q, we can fire u and repeat a critical sequence for θ′, so

this map sends a critical configuration of G/e into a critical configuration of G. We

claim that this map is a bijection. Let θ be a critical configuration of G. Define the

configuration θ′ of G/e by θ′(w) = θ(w) for every vertex w 6= q of V (G/e). Now, if

we replace the first two vertices in a critical sequence for θ, that must be q and u,

by q, we get a critical sequence for θ′ and so θ′ is a critical configuration. As every

critical configuration of G must assign a value of deg(u)− 1 to the vertex u, the map

is a bijection and

level(θ′) =
∑
w 6=q,u

θ′(w)− |E(G/e)|+ degG/e(q)

=
∑
w 6=q,u

θ(w)− (|E(G)| − 1) + (degG(q) + degG(u)− 2)

=
∑
w 6=q,u

θ(w) + degG(u)− 1− |E(G)|+ degG(q)

=
∑
w 6=q

θ(w)− |E(G)|+ degG(q)

= level(θ),

so we conclude that the polynomials are equal,

Pq(G; y) = Pq(G/e; y). (2.5.1)

Second the case that the edge e is a loop. A similar argument as above shows

that if we define, from a critical configuration θ′ of G \ e, a configuration θ of G by

θ(w) = θ′(w) for every w 6= q, we obtain a critical configuration. This map is a

bijection and

level(θ′) =
∑
w 6=q

θ′(w)− |E(G \ e)|+ degG−e(q)

=
∑
w 6=q

θ(w)− (|E(G)| − 1) + (degG(q)− 2)

= level(θ)− 1,

so the two polynomials are related by
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Pq(G; y) = yPq(G \ e; y). (2.5.2)

We finally suppose e is neither an isthmus nor a loop, and G has more than 1

edge. We partition the set of critical configurations of G into two sets, A the set of

critical configurations θ of G with θ(u) = deg(u) − 1, and A′ the rest of the critical

configurations.

Now, for θ in A, we associate a critical configuration θ′ in G/e just by defining

θ′(w) = θ(w) for all vertices w different from u or q. To see that θ′ is in fact a critical

configuration, take a critical sequence for θ and as θ(u) = deg(u)− 1 we can assume

that the first two firings are q and then u by Lemmas 2.4.1, that ensure any legal

firing is locally free, but after the firing of u the situation in the other vertices is the

same in both graphs, so we can reproduce the rest of the sequence in G/e with the

same result. Therefore, we arrive at the initial configuration θ′ and the construction

gives a critical configuration for G/e. This construction can be reversed by defining

from a critical configuration θ′ in G/e, the configuration in G, θ(w) = θ′(w) for all

w 6= u and θ(u) = deg(u) − 1. This configuration is critical in G as we can fire q

and then u. We are now in the same situation as firing q in G/e, so we can follow a

critical sequence for θ′; the final configuration is going to agree with θ in every vertex

different from u. Furthermore, after firing q in G, u has deg(u) − 1 + ν(q, u) chips,

after the firing of u, u loses degex(u) chips and after the firing of all its neighbours, u

gains degex(u)−ν(q, u) chips, so the final total is deg(u)−1 chips. We conclude that

θ constructed in this way is critical. Thus, we have a bijection and for corresponding

θ and θ′

level(θ) =
∑
w 6=q

θ(w)− |E(G)|+ degG(q)

=
∑
w 6=q,u

θ′(w) + degG(u)− 1− (|E(G/e)|+ 1) + degG(q)

=
∑
w 6=q,u

θ′(w)− |E(G/e)|+ degG/e(q)

= level(θ′).

It is clear that using the same argument as above, the elements in A′ can be

placed in a bijective correspondence with the critical configurations of G \ e. First,

for a critical configuration θ in G, define a configuration θ′ in G \ e by θ′(w) = θ(w),

i.e. θ′ = θ, for every w 6= q and now note that any legal firing in G \ e is a legal firing
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in G. After q fires, θ′(u) is one fewer than θ(u); but in compensation degG\e(u) is now

smaller also. Moreover, for θ in A′ and the corresponding θ′, we have

level(θ) =
∑
w 6=q

θ(w)− |E(G)|+ degG(q)

=
∑
w 6=q

θ′(w)− (|E(G \ e)|+ 1) + (degG\e(q) + 1)

= level(θ′).

We conclude that

Pq(G; y) = Pq(G \ e; y) + Pq(G/e; y). (2.5.3)

It is clear that by this process we can arrive at the first two trivial cases. Now, use

induction on the number of edges of the graph and the recursions (2.5.1), (2.5.2), and

(2.5.3) to apply the Recipe Theorem ??, thus, we have that Pq(G; y) = T (G; 1, y).

Using the same identification as the one in Figure 2.3, we explain by means of

Figure 2.5, how the inductive step of the proof works in a particular example. The

graph to be considered here has been drawn in Figure 2.4.

Figure 2.4: The graph used to exemplify the proof of Theorem 2.5.1.

2.6 Abelian sandpiles and the Potts model

Self-organised criticality is a concept widely considered in various domains since Bak,

Tang and Wiesenfeld [?] introduced it ten years ago. One of the paradigms in this

framework is the abelian sandpile model, introduced by Dhar [?].
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Figure 2.5: Exemplification of the inductive step of Theorem 2.5.1.

We start by recalling the definition of the general abelian sandpile model on a

set of N sites labelled 1, 2, . . ., N , that we referred to as the system. At each site

the height of the sandpile is given by an integer hi. The set ~h = {hi} is called the

configuration of the system. For every site i, a threshold Hi is defined; configurations

with hi < Hi are called stable. For every stable configuration, the height hi increases

in time at a constant rate (depending on i), this is called the loading of the system.

This loading continues until at some site i, its height hi exceeds the threshold Hi,

then the site i topples and all the values hj, 1 ≤ j ≤ N , are updated according to

the rule:

hj = hj −∆ij, for all j, (2.6.1)

where ∆ij is an integer matrix satisfying

∆ii > 0, ∆ij ≤ 0 and si =
∑
j

∆ij ≥ 0.

If after this redistribution some height exceeds its threshold we apply the toppling

rule (2.6.1) and so on, until we arrive at a stable configuration and the loading re-

sumes. When there are two or more possible toppling, we choose one arbitraryly

and we continue with the remaining topplings. The sequence of topplings is called

an avalanche. We assume that an avalanche is “instantaneous”, that is, no loading

occurs during an avalanche.

The value si is called the dissipation at site i. It may happen that an avalanche

continues without end. We can avoid this possibility by requiring that from every
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non-dissipative site i, i.e. si = 0, there exists a path to a dissipative site j, i.e. sj > 0.

In other words, there is a sequence i0, . . . , in, with i0 = i, in = j and ∆ik−1,ik < 0, for

k = 1, . . . , n. In this case we said that the system is weakly-dissipative [?]. From now

on, we assume that the system is always weakly-dissipative.

When the matrix ∆ij is symmetric and the loading of the system at site i equals

the dissipation at i, the abelian sandpile model coincides with the chip-firing game

on a graph [?]. We now explain this.

Every site of the abelian sandpile model corresponds to a vertex in a graph G

containing N +1 vertices, that is the number of vertices is one more than the number

of sites in the system. We label the vertices 0,1, . . ., N . The graph has multiple

edges, and the number of edges between sites i and j, i and j both nonzero, equals

|∆ij|. For all i 6= 0, we connect site i to site 0 using |
∑N

j=1 ∆ij| edges.

Every vertex i, 1 ≤ i ≤ N , has a number of chips θi that represents its height

hi ( when seen as a site of the system ) at every moment of time and vertex 0 has

a negative number of chips given by
∑N

i=1(−hi). A toppling at site i corresponds to

firing vertex i. The loading of the system is represented by the firing of the vertex 0,

in this case the height of site i ( its number of chips in G ) is increased by the number

of edges from 0 to i. The vertex 0 may (must) fire only when no ordinary vertex can

fire.

Then, the model has an important abelian property, namely the stable configura-

tion of the system after an avalanche, and the number of breaks at any site during

an avalanche, do not depend on the order of breaks during the avalanche.

We recall that the partition function of the Potts model is the evaluation of the

Tutte polynomial given by ?? in Chapter ??.

More generally, for the random cluster model, see [?], we have:

ZRC(G; p,Q) = pr(E)qr
∗(E)Qk(G)T (G; 1 +

Qq

p
,
1

q
), (2.6.2)

where q = 1− p.
Several authors, see Wu [?], have considered the formal limiting behaviour of the

Q-state Potts model as Q→ 0. This makes more sense in the context of the random

cluster model which we recall is defined for all Q > 0. Let us now consider this

convergence in more detail.

Suppose in the random cluster model, p and Q both tend to zero with p/Q kept

constant at 1. Then easy calculations show that in this case

lim
ZRC(G; p,Q)

pr(E)
= T (G; 2, 1).
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In other words the limit is the number of forests of G.

There are various other cases to consider.

a) For the part of the degenerate hyperbola H0 = {(x, y)|(x − 1)(y − 1) = 0},
consisting of y = 1, x ≥ 1, it is clear that if we let Q → 0 in such a way that

Q/p is fixed at α > 0, then in the random cluster model

x = 1 +
Qq

p
→ 1 + α

y =
1

1− p
→ 1

and so

p−r(1− p)−|E|+r(E)ZRC(G;Q, p)→ T (G; 1 + α, 1).

We have already mentioned the case α = 1 where the limit is the number of

forests. More generally we have the interesting specialisation

λrT (G; 1 + 1/λ, 1) = i(P (G), λ)

where i is the Ehrhart polynomial of a particular family of zonotopes P (G)

determined by a graph G. See [?].

b) If Q→ 0 with p fixed then

lim
Q→0

ZRC(G; p,Q) = cT (G; 1,
1

1− p
)

where c is a constant. In other words we are getting

1) the reliability probability,

2) the chip-firing game, that is the abelian sandpile model,

as two different realisations of this limiting behaviour.

This interpretation of the sandpile model has been considered before by Majumdar

and Dhar [?] but their approach was quite different.

2.7 Chip firing and shellable complexes

In this section we use the chip firing game and its relation with the Tutte polynomial

given by Theorem 2.5.1 to prove a long standing conjecture of Richard Stanley [?] in

the particular case of cographic matroids.
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2.7.1 Simplicial complexes

A simplicial complex ∆ is a collection of subsets of a set of vertices V such that

• if F ∈ ∆ and G ⊆ F , then G ∈ ∆,

• for all v in V , {v} ∈ ∆.

The elements of ∆ are called faces. Maximal faces are called facets and if all the facets

have the same cardinality, then ∆ is called a pure simplicial complex. The dimension

of a face is its size minus one and the dimension of a pure simplicial complex is the

dimension of any of its facets.

Associated to any simplicial complex ∆ of dimension d− 1 we have its face vector

or f -vector (f0, f1, . . . , fd), where fi is the number of faces of size i of ∆. The

generating function of the f–vector, or face enumerator is defined by

f∆(x) =
d∑
i=0

fix
d−i,

and the Euler characteristic of ∆ is defined by

χ(∆) = −f0 + f1 − . . . (−1)d−1fd.

Note that

(−1)d−1χ(∆) = f∆(−1).

For a pure simplicial complex ∆, a shelling is a linear order of the facets F1, F2,

. . . , Ft such that, for 1 ≤ l ≤ t, Fl meets the complex generated by its predecessors,

called ∆l−1, in a non-void union of maximal proper faces. A complex is said to be

shellable if it is pure and admits a shelling.

Define, for 1 ≤ l ≤ t,

R(Fl) = {x ∈ Fl| Fl \ x ∈ ∆l−1},

where here ∆0 = ∅. The number of facets such that |Fl − R(Fl)| = i is denoted by

hi and it does not depend on the particular shelling, see [?]. The vector (h0, h1, . . .,

hd) is called the h–vector of ∆. The generating function of the h–vector, or shelling

polynomial is given by

h∆(x) =
d∑
i=0

hix
d−i.
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Then, it is well known, see for example [?], that the face enumerator and the shelling

polynomial satisfy the relation

h∆(x+ 1) = f∆(x),

and so, the coefficients satisfy

fk =
d∑
i=0

hi

(
d− i
k − i

)
, k = 0, . . . , d

and

hk =
d∑
i=0

(−1)i+kfi

(
d− i
k − i

)
, k = 0, . . . , d.

2.7.2 Matroid complexes

If M = (E,B) is a matroid of rank r, the family of all independent sets forms a

simplicial complex of dimension r− 1 that we denote by ∆(M). The facets of ∆(M)

are the bases of the matroid M and therefore, ∆(M) is pure. Complexes of this kind

are called matroid complexes. Matroid complexes are known to be shellable, see [?],

and it is also known [?] that the shelling polynomial of ∆(M) is an evaluation of the

Tutte polynomial, that is,

T (M ;x, 1) = h∆(M)(x)

and, by duality, we also have

T (M ; 1, y) = h∆(M∗)(y).

2.7.3 A conjecture of Richard Stanley

An order ideal ( or down-set) of a poset P is a subset I of P such that if x ∈ I

and y ≤ x, then y ∈ I. If we take as a poset P the set of all monomials over

indeterminates z1, . . . , zn and the order given by divisibility, then an order ideal of P

is called a multicomplex over z1, . . . , zn.

If we form the poset (Nn,≤), where a ≤ b if a(i) ≤ b(i) for 1 ≤ i ≤ n, then a

multicomplexM can also be seen as an order ideal of (Nn,≤). More explicitly, ifM
is a multicomplex over z1, . . . , zn, then the image of the function µ :M→ Nn defined

by

µ(zi11 , . . . , z
in
n ) = (i1, . . . , in)
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is an order ideal of (Nn,≤). So, we can use interchangeably both definitions of

multicomplex.

A multicomplex whose maximal elements are all of the same rank, where the rank

of an element is the sum of the value of its entries, is called pure. The vector (h0,

. . . , hd), where hi is the number of monomials of rank i, is the degree sequence of

the multicomplex. A vector (h0, . . . , hd) is called a (pure) O-sequence if it is the

degree sequence of some (pure) multicomplex. R. Stanley proved that the h-vector of

a shellable simplicial complex is an O-sequence and made the following conjecture [?].

Conjecture 2.7.1. The h–vector of a matroid complex is a pure O-sequence.

As a direct application of our Theorem 2.5.1 we have the following

Theorem 2.7.2. If M is a cographic matroid, then the h-vector of the matroid com-

plex ∆(M) is a pure O-sequence. In other words the conjecture of Stanley is true for

cographic matroids.

Proof. Let M be a cographic matroid. Then its dual M∗ is a graphic matroid and

there exists a graph G such that M∗ = M(G). Let |V (G)|−1 = n and q ∈ V (G). We

are going to prove that the set of critical configurations of G, C, can be transformed

to be a pure multicomplex whose O-sequence is the h-vector of ∆(M).

First consider any critical configuration c and suppose that c′ is a stable configu-

ration such that c′ ≥ c, here we consider configurations as elements of (Nn,≤). We

will prove that c′ is also critical. Let d(v) = c′(v)− c(v), for v 6= q, and σ any critical

sequence for c. At each vertex v, we mark d(v) chips as “permanent” and the rest as

“movable”. Then, starting from c′, we can follow the legal firing σ without problem,

if we just use the “movable” chips. At the end, as c is critical, we have again c(v)

“movable” chips in each v 6= q, and also d(v) “permanent” chips that did not move.

So, c′ is a critical configuration.

From the above argument, we get that
∨
c∈C c, the coordinate-wise maximum of all

elements of C in (Nn,≤) is a critical configuration, namely the configuration defined

by

c⊥(v) = deg(v)− 1, v 6= q.

Now, let I be the down-set in (Nn,≤) generated by c⊥, that is, a ∈ I if a ≤ c⊥.

Clearly C is contained in I. Consider the function f : I → Nn given by

f(c)(v) = c⊥(v)− c(v).
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Note that f(c) ∈ I and f(f(c)) = c. Also it is clear that if c and c′ are critical

configurations such that c ≤ c′, then f(c) ≥ f(c′).

Let a ∈ f(C) and b ∈ Nn such that b ≤ a, then ~0 ≤ b ≤ a and the images of these

elements satisfy f(a) ≥ f(b) ≥ f(~0) = c⊥. By the second inequality we conclude that

f(b) is a stable configuration. We know that there is a critical configuration c such

that f(a) = c, so by the preceding argument and the first inequality we get that f(b)

is a critical configuration and b = f(f(b)) ∈ f(C). Therefore f(C) is a multicomplex.

The rank of an element of (Nn,≤) is just
∑n

i=1 a(i). For a critical configuration c

of level i, f(c) has rank∑
v 6=q

f(c)(v) =
∑
v 6=q

(c⊥(v)− c(v))

=
∑
v 6=q

(deg(v)− 1)−
∑
v 6=q

c(v)

= 2|E(G)| − deg(q)− |V (G)|+ 1− w(c)

= 2|E(G)| − deg(q)− |V (G)|+ 1− level(c)− |E(G)|+ deg(q)

= |E(G)| − |V (G)|+ 1− i.

So, critical configurations of the same level are mapped by f to elements of the same

rank.

Also, observe that if c is a critical configuration then there exists a critical con-

figuration c∗ of minimal level such that c∗ ≤ c. First consider the case when G has

no loops. Take a legal sequence for c that makes it recur. We know by Lemma 2.4.3

that this is a permutation of the vertices. We repeat this firing but this time we will

label some chips. All the chips sent by q are labelled q. When we fire vertex vi, we

mark any unmarked chip that is moved with the label vi. Any already marked chip

will return to the vertex of its label. This is possible because we have a critical con-

figuration. Clearly, at the end, the number of marked chips that are not labelled q is

|E|−deg(q). So these marked chips induce a critical configuration c∗ of minimal level

(level 0) such that c∗ ≤ c. In the case that G has loops, as shown in Lemma 2.4.3,

we can fix two chips for every loop and continue as in the loopless case.

Thus the maximal elements of f(C) are the image under f of the minimal crit-

ical configurations, as all these have the same rank, we obtain that f(C) is a pure

multicomplex whose pure O-sequence is (c|E(G)|−|V (G)|+1, . . . , c0).
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To finish the proof, we use Theorem 2.5.1 to get

r∑
i=0

ciy
i = T (G; 1, y)

=
r∑
i=0

hiy
r−i,

where r = |E(G)| − |V (G)| + 1 is the rank of M . Then cr−i = hi, for 0 ≤ i ≤ r, as

required.
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Chapter 3

An extension of the chip firing
game to unimodular matroids

Most of the research on chip firing games on undirected and directed graphs started as

a way of analysing dynamic behaviour of processes in other areas, like Markov chains

and self-critical systems [?, ?]. Later, Norman Biggs put a particular instance of chip

firing games in the context of algebraic graph theory and showed its intrinsic relation

with algebraic and combinatorial invariants of graphs, such as the Picard group or the

number of spanning trees of the graph, [?]. The last chapter showed even more, that

this chip firing game on graphs is actually related with the algebraic and topological

structure of graphic matroids; specifically, with the Tutte polynomial of the graph

and the h-vector of the matroid complex of the graph. So, the natural question was to

extend this process to a broader class of matroids. Here we present a first attempt to

do this. We have managed to define a chip firing game for regular matroids that when

restricted to graphic matroids conserves all the algebraic properties of chip firing on

graphs. However, this extension cannot be considered to be total as it is not clear

that it also contains the information of the Tutte polynomial or the h-vector of the

matroid.

In section 3.1, we give some introduction to the theory of lattices, discrete vector

groups, that is used to define a process without the notion of vertex. Section 3.2

gives an extension of the notion of cut and cycle space of graphs to regular matroids.

Similarly, section 3.3 extends the notion of integral cut and integral flow to regular

matroids to obtain analogue results to the ones in [?]. Section 3.4 is devoted to a very

general definition of the chip firing process that is due to Björner and Lóvasz. Then

we choose a special type of processes to generalise the chip firing game, in section 3.5.

Finally, in section 3.6, we apply all this theory to define a chip firing process for
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regular matroids and also state the algebraic results that relate this generalisation to

the game on graphs.

3.1 Lattice theory

A lattice Λ is a subset of Rn such that:

• ~0 ∈ Λ;

• if x, y ∈ Λ then x− y ∈ Λ;

• Λ has no accumulation points.

That is, Λ is a discrete vector group in a linear manifold Rr through the origin of Rn,

see Figure 3.1 for an example.

It can be proved, see [?], that every lattice Λ has a Z–basis, say {B1, . . . , Br}, so

Λ = Λ(B1, . . . , Br) = {
r∑
i=1

λiBi| λi ∈ Z, i = 1, . . . , r}.

We represent such a basis by an r × n matrix B, where the vectors of the basis are

the rows of the matrix B.

If B is a basis of a lattice Λ(B) and A ∈ GL(r,Z), that is, A is an r × r matrix

with integer coefficients and A has determinant ±1, then it is a standard result, see

[?], that AB is also a basis. It also can be proved, [?], that if B and B′ are two bases

for a lattice Λ, then there exists A ∈ GL(r,Z) such that B′ = AB. Two lattices Λ(B)

and Λ(B′) whose bases are related by B′ = ABO, where A ∈ GL(r,Z) and O is a real

orthogonal matrix (OOt = In), are called congruent lattices, [?]. For two congruent

lattices Λ(B) and Λ(B′) we have

|B′(B′)t| = |ABOOtBtAt| = |BBt|,

where |·| denotes the determinant of a square matrix. Therefore, the quantity
√
|BBt|

is independent of the choice of the basis of the lattice Λ, and does not change for any

lattice congruent to Λ(B); this quantity is generally denoted det(Λ). The matrix

Q = BBt is called the Gram matrix of Λ(B).

For a lattice Λ = Λ(B), the parallelotope consisting of the points

θ1B1 + · · ·+ θrBr , 0 ≤ θi < 1,
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Figure 3.1: An example of a lattice in R2. Also a basis of the lattice and its associated
fundamental parallelotope.

is called the fundamental parallelotope of Λ(B). Geometrically speaking, det(Λ) is

the (common) volume of each fundamental parallelotope, see Figure 3.1.

Also important is the Voronoi polyhedron of Λ(B) defined by

Vor(Λ) = {v ∈ Rn| (v, v) ≤ (v − x, v − x) for all x ∈ Λ \ {~0}}.

The Voronoi polyhedron of a lattice Λ is well understood, and there is a good charac-

terisation of its facets. A vector v ∈ Λ is called relevant if it is orthogonal to a facet

of Vor(Λ), that is, if v 6= ~0 and the hyperplane given by

H = {x ∈ Rn| (x, x) = (x− v, x− v)}

intersects Vor(Λ) in a facet, see Figure 3.2. A vector c ∈ Λ is reduced if (c, c) ≤ (v, v)

for all v ∈ c + 2Λ. The following is a theorem of Voronoi, see [?], but the exposition

we use is from [?].

Theorem 3.1.1. A vector v ∈ Λ \ {~0} is relevant if and only if v is reduced and v

and −v are the only reduced vectors of Λ that are contain in v + 2Λ.

Any lattice Λ has a dual lattice Λ∗ in the space H that Λ spans, given by

Λ∗ = {x ∈ H| (x, v) ∈ Z, for all v ∈ Λ}.
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Figure 3.2: The Voronoi polyhedron of the lattice in Figure 3.1. Also one of its
relevant vectors.

The set Λ∗ is also a lattice. Furthermore, if {B1, . . . , Br} is a basis of Λ then the

vectors {D1, . . . , Dr} defined by

DiBj =

{
1 if i = j,
0 otherwise,

form a basis of Λ∗, see [?]. It follows that (Λ∗)∗ = Λ and det(Λ)det(Λ∗) = 1. A lattice

is called unimodular if it is equal to its dual lattice.

A sublattice Γ of a lattice Λ is just a subset of Λ that is a lattice. As lattices are

Abelian groups, we can consider the quotient group Λ/Γ. It can be proved, [?], that

the order of the group Λ/Γ, called the index of Γ in Λ, and denoted by [Λ : Γ], is

equal to det(Γ)/det(Λ).

A lattice Λ is integral if the inner product of any two lattice vectors is an integer,

that is, if and only if Λ ⊆ Λ∗. An important group associated with an integral lattice

is its dual quotient group Λ∗/Λ which has order (det(Λ))2. The following theorem of

[?] that also appears in [?] relates all these concepts.

Theorem 3.1.2. Let H1 and H2 be two orthogonal subspaces of Rn not equal to ~0,

such that Rn = H1 ⊕ H2. Let πH1 (respectively πH2) be the orthogonal projection of

Rn onto H1 ( respectively H2). Suppose that Qn = (H1 ∩Qn)⊕ (H2 ∩Qn). Let Λ be

a unimodular integral lattice. Set Γ1 = Λ ∩H1 and Γ2 = Λ ∩H2. Then
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• Γ1 is a lattice in H1 and Γ2 is a lattice in H2.

• Γ∗1 = πH1(Λ) and Γ∗2 = πH2(Λ).

• The dual quotient groups Γ∗1/Γ1 and Γ∗2/Γ2 are isomorphic.

3.2 The circuit space of a regular matroid

Let G be a connected graph with n vertices and m edges. If we consider, for an

arbitrary orientation of G, the incidence matrix B of G as a linear transformation

from Rm to Rn, the kernel of B is a vector space of dimension m − n + 1, that is

the rank of the matroid M∗(G). This is called the cycle space of G. The orthogonal

complement of the cycle space is called the cut space of G. The cycle space and cut

space of a graph are well known and have been very extensively studied before, see

for example [?, ?]. It is well known in the matroid theory field that there is a natural

extension to regular matroids of these concepts; in this section, we make more precise

this extension.

Let M be a binary matroid. In [?] the circuit matrix D(M) of M is defined to be

the incidence matrix of circuits against elements. The cocircuit matrix D∗(M) is the

incidence matrix of cocircuits against elements. Clearly, D∗(M) = D(M∗). A binary

matroid is orientable if it is possible to assign negative signs to some of the non-zero

entries in D = D(M), D∗ = D∗(M) to get matrices D̂ and D̂∗ in such a way that the

scalar product of any row of D̂ with any row of D̂∗ is zero over the ring of integers.

We called this signing of the circuit and cocircuit matrices an orientation of M . We

also call the row space of D̂ the oriented circuit space of M and the row space of D̂∗

the oriented cocircuit space of M . The following result is due to Minty, [?] ( in the

reference, orientable is called signable).

Theorem 3.2.1. For a binary matroid M , M is regular if and only if it is orientable.

In fact, it is known, see [?], that ifM is a regular matroid with a totally unimodular

matrix representation B = [Ir|A], then for each cocircuit C of M , the row space of

B contains a signing of the incidence vector of C. Also, for every circuit C ′ of M ,

the row space of the unimodular matrix B∗ = [−At|In−r] contains a signing of the

incidence vector of C ′. The signing of D(M) and D∗(M) by this procedure is clearly

an orientation of M because every row of B is orthogonal to every row of B∗.

It also can be proved, [?], that if we have an orientation of M , D̂∗ and D̂, D̂∗ is

a real representation of M . If M has rank r and n elements , we can find an r × n
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submatrix B of D̂∗ of the form B = [Ir|A], for example, by choosing the rows of D̂∗

corresponding to the fundamental cocircuits of some fixed basis of M and possibly

permuting some columns. As the rows of B are linearly independent, they generate

the row space of D̂∗ and then B is also a real representation of M ([?] 6.3). But if

B′ = [Ir|A′] is a real representation of a regular matroid, then B′ is unimodular ([?]).

So we conclude that B is unimodular.

Even more, B∗ = [−At|In−r] is a unimodular representation of M∗, [?], whose rows

are contained in the rows of D̂ and generate the same space as D̂, this is because the

rows of B∗ are orthogonal to the rows of B and its incidence vectors are circuits of

M .

Therefore, if we have an orientation of M , D̂(M), and D̂∗(M), the row space of

D̂∗(M) is equal to the row space of B, for some unimodular representation of M ; and

similarly, the row space of D̂(M) is equal to the row space of B∗, for some unimodular

representation of M∗.

Since, given any two r×n unimodular matrix representations of a regular matroid

M , A and A′, one can transform one into the other by multiplying by an r × r

unimodular matrix U , then interchanging columns or multiplying some columns by

-1, [?], the row spaces of A and A′ are isomorphic vector spaces. So the oriented

circuit and cocircuit spaces are, up to isomorphism, independent of the particular

orientation of the matroid.

Thus, we just simply call any particular oriented cocircuit space of a regular

matroid M , the cocircuit space of M and we denote it by C(M). Similarly, any

particular oriented circuit space of M will be called the circuit space of M and we

denote it by C∗(M), and just when we want to refer to a particular orientation, we

will use C(M(B)) and C∗(M(B)). Clearly, the circuit space of M∗ is the cocircuit

space of M and the cocircuit space of M∗ is the circuit space of M . Also, from now

on, we will assume that if M is rank-r, r > 0, and regular, B is a unimodular matrix

representation with exactly r rows. In the case that M has rank 0, that is, M is just

a collection of loops, B will be a row of zeros.

As we said at the beginning of this section, the circuit and cocircuit space provide

a generalisation of the cycle and cocycle space of a graph. The incidence matrix of

G is a unimodular matrix representation of M(G) for any orientation of G, [?], and

the last row is minus the sum of the previous rows, so when considering the incidence

matrix minus the last row it is clear that the cycle space of G is the circuit space of

M(G) and the cut space of G is the cocircuit space of M(G).
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3.3 The integral lattice of cocircuits

of a regular matroid

Let G be a graph with m edges, C be its cut space and C∗ be its cycle space. In [?],

the lattice N(G) = C ∩ Zm is called the lattice of integral cuts and L(G) = C∗ ∩ Zm,

the lattice of integral flows. These are very well known concepts in graph theory, [?].

Here we give a generalisation of them to regular matroids, that as far as we know has

not been published before, and prove some extension to regular matroids of results

in [?].

Let M be a rank-r regular matroid and B be a unimodular matrix representation

of M with r rows. The lattice Λ(B) is contained in the cocircuit space of M , C(M) =

C(M(B)). So we call, for any particular unimodular matrix representation B of M

with r rows, the lattice Λ(B), the lattice of cocircuits of M . As we said in the last

section, any other unimodular representation, say B′, with r rows is obtained from

B by multiplying by a matrix U ∈ GL(r,Z), and multiplying by -1 and permuting

some columns of B, then the lattices Λ(B) and Λ(B′) are congruent, see 3.1. Thus the

lattice of cocircuits is, up to congruence on lattices, independent of the representation

chosen, and for a regular matroid M we denote this lattice by Λ(M). When we want

to remark which basis we are using, we write Λ(B).

Also, by the previous section, we know that there exists a unimodular matrix

representation, B∗, of M∗ such that every row of B∗ is orthogonal to every row of

B. The lattice of cocircuits of M∗, Λ(B∗), is called the lattice of circuits of M . The

lattice of circuits will be then Λ(M∗).

Lemma 3.3.1. If M is an n element regular matroid of rank r with unimodular

matrix representation B, having r rows, then

Λ(B) = Zn ∩ C(M(B)).

Therefore, the lattice of cocircuits consists of the integer-valued vectors in the cocircuit

space of M .

Proof. If M has rank 0, C(M(B)) = {~0} and also Λ(B) = {~0} so the result follows.

By the discussion in the previous section, we can assume that B = [Ir|A], where

r is the rank of M . It is clear that the elements of Λ(B) are integer-valued vectors,

so Λ(B) is a sublattice of Zn ∩ C(M(B)). Let a belong to Zn ∩ C(M(B)), then we

can choose a representative vector â of the coset of a in the quotient group (Zn ∩
C(M))/Λ(B), that is in the fundamental paralletope of Λ(B). The vector â has
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integer entries, as â−a ∈ Λ(B) and a is an integer-valued vector. But â =
∑r

i=1 λiBi,

0 ≤ λi < 1, 1 ≤ i ≤ r, where Bi is the i row of B. Then the choice of B implies that

λi = 0 for all 1 ≤ i ≤ r, and a ∈ Λ(B).

Recall that for a graph G, N(G) is its lattice of integral cuts and L(G) is its lattice

of integral flows. Lemma 3.3.1 says that L(G) is the same as the lattice of circuits of

M(G) and N(G) is the lattice of cocircuits of M(G).

We now extend some of the results in [?] for the lattice of integral flows and

integral cuts to the lattice of integral cocircuits of a regular matroid.

Theorem 3.3.2. Let M be a regular matroid, then the determinant of the lattice

Λ(M) equals the square root of the number of bases of M . Therefore, the order of the

dual quotient group Λ∗(M)/Λ(M) equals the number of bases of M .

Proof. Let M be a rank-r regular matroid. If r = 0, that is M is a collection of

loops, then M has one basis, the empty set. But Λ(M) = {~0}, so Λ∗(M) = {~0} and

Λ∗(M)/Λ(M) is the trivial group of 1 element. Thus the statement is true.

If r > 0, take B a unimodular representation with r rows. The determinant of

the lattice Λ(M) is the determinant of the Gram-matrix BBt. By the Binet-Cauchy

Theorem, this determinant equals

|BBt| =
∑
|R|2,

where the sum runs over all r×r submatrices R of B, and | · | denotes the determinant

of a square matrix. As B is unimodular, |R|2 = 0, 1. If |R|2 = 1, the set of columns

of R correspond to a basis of M , and conversely, thus the determinant |BBt| equals

the number of bases of M .

For a connected graph G the dual quotient group of the lattice of integral flows

is called the Jacobian of the connected graph G, see [?]. So, the Jacobian of G is

isomorphic to Λ∗(M∗)/Λ(M∗). The following result is an extension of Theorem 8 of

[?].

Theorem 3.3.3. Let M be a regular matroid. Then, the groups Λ∗(M)/Λ(M) and

Λ∗(M∗)/Λ(M∗) are isomorphic.

Proof. Let M be a rank-r regular matroid with n elements. If r = 0, as in the proof

of Theorem 3.3.2, Λ∗(M)/Λ(M) is the trivial group. Similarly, Λ∗(M∗)/Λ(M∗) is also

the trivial group as Λ(M∗) is Zn, and therefore Λ∗(M∗) is Zn. Thus, the statement

is true in this case. The result follows from duality in the case r = n.
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If 0 < r < n, take B a unimodular representation of M with r rows and B∗ a

unimodular representation of M∗ with n − r rows and such that every row of B is

orthogonal to every row of B∗. Let H1 =< B > be the space spanned by the rows

of B and H2 =< B∗ > be defined similarly. As 0 < r < n, H1 and H2 are not the

trivial space {~0}. Also a vector v ∈ Qn has a decomposition v = v1 + v2, where v1 is

the projection of v over H1 and v2 is the projection of v over H2.

Now, the result follows directly from Theorem 3.1.2 and Lemma 3.3.1 by taking

the unimodular integral lattice Zn, provided v1 and v2 are in Qn, so we prove this

last claim. Observe that (v1, Bi) = (v,Bi) ∈ Q, as Bi has integer-valued entries

for every row Bi of B. Consider n ∈ Z such that (nv1, Bi) = n(v1, Bi) ∈ Z, for

all 1 ≤ i ≤ r. Then, v′1 = nv1 ∈ Λ∗(M(B)), and so v′1 =
∑r

i=1 λiB
′
i, where λi

are integers for 1 ≤ i ≤ r and B′1, . . . , B
′
r is a basis for Λ∗(M(B)). The claim

will be proved if B′i ∈ Qn, for all 1 ≤ i ≤ r, but this is true because the vectors

B1, . . . , Br belong to Qn, are linearly independent and also belong to Λ∗(M(B)). So,

by Theorem 18 in [?] ( also known, in a slightly different form, as the Hermitian normal

form Theorem ) Λ∗(M(B)) has a basis whose elements are rational combinations of

the vectors B1, . . . , Br ( the Hermitian normal form Theorem states more, it describes

the form of this combinations ).

More interesting is the following extension of Proposition 6 of [?] .

Theorem 3.3.4. Let M be a regular matroid with orientation induced by a unimodu-

lar matrix representation B. There is a natural bijection between the oriented circuits

of M and the facets of the Voronoi polyhedron of Λ(M). More precisely, a vector

λ ∈ Λ(B) is relevant if and only if it is the vector of an oriented circuit of M(B).

For the proof we need some results. The following theorem is in [?] but it is

implicit in the work of Tutte on chain groups. The support of a vector v, supp(v), is

the set of components that are not zero.

Theorem 3.3.5. Let A be an r×n matrix over a field F and M = M(A). Then the

set of cocircuits of M coincides with the set of minimal nonempty supports of vectors

from the row space of A.

The following lemma has a trivial proof in the theory of oriented matroids. Here

we just state some of the facts of oriented matroids that are needed and all are from

[?].
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The sign function is defined as a map, sign : R→ {+,−, 0},

z →


+ if z > 0,

0 if z = 0,

− if z < 0.

We extend this function to vectors componentwise, so if v ∈ Rn, sign(v) ∈ {+,−, 0}n.

For an r × n real matrix B, its space of linear dependences is

Dep(B) = {v ∈ Rn|Bv = ~0} ⊆ Rn.

The signed vectors of B are given by

V(B) = {sign(v) ∈ {+,−, 0}n|v ∈ Dep(B)},

and the signed circuits of B are the signed vectors of minimal nonempty support.

Then, by Theorem 3.3.5, the oriented circuits of M correspond, under the sign func-

tion, to the signed circuits of ( the oriented matroid of ) B.

There is a natural partial order on the set of signs {+,−, 0}. We set 0 < +

and 0 < −, while + and − are incomparable. On the set of sign vectors, we use

componentwise partial ordering. So, if U, V ∈ {+,−, 0}n are sign vectors, U ≤ V if

Ui ≤ Vi holds for all positions 1 ≤ i ≤ n, and we write U < V if U ≤ V and U 6= V .

For a set of sign vectors S, we define Min(S) to be the set of all minimal nonzero

vectors in S, that is,

Min(S) = {U ∈ S \ {~0}| there is no U ′ < U with U ′ ∈ S}.

It is known, [?], that Min(V(B)) is equal to the set of signed circuits of B. It follows

that:

Lemma 3.3.6. Let M be a regular matroid with unimodular matrix representation B.

If v is any vector in the circuit space of M(B), then there exists an oriented circuit

c of M(B) such that sign(c) ≤ sign(v).

Proof of Theorem 3.3.4. If c is an oriented circuit of M(B), the entries of c have

values in {1,−1, 0}, and if v ∈ c+ 2Λ(B), v has even values in the entries that do not

belong to supp(c) and odd values in the entries of supp(c). If v 6= c,−c, there exists

at least one entry in which v is bigger than c in absolute value, so (v, v) > (c, c), and

c is reduced, and by Theorem 3.1.1, c is relevant.
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Let v be a relevant vector, then by Theorem 3.1.1, v is reduced. Take an oriented

circuit c such that sign(c) ≤ sign(v). This can be done by Lemma 3.3.6. The choice

of c guarantees that (v, c) ≥ (c, c). On the other hand,

(v − 2c, v − 2c) = (v, v) + 4(c, c)− 4(v, c) ≥ (v, v) (3.3.1)

as v is reduced. The right-hand side of equation 3.3.1 implies that 4(c, c)−4(v, c) ≥ 0

and thus (c, c) ≥ (v, c). Therefore (v, c) = (c, c), and all the entries of v are in

{1,−1, 0}. This, together with the left-hand side of equation 3.3.1, also implies

(v − 2c, v − 2c) = (v, v).

If v − c is not zero, again by Lemma 3.3.6, there exists an oriented circuit c′ with

sign(c′) ≤ sign(v − c). Also we have that sign(v − c) < sign(v) because v and c

have the same sign in every common nonzero entry and c is not the zero vector. As

(v, c) = (c, c), the later implies that c 6= c′. By the above argument, using c′ instead

of c, we have (v − 2c′, v − 2c′) = (v, v). Thus

(v, v) = (v − 2c, v − 2c) = (v − 2c′, v − 2c′).

But v, v − 2c and v − 2c′ are all different vectors and this contradicts that v and

−v are the only reduced vectors in v + 2Λ(B). Therefore, v = c and the proof is

complete.

The minimal norm of a lattice Λ is the number min{(v, v)| v ∈ Λ, v 6= ~0}. From

the previous theorem we obtain the following result that is an extension of Theorem 1

(ii) in [?].

Corollary 3.3.7. Let M be a regular matroid. Then, the minimal norm of Λ(M) is

equal to the size of a circuit of M with minimum length .

Proof. A vector of minimum norm in a lattice is a relevant vector, and by the previous

theorem, it corresponds to an oriented circuit of M , that has norm equal to the size

of its support, that is the size of the circuit. To any vector v in Λ(M), there is a

relevant vector λ with norm less or equal to the norm of v. As all the relevant vectors

of Λ(M) correspond to oriented circuits of M , a circuit with minimum length has

minimal norm in Λ(M).
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3.4 A general chip firing process

Chip firing games on undirected graphs, see [?, ?, ?], and chip firing games on directed

graphs, see [?], are special cases of so called “vector addition systems”.

In [?], a vector addition system is defined as a triple (C, V, b), where C is a poly-

hedral cone in Rn ( with apex in ~O ), V is a finite set of vectors in Rn and b is any

fixed vector in C. Also the language of all sequences v1, . . . , vk of vectors in V for

which b + v1 + · · · + vj ∈ C, for every 1 ≤ j ≤ k, is refered to as a vector addition

language. Vector addition systems were introduced by Karp and Miller [?] with the

further requirement that b and the vectors in V have integer components and that C

is the first orthant in Rn ( they are also known as general Petri nets, see [?]).

We now try to extend some of the ideas of the last chapter. First some definitions.

Given an r × n matrix A, a polyhedral cone (with apex in ~0) C = C(A) in Rn is

the intersection of a finite family of closed halfspaces of Rn, given by H+
i = {v ∈

Rn| (ai, v) ≥ 0}, where ai is the i-th row of A. The family {H+
i | 1 ≤ i ≤ r} is called

irredundant provided ⋂
1≤i≤r
i 6=j

H+
i 6= C,

for each i = 1, . . . , r. We always assume that the given family of halfspaces is irre-

dundant. Now, given such a cone C(A), there will exist many different A giving rise

to the same C(A).

Lemma 3.4.1. For any given r×n matrix A and cone C(A) ⊆ Rn there exists matrix

A∗ such that C(A) = C(A∗) and moreover for each facet F of C, there exists only

one row a of A∗ such that F = H ∩ C, where H = {v ∈ Rn| (a, v) = 0}.

Proof. We can suppose that (ai, v) = 0, for i < r0, and (ai, v) ≥ 0, for r0 ≤ i, for

all v ∈ C, and also that for each ai, r0 ≤ i, there exists at leat one v ∈ C such that

(ai, v) > 0. So, ⋂
1≤i<r0

H+
i ⊇< C >,

where < C > is the subspace spanned by the vectors in C, and

C =< C > ∩(
⋂

r0≤i≤r

H+
i ).

We, then, can assume that
⋂

1≤i<r0H
+
i =< C >, as < C > can be expressed as a

finite intersection of halfspaces ( it is the kernel of the projection on its orthogonal

space).
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If we consider the space H =< C >, then

C =
⋂

r0≤i≤r

(H+
i ∩H).

So C is a full-dimensional cone in H, and the family of halfspaces of H is irredundant.

Then it is known ([?]) that Fi = C ∩ (H+
i ∩ H), r0 ≤ i ≤ r, is a facet of C, that is,

C ∩ H+
i is a facet of C. Therefore, we can find an r′ × n matrix A∗ such that for

the first r′0 rows, (a, v) = 0, for all v ∈ C, where 0 ≤ r′0 ≤ r′. Also, each of rows left

defines a different facet of C.

We call such an A∗ a canonical matrix for the cone C(A), although it is not unique,

and henceforth we will assume that A = A∗. In other words, when speaking of C(A)

we will assume that A is a canonical matrix.

Here we are more interested in properties of the vector addition language when

we vary the vector b, so we make the following definitions.

Definition 3.4.2. A game system G over Rn is an ordered triple (C(A), V, I) con-

sisting of:

1. A polyhedral cone C(A) in Rn.

2. A finite set V of vectors in Rn. We call the members of V , “the rules of the

game”.

3. A set I ⊆ C(A). We call the members of I, “the initial configurations”.

To any game system G we associate a family of languages {L(b)}b∈I , where

L(b) = {v1 · · · vk|b+ v1 + · · ·+ vj ∈ C(A), 1 ≤ j ≤ k, k ∈ N}.

And we refer to any word σ in L(b) as a legal firing with initial configuration b.

Clearly, for every b ∈ I the language L(b) is a vector addition language. We also

introduce the concept of sub-game.

Definition 3.4.3. Given two matrices A and A′, we define a game system G =

(C(A), V, I) over Rn to be a sub-game system of G ′ = (C(A′), V ′, I ′) over Rm if there

exists a linear transformation f : Rn → Rm such that

1. f(C(A)) ⊆ C(A′).

2. f(V ) ⊆ V ′ and if x, y ∈ V with x 6= y, then f(x) 6= f(y).
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3. f(I) ⊆ I ′.

If G and G ′ are game systems and G is a sub-game system of G ′ determined by

the linear function f , their associated languages are related by the function f̂ from

the set of all words over V to the set of all words over V ′ defined by f̂(x1 · · ·xk) =

f(x1) · · · f(xk). This function satisfies the condition that f̂(L(b)) ⊆ L(f(b)) for all

b ∈ I, furthermore, this function is just a relabelling of the set of symbols of V , so

we can think of the language L(b) to be contained in the language L(f(b)), for every

b ∈ I.

We say that two game systems G and G ′ are equivalent if G is a sub-game of G ′

and G ′ is a sub-game of G. This clearly gives an equivalence relation among all game

systems. Also, in this case, we can think the associated languages to be the same,

in the sense discussed above. We use this concept as we want a game process on

regular matroids that does not depend on particular unimodular representations of

the matroid.

As pointed out in [?], if G = (C(A), V, I) is a game system, then for every b ∈ I,

the language L(b) is left-hereditary and permutable but in general not locally free.

To ensure L(b) is a locally free language, we assume the following property.

* for every row a of A, there exists at most one vector v ∈ V with (a, v) < 0.

Note, this is a very strong condition. In [?] it is proved that a vector addition

system with this property has an associated vector addition language that is locally

free. We state this in our context and provide a proof for the sake of consistency.

Lemma 3.4.4. If G = (C(A), V, I) is a game system that satisfies (*), then for every

b ∈ I, the language L(b) is locally free.

Proof. Let b ∈ I and let σ = v1 · · · vk ∈ L(b) be such that σx and σy are in L(b) for

two different elements x, y ∈ V , we want to prove σxy ∈ L(b). Let w = b+v1 + · · · vk,
it is enough to prove that w+x+y ∈ C(A). For any row vector a of A, (a, x) and (a, y)

cannot be both negative. Suppose (a, x) ≥ 0, then (a, w+x+y) = (a, w+y)+(a, x) ≥ 0

as by hypothesis (a, w + y) ≥ 0. Therefore for every row a of A, (a, w + x + y) ≥ 0,

so w + x+ y ∈ C(A).

Example 1. Let G be a connected graph with n vertices and Q be its Laplace

matrix with columns indexed by the vertices. Consider the game system (C(A), V, I),

where A is the n × n identity matrix In, that is, the cone is the positive orthant; V

consists of the columns vectors of −Q and I is the set of integer points inside C(In).
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This game system clearly satisfies property (*) and corresponds to the general chip

firing game of [?].

We introduce the following definition that is our generalisation of the chip firing

game in Chapter 2.

Definition 3.4.5. If G = (C(A), V ∪{q}, I) is a game system, we call the pair (G, q)
a chip firing process if the following are true.

• G satisfies (*).

• V is a set of linearly independent vectors.

• q ∈ Λ(V ), where Λ(V ) is the lattice generated by the vectors in V .

• I = C(A) ∩ Λ′, where Λ′ is a lattice that contains Λ(V ) as a sublattice.

In a chip firing process (G, q), we say that σ ∈ L(b) is a q-legal firing with initial

configuration b if σ = v1 · · · vk is such that whenever q = vj, for some 1 ≤ j ≤ k,

then σ′ = v1 · · · vj−1x does not belong to L(b) for any x ∈ V , where if j = 1, σ′ = x.

Associated to any chip firing process we have the family of languages {Lq(b)}b∈I ,
where Lq(b) is the set of q-legal firings with initial configuration b. Now, we prove a

similar result to Lemma 2.4.1.

Lemma 3.4.6. If (G, q) is a chip firing process, then Lq(b) is a left-hereditary per-

mutable locally free language for all b ∈ I.

Proof. As L(b) is left-hereditary, permutable and locally free, the properties can be

now checked for Lq(b) easily.

Following the analogy with the previous chapter, for a chip firing process (G, q),
we say that an element b′ ∈ I is a final configuration after a q-legal firing σ with

initial configuration b if σ = v1 · · · vk and b′ = b + v1 + · · · + vk, and we denote this

by b′ → b. The definition of chip firing process guarantees that b′ ∈ I. An initial

configuration b is stable if Lq(b) has q as a prefix of every word. Suppose we start

with an initial configuration b and after a q-legal firing σ = v1 · · · vk, with k ≥ 1, we

arrive at the same configuration b, then we said that b is a recurrent configuration.

And finally, an initial configuration is critical if it is stable and recurrent. In general,

the sets of stable, recurrent or critical configurations could be empty.

Let (G, q) be a chip firing process. As in the previous chapter, we consider for

every b ∈ I the language
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Lq(b) = {σ ∈ Lq(b)|σ is a q-legal firing such that starting from b it can be extended

to a legal firing that produces a critical configuration and for any proper prefix

v1 · · · vk of σ , b+ v1 + · · ·+ vk is not critical }.

We have a complete analogue of Lemma 2.4.1.

Lemma 3.4.7. If (G, q) is a chip firing process, then Lq(b) is a left-hereditary per-

mutable locally free language for all b ∈ I.

Proof. The proof is similar to the proof of Lemma 2.4.1.

We say that two chip firing processes (G, q) and (G ′, q′) are equivalent if the game

systems G and G ′ are equivalent using the linear functions f and g, and f(q) = q′,

g(q′) = q. Again, the two pairs of languages Lq(b), Lf(q)(f(b)) and Lq(b), Lf(q)(f(b))

are taken to be the same due to the discussion in page 104.

Example 2. Let G be a graph with n vertices and Laplace matrix Q with

columns indexed by the vertices and let v ∈ V (G). Consider the game system G =

(C(A), V ∪{q}, I) on Rn, where C(A) is generated by the vectors ei− ev, and the ei’s

are the standard basis of Rn with coordinates labelled as the vertices of G. V ∪ {q}
is the set of column vectors of −Q, q is the column corresponding to vertex v and I

is Zn ∩ C(A). Observe that a matrix for C(A) is I ′n, where the first two rows of I ′n

are the vectors ~1 and −~1, ~1 is the vector of all entries equal 1, and the next n − 1

rows correspond to ei, 1 ≤ i ≤ n, ei 6= ev. Now it is clear that (G, q) is a chip firing

process that corresponds to the chip firing game of Chapter 2.

Notice that using the projection over the v coordinate we obtain an equivalent

chip firing process but over Rn−1. Figures 2.3 and 2.5 were created having this in

mind.

Example 3. Let ~G be an oriented graph with n vertices and a special vertex v.

Consider the matrix Q′ defined by

Q′ij =

{
dij if j 6= i,

−d+(i) if j = i,

where dij is the number of edges that go from vertex i to vertex j, and d+(i) is the

outdegree of vertex i. Thus d+(i) =
∑

j di,j.

The game system G = (C(A), V ∪{q}, I) on Rn, where C(A) is as in the previous

example, V ∪ {q} is the set of row vectors of Q′, q is the row corresponding to vertex

v and I is Zn ∩ C(A), is a chip firing process. With the matrix I ′n of the previous

example it is easy to check condition (*), and the other conditions of Definition 3.4.5
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are trivial. This is closely related to the chip firing game on directed graphs of [?],

but is, as far as I know, a new chip firing game on directed graphs that deserves more

research.

3.5 The conical chip firing process

An easy way to construct a chip firing process is the following: if we have two lattices Λ

and Λ′ in Rn, with Λ a sublattice of Λ′, we can construct (G, q), where G = (C(A), V ∪
{q}, I), just by taking V = {v1, . . . , vk}, a base of Λ, as the set of rules. The cone C(A)

will be the cone generated by {−v1, . . . ,−vk}, that is C(A) = {
∑k

i=1 λi(−vi)| λi ≥
0, 1 ≤ i ≤ k}; this cone has k facets, as every k− 1 vectors generate a facet, and any

facet is obtained as a positive linear combination of these vectors. The vector q will

be
∑k

i=1 vi and I = Λ′ ∩C(A). The only thing that has to be proved is property (*),

but this is easy as for each vi ∈ V , vi belongs to k − 1 facets of C(A), so (a, vi) < 0

for exactly one row of A, given that −vi ∈ C(A).

As an example consider the conical chip firing process where Λ is generated by

the vectors (−1,−2) and (−2,−1) in R2, and Λ′ is its dual lattice. Figure 3.3 shows

a region of R2, where the black squares represent elements of the lattice Λ and the

dots represents elements of Λ∗. The shaded region is part of the cone C(A) and the

x’s inside this region are the initial configurations of the process. The two vectors in

solid lines correspond to the vectors (1, 2) and (2, 1), and the vector in dotted line

corresponds to the vector q.

If a chip firing process can be obtained by this procedure, we call it a conical chip

firing process. Observe that if (G, q) and (G ′, q′) are conical chip firing processes ob-

tained from the same lattices Λ and Λ′, then they are equivalent chip firing processes.

As we said, in a general chip firing process, the set of stable configurations could be

empty, or even infinite, and so critical configuration can very well not exist in the

general case, but for conical chip firing games this is not the case and in fact they are

like chip firing on graphs. The shaded parallepiped of Figure 3.3 contains the stable

configuration of the conical chip firing process of the previous example.

Theorem 3.5.1. If (G, q) is a conical chip firing game, then the following statements

are true.

• The set of stable configurations is finite.

• For any initial configuration b, the language Lq(b) is not empty and has finite

rank.
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Figure 3.3: A illustration of the conical chip firing process.

Proof. Let G = (C(A), V ∪ {q}, I) be the conical chip firing game, where V =

{v1, . . . , vk}. We can assume that row i of A, ai, is the row vector that defines the

facet of C(A) generated by V \ {vi}. We prove that the set of stable configurations

is the set S = I ∩ {b ∈ C(A)| 0 ≤ (b, ai) < (−vi, ai), 1 ≤ i ≤ k}.
The initial configuration b is stable if and only if b ∈ I and for all 1 ≤ i ≤ k,

b+ vi 6∈ C(A). This happens if and only if b ∈ I and for all 1 ≤ i ≤ k, there exists a

row a of A such that 0 ≤ (a, b) < (a,−vi). This a has to be the i-th row of A and we

have that b ∈ S.

If b is any initial configuration, then the rule q ensures that Lq(b) has words of

infinite length. Even more, if b′ ∈ C(A), then for row j of A, say aj,

(aj, b
′ + vi) < (aj, b

′) if i = j,

(aj, b
′ + vi) = (aj, b

′) if i 6= j.

Therefore, as we cannot have an infinite sequence of consecutive elements of V , an

infinite length word of Lq(b) must have the symbol q an infinite number of times.

Every time we use q, we have arrived at a stable configuration, and as there are only

a finite number of these, one stable configuration has to be repeated, this is, then,

a critical configuration. We conclude that Lq(b) is not empty. Also, as it contains
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a word of finite length, it follows from the discussion in page 65, that it has finite

rank.

The language Lq(b) is a greedoid with repetition, see [?], and it would be inter-

esting to see the connection, if any, with the greedoids obtained from Coxeter groups

in [?].

Corollary 3.5.2. Let (G, q) be a conical chip firing process, then to any initial config-

uration b, there exists a unique critical configuration c such that b→ c. In particular,

if b is critical, b = c.

Proof. We know by Theorem 3.5.1 that Lq(b) is not empty. This language has as

basic words all the q-legal firings that starting from b finish in a critical configuration

and they do not pass through any other critical configuration; lets take one of these

configurations, say c.

As Lq(b), by Lemma 3.4.7 and Lemma 2.3.1, has the strong exchange property,

all basic words have the same length; also any two basic words are equivalent, thus,

by Lemma 2.3.2, they have the same score, see page 64, and lead to the same critical

configuration. We conclude that this c is unique.

For a conical chip firing process, (G, q), we denote by K(G) the set of all critical

configurations. Also, if we have an initial configuration b, γ(b) will be the unique

critical configuration that is guaranteed by Corollary 3.5.2. In what follow, we extend

the ideas of [?] on the algebraic structure of the critical configurations of the chip firing

game to our conical chip firing process.

Lemma 3.5.3. Let Λ ⊆ Λ′ be two k-dimensional lattices in Rn, and let (G, q) be the

conical chip firing process obtained from Λ and Λ′ by the above method. Then, the

function φ : K(G)→ Λ′/Λ defined by φ(c) = [c]Λ, where [c]Λ is the coset of c in Λ′/Λ,

is a bijection.

Proof. Let {v1, . . . , vk} be a base for Λ. Suppose we have c1, c2 ∈ K(G) such that

[c1]Λ = [c2]Λ, then c1 =
∑k

i=1 λivi and c2 =
∑k

i=1 λ
′
ivi, where λ′i, λi ∈ Z, for 1 ≤ i ≤ k.

But as c1 and c2 are in the cone generated by {−v1, . . . ,−vk}, we can assume that

λ′i, λi ≤ 0, 1 ≤ i ≤ k. The vector b =
∑k

i=1 (λi + λ′i)vi is, then, an initial configuration

and b→ c1 and b→ c2, so by the previous theorem, c1 = c2 and φ is injective.

Now, take [b]Λ ∈ Λ′/Λ. We can choose a representative b in the set of initial

configurations as the cone of G contains an unbounded open set of < Λ >, the space

span by Λ, that has to intersect the coset [b]Λ because < Λ > /(b + Λ) is compact
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by definition of discrete vector group, see page 88. Then, γ(b) = b +
∑k

i=1 λivi, with

λi ∈ Z for 1 ≤ i ≤ k, and φ(γ(b)) = [b]Λ. Therefore, φ is onto.

As in [?], it follows that the set of critical configurations has a natural group

operation •, namely, if c and c′ are critical configurations, c • c′ is the unique critical

configuration c′′ such that [c]Λ + [c′]Λ = [c′′]Λ. But by the proof of Lemma 3.5.3 we

know that γ(c+ c′) is such a critical configuration, therefore c • c′ = γ(c+ c′) and we

have the following

Theorem 3.5.4. Let Λ ⊆ Λ′ be two k-dimensional lattices in Rn, and let (G, q) be

the conical chip firing process obtained by the above method from Λ and Λ′. Then, the

set of critical configurations can be given a structure of Abelian group and the order

of the group equals the order of the group Λ′/Λ.

3.6 A chip firing game for regular matroids

Let M be a regular matroid, then we can consider the lattice of cocircuits Λ(M) and

its dual lattice Λ∗(M) to construct a conical chip firing process, where we assume an

underlying unimodular matrix representation of M . We define the chip firing game

of a regular matroid M to be this conical chip firing process. As we note, a particular

unimodular representation B of M gives a particular lattice Λ(B) in C(M(B)), but

any two of these lattices are congruent and the spaces they generate are related by

an isomorphism, so we obtain equivalent conical chip firing processes.

We continue the analogy with the chip firing game and obtain the following result

that extends Theorem 7.3 of [?].

Theorem 3.6.1. Let M be a regular matroid. The number of critical configurations

of the chip firing game of M equals the number of bases of M .

Proof. By Theorem 3.5.4, the number of critical configurations of M equals the or-

der of the group Λ∗(M)/Λ(M) that in turns equals the number of bases of M by

Theorem 3.3.2.

We also define for a regular matroid M the critical group of M to be the group of

critical configurations of its chip firing game. This group is isomorphic to the group

Λ∗(M)/Λ(M) by Theorem 3.5.4. As we note before, in the case of a graphic matroid

M(G), this group is the Jacobian group of G.
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The Picard group of a graph G is defined in [?] as ker(τ)/ImQ, where the Laplace

matrix Q of G is consider as an homomorphism, Q : Zn → Z, and τ is the homo-

morphism τ : Zn → Z given by τ((a1, . . . , an)) =
∑n

i=1 ai. The Picard group appears

in algebraic geometry, but here we will not go on the details of its definition, see [?].

We know from [?] that the Picard group of a graph G is isomorphic to the Jacobian

group of G, and thus the Picard group of G is isomorphic to the critical group of

M(G).

The Picard group of G is, up to an isomorphism of groups, the same as the critical

group of G defined in [?], also refered to as the sandpile group of G in [?]. This is the

reason for our notation. For a planar graph there is the following result from [?].

Theorem 3.6.2. For a planar graph G and any of its duals G∗, the sandpile group

of G and the sandpile group of G∗ are isomorphic.

We also obtain the following analogue to this theorem.

Theorem 3.6.3. If M is a regular matroid, then the critical group of M is isomorphic

to the critical group of M∗.

Proof. Follows from 3.3.3.

It would be nice to be able to provide a matroid interpretation of the main theorem

of Chapter 2, namely, interpreting the generating function of critical configurations,

given by some level function on the configurations, as an evaluation of the Tutte

polynomial.

Unfortunately, I see no way to define the level of a configuration in this extension

of the chip firing game which gives the desired result for regular matroids.

Another natural question is why I have just considered only regular matroids

and not general binary matroids. The reason is that I see no way of extending

the definition of chip firing process in a natural way. One obstruction being that

computing the number of bases of a binary matroid given any binary representation

is believed to be NP-hard. Thus, there is unlikely to be a determinant formula for it

and the tools from lattice theory that I am using cannot be applied.
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Chapter 4

The Matroid Bases Problem

The problem of counting the number of bases of a matroid has a long history and is

very important in several fields of combinatorics and computer science in particular for

its relevance in the problem of determining the reliability of a network. One promising

algorithmic approach rests on the long standing conjecture of Mihail and Vazirani

[?] that the bases-exchange graph of any matroid has cut set expansion at least 1.

The verifying of this conjecture will give an “efficient” algorithm to approximate the

number of bases of several classes of matroids, including binary matroids and , in

general, representable matroids.

A partial answer was given by Feder and Mihail [?] when they defined balanced

matroids and proved that this class of matroids satisfies the conjecture. More recently,

Gambin [?] has defined exchange preserving matroids and proved that every matroid

in this class has cut set expansion at least 1/2.

Here we take two different approaches to the conjecture. One is to extend the

notion of balanced matroids to obtain the more general notion of α-balanced matroids.

This class of matroids, like balanced matroids, are closed under minors, direct sum

and 2-sum, but we have not found an expression for their cut set expansion yet. The

other approach is to strengthen the conjecture and get a more algebraic structure

that hopefully helps for the problem, with this aim we define k-expander matroids.

A matroid is k-expander if its bases-exchange graph has strong cut set expansion

at least k. We prove that balanced matroids are contained properly in the class of

2-expander matroids and provide several sufficient conditions for a matroid to be a

2-expander.

However, the truth of the conjecture even for binary matroids seems a very elusive

and difficult problem and we were unable to settle it.
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4.1 Bases–exchange graph

Associated with a matroid M we have its bases polytope, P (M), introduced by Ed-

monds in [?], which is the convex hull of the incidence vectors of the bases of M .

Using the definition of B and of convexity it can be proved that there is an edge

between vertices B1 and B2 in P (M) if and only if their symmetric difference is 2,

that is, there exists x ∈ B1−B2 and y ∈ B2−B1 such that (B1−x)∪ y = B2, this is

called a bases exchange. Also note that if |E| = n, and the rank of M is r, then the

bases polytope is contained in the r-slice of the n-cube, that is, the intersection of the

n-cube with the hyperplane {y ∈ Rn|
∑

i yi = r}. It can be proved that a polytope

contained in the r-slice of the n-cube is the bases polytope of some matroid if and

only if every edge of the polytope has length 2 ( using hamming distance) [?].

The 1-skeleton of the bases polytope of a matroid M is a graph that has as vertices

the bases of M and there is an edge between two bases if they are related by a bases

exchange, see page ??. We call this graph the bases-exchange graph of M , and we

denote it by G(M). See figure 4.1 for an example.

Figure 4.1: The Euclidean representation of the matroid U2,4 and also its bases poly-
tope.

There are several results about the structure of the bases-exchange graph. For

example, Bondy [?] showed that it is pancyclic. Holzmann and Harary [?] proved

that if G(M) has at least two cycles then, for every edge in the graph there is a

Hamiltonian cycle containing it and one avoiding it. Also, Holzmann [?] showed

that two matroids M and N have isomorphic bases-exchange graphs if and only if

M = M1 ⊕ . . .⊕Ms and N = N1 ⊕ . . .⊕Ns and there is a permutation σ such that

Mi
∼= Nσ(i) or Mi

∼= N∗σ(i). Note that the matroids M and M∗ have isomorphic bases-

exchange graphs. An important result on this topic is due to Maurer who provided
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a characterisation of graphs which are isomorphic to bases-exchange graphs of some

matroid, we refer the reader to [?, ?].

Here we are interested in the expansion properties of the bases-exchange graphs,

more specifically, we are interested in the following notions.

Definition 4.1.1. For a graph G = (V,E), its cut set expansion is

min
∅⊂A⊂V

0<|A|≤|V |/2

|C(A)|
|A|

, (4.1.1)

where C(A) = {(x, y) ∈ E|x ∈ A, y ∈ V − A} is the cut set determined by A.

The strong cut set expansion of G is

min
∅⊂A⊂V

|C(A)||V |
|A||V − A|

.

Cut set expansion is closely related to the concept of conductance which is a key

concept in approximate counting. Let Xt, t = 0, 1 . . ., be a Markov chain over state-

space Ω and transition probabilities {pij}, i, j ∈ Ω. We say that Xt is irreducible

if any state i can be reached from any state j in a finite number of steps, and it is

aperiodic if gcd{t| pti,j > 0} = 1 for all i, j ∈ Ω, where pti,j is the probability of going

from state i to state j in t steps. Thus, if Xt is finite, irreducible and aperiodic, it

converges to a unique stationary distribution π = {πi}, i ∈ Ω, and we say that Xt is

ergodic. We also say that an ergodic Markov chain is time-reversible if it satisfies the

“detailed balance” property, that is, for all i and j in Ω, pijπi = pjiπj.

The conductance of an ergodic Markov chain Xt is the quantity

Φ = min
A⊆Ω:

∑
i∈A πi≤1/2

∑
i∈A
∑

j∈Ā πipij∑
i∈A πi

.

It is explained in [?] that the number of steps required for an ergodic time-

reversible Markov chain to lose its memory and approach stationary distribution is

O(Φ−2 ln(1/πmin)), where πmin is the minimum stationary probability over all states

in Ω. When this number of steps is a polynomial in ln(|Ω|), we call the chain rapidly

mixing.

We now apply these concepts to the following Markov chain. Given a matroid M ,

the set of states of the Markov chain is B(M). If Xt is the state (basis) at time t, then

with probability at least 1/2, Xt+1 = Xt, otherwise choose e from Xt and f from E

uniformly at random and, if X ′ = Xt − e ∪ f ∈ B, then Xt+1 = X ′, else Xt+1 = Xt.
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By using the bases exchange property, this Markov chain is easily seen to be

irreducible, and by definition, aperiodic. Furthermore, by definition, it is symmetric,

therefore it converges to the uniform distribution over B and is time-reversible.

In the case of the previous Markov chain we have that the transition probabilities

are bounded below by |E(M)|−2, and clearly, |E(M)| ∼ log(|B|). Therefore, if we

have an oracle to test whether a given set is a basis in M , this random walk can

be used as an efficient almost uniform sampling scheme for the set of bases of the

matroid M .

If, as in [?], an almost uniform sampling scheme can be used to approximate the

ratio r = |Be|/|B| up to arbitrary accuracy, where Be are the set of bases containing

the element e ∈ E(M), then the question of approximating |B| reduces to that of

approximating the number of bases of M/e. Thus the size of the problem reduces

efficiently from n to n − 1. We conclude that if the bases-exchange graphs of a

matroid M and all its minors possess inverse polynomial cut set expansion, then

there is an efficient scheme to approximate |B|. Here we have to mention that Azar,

Broder and Frieze [?] have proved that it is impossible to get a good approximation

in deterministic polynomial time of the number of bases of a matroid if the matroid is

given to us by a basis oracle. So the only hope to approximate this #P-hard problem

is by using randomised algorithms.

For the expansion of the bases-exchange graph there is a well-known conjecture

due to Mihail and Vazirani [?].

Conjecture 4.1.2 (Matroid-Expansion Conjecture). For any matroid M , the bases-

exchange graph G(M) has cut set expansion at least 1.

This conjecture can be also stated as follows: “for any bipartition of the vertices

of a bases-exchange graph, the number of edges incident to both partition classes is

at least as large as the size of the smaller partition class”.

The Matroid-Expansion conjecture is an instance of a more general conjecture

also from [?], namely

Conjecture 4.1.3. Let P be any 0-1 polytope, that is, a polytope whose vertices

are vectors with entries in {0, 1}n for some natural number n, then the graph of the

1-skeleton of P has cut set expansion at least 1.

87



4.2 Balanced Matroids

Among all possible bases-exchange graphs, one that is common in graph theory as

well as easy to work with is the n-cube. This graph has as vertex set all the n-tuples

with entries in the set {0, 1}, and two n-tuples are jointed by an edge if they differ

just in one coordinate. This graph is, apart form several other interpretations, the

bases-exchange graph of the graphic matroid M = P1 ⊕ · · · ⊕ Pn, where each Pi

consists of a cycle of size 2.

There are several methods to prove good expansion in the n-cube. For example,

there is a proof using isoperimetric inequalities [?], one using an inductive/balance

argument [?] and one using canonical paths [?]. The extension of the last two ideas to

bases-exchange graphs led to the key concept of balance. In this and the next section

we describe, with some minor extensions, the work of Feder and Mihail on balanced

matroids.

As we work with bases of the matroid that contain or avoid a specific element,

we need some notation. If M has set of bases B, then the set of bases that contain

(avoid) e ∈ E(M) is denoted by Be (Bē). Thus, as there is a natural bijection between

Be (Bē) and the set of bases of M/e (M\e), the notation can be used to denote the

bases of any minor of M , say M \ X/Y , by Bx̄1,...,x̄r,y1,...ys , where X = {x1, . . . , xr}
and Y = {y1, . . . , ys}. Even more, we use this notation for any subset X ⊆ B, so Xe

will denote X ∩ Be and Xē will denote X ∩ Bē.
The n-cube has n natural bipartitions of its vertex set by considering a fixed

coordinate j, 1 ≤ j ≤ n, and taking the set of vertices with coordinate j equal

to 0 and the set of vertices with coordinate j equal to 1. There are as well some

natural bipartite subgraphs of the bases-exchange graph that we call the restricted

bases-exchange graphs.

Definition 4.2.1. Let M be a matroid, and G(M) be its bases-exchange graph. The

graph Ge(M) is the bipartite graph with vertex set Be∪̇Bē and there is an edge (B1, B2)

with B1 ∈ Be and B2 ∈ Bē, if there exists f ∈ E(M)− e, such that (B1− e)∪ f = B2,

that is, there is a bases exchange between bases B1 and B2 involving e.

But when we have the bipartition of the n-cube into 2 (n − 1)-cubes, the edges

in this cut have the strong property that every set in one bipartition class has a

neighbour set of proportional size, in fact they have the same cardinality. So, for the

restricted bases-exchange graph of a matroid we ask for this property.
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Definition 4.2.2. A matroid M is said to enforce ratios on an element e ∈ E(M) if

the following conditions hold.

For all A ⊂ Be we have |Γ(A)|
|Bē| ≥

|A|
|Be| , and

for all A ⊂ Bē we have |Γ(A)|
|Be| ≥

|A|
|Bē| ,

where Γ(A) is the set of the neighbours of A in Ge(M).

If M enforces ratios for some e ∈ E(M) we said that M enforces ratios partially.

If M enforces ratios for all elements e then we said that M enforces ratios.

Mihail and Sudan [?] prove that if all matroids enforce ratios then the Matroid-

Expansion conjecture holds. Examination of their proof shows that it relies only on

the fact that M enforces ratios for some element e and that M/e and M \ e have cut

set expansion at least 1. We state this mild extension but first we need a technical

definition. Here, for two disjoint sets A1 and A2, the notation A1∪̇A2 used in this

chapter makes emphasis on the fact that A1 and A2 are disjoint sets.

Definition 4.2.3. Let M be a matroid and e an element of M . Then, M is said to

have the crossed-cut property on the element e if its bases-exchange graph satisfies

the conditions that for any subset X of the set of bases of M , with X = Xe∪̇Xē and

|Xe| ≥ |Be|/2 or |Xē| ≥ |Bē|/2 but not both,

|C(Xe,Bē \Xē)|+ |C(Xē,Be \Xe)| ≥ ||Xe| −
|Be|

2
|+ | |Bē|

2
− |Xē||

where C(Xe,Bē \ Xē) denotes the set of edges that go from Xe to Bē \ Xē in the

restricted bases-exchange graph of M , C(Xē,Be \Xe) is defined similarly.

Lemma 4.2.4. If a matroid M enforces ratios on an element e, then M has the

crossed-cut property on the same element e.

Proof. Let X = Xe∪̇Xē with Xe ⊂ Be, |Xe| ≥ |Be|/2 and Xē ⊂ Bē, |Xē| < |Bē|/2.

By the hypothesis
|Γ(Xe)|
|Bē|

≥ |Xe|
|Be|

≥ 1

2
,

so we can select a subset Y ⊆ Γ(Xe) such that Y ∩Xē = ∅ and |Y | = |Bē|/2− |Xē|.
Let C(Xe, Y ) be the set of edges that go from Xe to Y , then clearly

|C(Xe, Y )| ≥ |Y | ≥ |Bē|
2
− |Xē|.
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Take now the subset Y ′ = Bē\(Y ∪Xē) that, by choice of Y , has size Bē/2. Again,

by enforcement of ratios we get that

|Γ(Y ′)|
|Be|

≥ |Y
′|

|Bē|
≥ 1

2
,

so |Γ(Y ′)∩Xe| ≥ |Xe| − |Be|/2. Let C(Xe, Y
′) be the set of edges that go from Xe to

Y ′, then

|C(Xe, Y
′)| ≥ |Γ(Y ′) ∩Xe| ≥ |Xe| − |Be|/2.

As

|C(Xe,Bē \Xē)|+ |C(Xē,Be \Xe)| ≥ |C(Xe, Y )|+ |C(Xe, Y
′)|

we conclude that

|C(Xe,Bē \Xē|+ |C(Xē,Be \Xe))| ≥ |Be|/2 ≥ ||Xe| −
|Be|

2
|+ | |Bē|

2
− |Xē||

The other case is similar.

The cross-cut property is what is needed to prove cut set expansion inductively.

Theorem 4.2.5. If M has the crossed-cut property on an element e and M/e and

M \ e have cut set expansion at least 1, then M has cut set expansion at least 1.

Proof. Let X be a subset of bases with |X| ≤ |B|/2, and again X = Xe∪̇Xē, where

Xe ⊆ Be and Xē ⊆ Bē. If |Xe| ≤ |Be|/2 and |Xē| ≤ |Bē|/2, then |C(X)| is at least,

|C(Xe)| ( with Xe in G(M/e)) plus |C(Xē)| ( with Xē in G(M \ e)). By hypothesis

this number is at least |Xe|+ |Xē|.
If |Xe| ≥ |Be|/2 and |Xē| ≤ |Bē|/2 then we have that |C(X)| is

|C(Xe)|+ |C(Xē)|+ |C(Xe,Be \Xe)|+ |C(Xē,Bē \Xē)|

The first two terms sum to at least |Be| − |Xe|+ |Xē|, as M/e and M \ e have cut set

expansion at least 1. The last two terms sum to at least |Xe| − |Be|2
+ |Bē|

2
− |Xē| by

the crossed-cut property. These two partial results give a total sum of at least |B|/2
that is bigger than |X|. The other case is similar.

Corollary 4.2.6. If all matroids in a minor-closed class M enforce ratios then all

matroids in M have cut set expansion at least 1.
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Proof. If M has 1 element, then either M is a coloop or a loop, in the first case G(M)

has cut set expansion 1, and we can consider that if M is a loop, then G(M) has cut

set expansion 1, as B(M) = {∅}.
Suppose that the result is true for all matroids of size n. Then, let M be a matroid

of size n + 1, we have that M satisfies the hypothesis of Theorem 4.2.5, that is, M

enforces ratios for some element e, and M \ e and M/e have cut set expansion 1, so,

we can conclude that M has cut set expansion 1.

It is, therefore, important to know which matroids enforce ratios. Observe that

if e and f are two distinct elements of M , the subset of bases A = Bef is such that

Γ(A) = Bēf , where as before Γ(A) is the set of neighbours of A in Ge(M). Because

M enforces ratios we have that |Be||Bēf | ≥ |Bef ||Bē|. But this condition is equivalent

to a notion in matroid theory that was studied much early, see [?], for other reasons

and now turns to be very important in the Matroid-Expansion Conjecture. We say

that:

Definition 4.2.7. A matroid M is negatively correlated if for all distinct e, f ∈
E(M),

|Be||Bf | ≥ |Bef ||B|. (4.2.1)

We also say that if two particular elements e and f of the matroid M satisfy 4.2.1

then they are negatively correlated. This property of negative correlation can be put

in several different forms as we see in the following theorem. Here we denote by Pr[f ]

the probability that a basis chosen uniformly at random contains the element f and,

by Pr[f |e], the probability that a basis chosen uniformly at random from the set Be
contains the element f .

Theorem 4.2.8. The following statements about a matroid M are equivalent.

1. M is negatively correlated.

2. For all e and f , |Be||Bēf | ≥ |Bef ||Bē|.

3. For all e and f , |Bef̄ ||Bēf | ≥ |Bēf̄ ||Bef |.

4. For all e and f , |Bef̄ ||Bē| ≥ |Bēf̄ ||Be|.

5. M∗ is negatively correlated.

6. For all e and f , Pr[f ] ≥ Pr[f |e], where e is not a loop of M .
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7. For all e and f , Pr[f |ē] ≥ Pr[f |e],where e is not a loop of M .

Proof. Straightforward algebraic manipulation.

Every uniform matroid and all projective geometries PG(r, q) are negatively cor-

related matroids [?]. Even more, Feder and Mihail [?] prove that all regular matroids

are negatively correlated. However, this is not true for all matroids as the following

examples show.

Example 1. The matroid defined by the Euclidean representation of Figure 4.2

is called S8, see [?]. Calculations give |Bg| = 28, |Bf | = 20, |Bef | = 12 and |B| = 48,

so S8 is not negatively correlated [?].

Figure 4.2: The Euclidean representation of the matroid S8.

Example 2. For the matroid defined as the 6-truncation of the graph in Fig-

ure 4.3, that is, its bases are the spanning forests of size 6, we have |Bg| = 112,

|Bf | = 272, |Bef | = 80 and |B| = 384, so this matroid is not negatively correlated.

Figure 4.3 also shows this matroid as a transversal matroid, see page ?? . Here, the

family of sets is A1 = {1, 2, h}, A2 = {3, 4, h}, A3 = {5, 6, h}, A4 = {2, 4, 6, 8, 10, g, h},
A5 = {7, 8, h} and A6 = {9, 10, h}. So, the vertices in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, h, g} of

a given matching in the bipartite graph of the figure correspond to a partial transversal

of the family (A1, . . . , A6), that is, an independent set of the induced transversal

matroid. If a matroid is the dual of a transversal matroid it is called a strict gammoid,

see [?].

Corollary 4.2.9. There exist binary matroids, transversal matroids and strict gam-

moids which are not negatively correlated.
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Figure 4.3: The truncation of a graph which is not negatively correlated, also its
representation as a transversal matroid

As the matroid S8 is a minor of PG(3, 2) we conclude that negative correlation is

not closed under minors. In order to have this important property balanced matroids

were defined.

Definition 4.2.10. A matroid M is said to be balanced if it and every minor of M

is negatively correlated.

From the previous discussion we have that uniform and regular matroids are bal-

anced but binary, transversal, and therefore real representable matroids, need not

be. It is known that every binary matroid that does not contain S8 as a minor is

balanced [?] but we have not found any published proof. By asking some people we

have reconstructed a proof that we include in Appendix ??, this because the proof

involves several matroid concepts that are not relevant for this chapter. However,

we give some more results about matroid operations on balanced matroids that are

important for Appendix ?? and this chapter.

Theorem 4.2.11. Let M and N be balanced matroids then the following statements

are true.

1. M∗ is balanced.

2. The direct sum of M and N , M ⊕N , is balanced.

3. The 2-sum of M and N , M ⊕2 N , is balanced.

The first statement follows from Theorem 4.2.8. We prove the other two in a more

general context in Section 4.4.
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Theorem 4.2.12. Every binary matroid that does not contain S8 as a minor is

balanced.

Proof. See Appendix ??.

4.3 Near-balanced matroids

In this section we continue showing the inductive/balance argument that was used

by [?] to prove that balanced matroids have cut set expansion 1. We have made a

mild generalisation to the proof in [?] to include an important matroid for the class

of balanced matroids, that is the matroid S8. We also outline the canonical path

argument that proves a better cut set expansion for balanced matroids and give us

the possibility of strengthening the Matroid-Expansion conjecture. First, we extend

the concept of balanced matroid to near-balanced matroids.

Definition 4.3.1. A matroid M is near-balanced if there exists an element e ∈ E(M)

such that for all f , e and f are negatively correlated and every proper minor of M is

balanced.

Theorem 4.3.2. For every balanced matroid the bases-exchange graph enforces ratios

Proof. Let M be a balanced matroid with n elements and rank r, we prove the

statement by induction on the rank r of M .

First we delete all the loops of M , if any, as this does not change the bases-

exchange graph of M . Let Xe ⊆ Be and X̂ē = Γ(Xe) in the restricted bases-exchange

graph. We have to show that |X̂ē|/|Bē| ≥ |Xe|/|Be|.
If M has rank 1, then either |Xe| = 1, in which case |X̂ē| = n− 1 and |X̂ē|/|Bē| =

1 = |Xe|/|Be|, or |Xe| = 0, in which case |X̂ē|/|Bē| = 0 = |Xe|/|Be|. If M has just

one element, n = 1, we assume the result as we can consider 1 = 0/0 and for this

particular case we have |X̂ē|/|Bē| = 0/0.

Suppose now that M has rank r at least 2 and that the statement is true for all

matroids of rank r−1. Let f ∈ E(M)\e and consider Xef = Xe∩Bef , Xef̄ = Xe∩Bef̄ ,
X̂ēf = X̂ē ∩ Bēf and X̂ēf̄ = X̂ē ∩ Bēf̄ . We have the following decomposition.

|Xe|
|Be|

=
|Xef |
|Bef |

|Bef |
|Be|

+
|Xef̄ |
|Bef̄ |

|Bef̄ |
|Be|

(4.3.1)

|X̂ē|
|Bē|

=
|X̂ēf |
|Bēf |

|Bēf |
|Bē|

+
|X̂ēf̄ |
|Bēf̄ |

|Bēf̄ |
|Bē|

. (4.3.2)

94



Now, we are going to use the averaging principle which says that if α1 and α2

are two positive real numbers less or equal to 1 with α1 ≥ α2, then for any two real

numbers x ≥ y we have

α1x+ β1y ≥ α2x+ β2y,

where β1 = 1− α1 and β2 = 1− α2.

As e and any f ∈ E(M) \ e are negatively correlated we have by Theorem 4.2.8

|Bef |/|Be| ≤ |Bēf |/|Bē|. Suppose there exists f such that |Xef |/|Bef | ≥ |Xef̄ |/|Bef̄ |,
then by the averaging principle,

|Xe|
|Be|

≤ |Xef |
|Bef |

|Bēf |
|Bē|

+
|Xef̄ |
|Bef̄ |

|Bēf̄ |
|Bē|

. (4.3.3)

Where we use the substitution α1 = |Bēf |/|Bē|, α2 = |Bef |/|Be|, x = |Xef |/|Bef | and

y = |Xef̄ |/|Bef̄ |.
Note that the neighbours of Xef in Ge(M/f) are contained in X̂ēf and the neigh-

bours of Xef̄ in Ge(M \f) are contained in X̂ēf̄ . By the induction hypothesis M/f and

M \f enforce ratios therefore |Xef |/|Bef | ≤ |X̂ēf |/|Bēf | and |Xef̄ |/|Bef̄ | ≤ |X̂ēf̄ |/|Bēf̄ |
and from 4.3.3 and 4.3.2 we get the result.

It just remains to prove that there exists f such that |Xef |/|Bef | ≥ |Xef̄ |/|Bef̄ |
that by equation 4.3.1 is equivalent to |Xef |/|Bef | ≥ |Xe|/|Be|. This follows from the

equalities ∑
f 6=e

|Xef |
|Xe|

= r(M)− 1 =
∑
f 6=e

|Bef |
|Be|

.

To prove, for example, the first equality, construct a bipartite graph with vertex set

Xe∪̇(E(M) \ e) and where there is an edge between a basis B ∈ Xe and element

g ∈ E(M) \ e if g ∈ B. Then, the number of edges is equal to
∑

f 6=e |Xef | and also is

(r(M)− 1)|Xe|.
To finish the proof of the Theorem, we just note that being balanced is a self dual

property and the bases-exchange graphs of M and M∗ are isomorphic, so the same

argument can be used to prove that for all X ⊆ Bē, |Γ(X)|/|Be| ≥ |X|/|Bē|.

Theorem 4.3.3. If M is near-balanced then it enforces ratios partially.

Proof. Let e be an element of M such that for all f , e and f are negatively correlated.

As any minor of M is balanced, we can proceed as in the inductive step of the previous

theorem.

Here, we obtain a minor extension to the work in [?].
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Corollary 4.3.4. If a matroid is near-balanced then it has cut set expansion 1.

Proof. By Theorem 4.3.2, Lemma 4.2.4 and Theorem 4.2.5 balanced matroids have

cut set expansion 1. By the previous corollary, Lemma 4.2.4, Theorem 4.2.5 and the

previous comment all near-balanced matroids have cut set expansion 1.

Feder and Mihail also introduced the concept of a fractional matching. This is a

property of bipartite graphs.

Definition 4.3.5. A bipartite graph G(X,A), where X = X1∪̇X2, has a fractional

matching if there exists an assignment of nonnegative weights to the edges in A such

that for each vertex u ∈ X1, the sum of the weights of edges incident to u is |X2|, and

for each vertex v ∈ X2, the sum of the weights of the edges incident to v is |X1|.

We include a result of [?] with a slightly different statement but the same proof.

Theorem 4.3.6. Suppose that M enforces ratios on an element e ∈ E(M), then

Ge(M) admits a fractional matching.

Proof. We construct the following bipartite graph G′e. The vertices are

V1∪̇V2 = {(B, i)|B ∈ Be, 1 ≤ i ≤ |Bē|}∪̇{(D, j)|D ∈ Bē, 1 ≤ j ≤ |Be|},

that is, G′e has |Bē| copies of each vertex in Ge corresponding to a basis in Be and |Be|
copies of each vertex in Ge corresponding to a basis in Bē. For vertices (B, i) ∈ V1

and (D, j) ∈ V2, there is an edge if B and D have an edge in Ge.

The hypothesis that M enforces ratios on e implies that if A is a subset of vertices

in V1, then for

Â = {B|(B, j) ∈ A, for some 1 ≤ j ≤ |Bē|} ⊆ Be

we have that

|A| ≤ |Â||Bē| ≤ |ΓGe(Â)||Bē|.

But, by construction, |ΓG′e(A)| = |ΓGe(Â)||Bē|, where here ΓH(W ) is the set of

neighbours of W in the graph H. Thus, G′e satisfies Hall’s condition and G′e admits a

perfect matching P . So, if we identify the copies of each basis in G′e to obtain Ge, and

we assign to each edge a weight equal to the number of edges of P that correspond

to it, we obtain a fractional matching for Ge.

Here, again, we note that negative correlation is a necessary property for fractional

matching.
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Theorem 4.3.7. If for every e ∈ E(M), Ge(M) admits a fractional matching, then

M is negatively correlated.

Proof. Let e and f belong to E(M), then the sum of the weights of the vertices Bē,f̄
is |Be||Bē,f̄ |. As all these edges have also an end at vertices in Be,f̄ , and the sum of

the weights on this set of vertices is |Bē||Be,f̄ | then we have |Be||Bē,f̄ | ≤ |Bē||Be,f̄ |. By

Theorem 4.2.8 that is equivalent to M being negatively correlated.

Using fractional matching, Feder and Mihail managed to define paths between

every pair of vertices of the bases-exchange graph of a balanced matroid that do not

saturate any edge, that is, they ensure that the number of (directed) paths that go

through any edge is at most half the number of vertices. Their construction can be

used to define the same paths in a near-balanced matroid with a slight change. We

now give a description of this construction.

First, choose an order in which we pick the elements of M , say e1, . . . , em. Now,

we follow exactly the original construction, which we take from [?]. We notice that

this change will make invalid other results in [?] that rely on a random choice of the

elements in E(M).

Let B′ = Bė1,...,ėm , we construct all the paths to B′, where each ėi is either ei or

ēi depending if ei belongs or not to B′. At the beginning of the construction all the

paths to B′ are distributed uniformly among the bases B, in the sense that each basis

contains the first vertex of one path to B′. The construction ensures that after i steps,

the paths destined to B′ are uniformly arranged over Bi = Bė1,...,ėi , the set of bases

that agree with B′ in the first i elements, in the sense that the expected number of

paths at each such basis after i steps is the same for all of them. We notice that this

condition holds initially when i = 0 and Bi = B. Assume that after i steps, the paths

destined to B′ are uniformly arranged over Bi = Bi+1∪B′i+1, where Bi+1 = Bė1,...,ėi,ėi+1

and B′i+1 = Bė1,...,ėi,¯̇ei+1
. The paths at Bi that are already at Bi+1 are left there for

the (i + 1)-step. The paths at Bi that are currently at B′i+1 are sent to Bi+1 by the

following procedure.

Consider the minor N = Mė1,...,ėi , because M is balanced or near-balanced, this

minor enforces ratios on ei+1 and then the restricted bases-exchange graph Gei+1
(N)

has a fractional matching. In the case that i = 0 and M is near-balanced, we know

by definition that there exists an element e ∈ E(M) that enforces ratios, so without

loss of generality, we can suppose that e = e1. Now, to continue the construction of

the paths, we assign probabilities to each possible exchange, chosen proportionally to
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the associated weights in the fractional matching, to ensure that after (i + 1)-steps,

the paths destined to B′ are uniformly arranged over Bi+1.

For example, if p is the expected number of paths at each vertex in V1 = B′i+1 and

V2 = Bi+1, then we can assign to each edge a the quantity ω(a)/|V2|, the probability

to be used to extend a path, where ω(a) is the weight of the edge in the fractional

matching. Thus, for a particular edge a = (B′, B), the expected number of paths

using that edge would be pω(a)/|V2|, and the expected number of paths that will use

a particular vertex B in Bi+1 is ∑
a=(B′,B)
B′∈V1

pω(a)

|V2|
=
p|V1|
|V2|

So, the p|V1| paths in B′i+1 are uniformly distributed in Bi+1.

After m steps, all the paths are at Bm = {B′}, as desired. Observe that with this

construction, at step i the number of paths that have to cross from B′i to Bi, when

we consider all possible destinations, is

|B|
|Bi−1|

|Bi||B′i|.

This is because for each vertex in Bi, there are (|B|/|Bi−1|)|B′i| paths in |B′i| to it, that

is, |B|/|Bi−1| paths for each vertex in |B′i|. From this it is easy to get the following

results of [?].

Theorem 4.3.8. At step i, the expected number of paths leaving a basis B′ in Bė1,...,¯̇ei
at step i is |B|Pr[ėi|ė1 . . . ėi−1] and the expected number of paths entering B in Bė1,...,ėi
is |B|Pr[¯̇ei|ė1 . . . ėi−1].

Note that a particular bases exchange involving two elements ei and ej, with i < j

can only be used during step i, so it also follows from the previous discussion that

the expected number of paths using such an exchange at step i over all destinations

is at most |B|min(Pr[¯̇ei|ė1 . . . ėi−1],Pr[ėi|ė1 . . . ėi−1]). In particular we have

Theorem 4.3.9. The expected number of paths through any edge (B,B′) is at most

|B|/2.

Now, we have a result that was not mentioned in [?].

Theorem 4.3.10. If M is a near-balanced matroid then it has strong cut set expan-

sion at least 2.
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Proof. For A ⊆ B, there are at least |A||B \ A| paths from A to B \ A, as through

any edge there pass at most 1
2
|B| of these paths. Thus, we have that 1

2
|C(A)||B| ≥

|A||B \ A|.

We will prove in Section 4.5 that the matroid S8 is near-balanced. However, the

class of near-balanced matroids is not big enough to include even binary matroids.

For example, the matroid S8 ⊕2 S8, where the base point is one of the elements h or

g of Example 1, is neither near-balanced nor enforces ratios on any element.

4.4 α-Balanced Matroids

As we saw in the previous section, not all matroids are balanced but balance is a

desirable property in a matroid. We extend the notion of balance with the hope that

this new property will also help to prove good cut set expansion.

Definition 4.4.1. Let α be a real number in the interval [0,1]. A matroid M = (E,B)

is α-correlated if for all e and f in E, e 6= f , we have

α|Bef ||Bēf̄ | ≤ |Bef̄ ||Bēf |.

We can deduce some elementary properties. If M is α-correlated then, for all

β ∈[0,1] such that α ≥ β, we have that M is β-correlated. Also every matroid is

0-correlated and all balanced matroids are 1-correlated.

First, we prove that α-correlation implies similar properties to negative correla-

tion.

Theorem 4.4.2. For any α ∈ [0, 1], if M is α-correlated then the following statements

are true.

1. M∗ is α-correlated.

2. For all e and f , |Be||Bēf | ≥ α|Bef ||Bē|.

3. For all e and f , |Be||Bf | ≥ α|B||Bef |.

4. For all e and f , |Bef̄ ||Bē| ≥ α|Bēf̄ ||Be|.

5. For all e and f , Pr[f |ē] ≥ αPr[f |e], where e is not a loop of M .

6. For all e and f , Pr[f ] ≥ αPr[f |e], where e is not a loop of M .
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Proof. The first statement follows as the definition of α-correlation is self dual. For

the second statement we have by hypothesis that

|Bef̄ ||Bēf | ≥ α|Bef ||Bēf̄ |.

As α ≤ 1, we also have the inequality

|Bef ||Bēf | ≥ α|Bef ||Bēf |,

so, adding the corresponding terms in both inequalities we have

|Bef̄ ||Bēf |+ |Bef ||Bēf | ≥ α
(
|Bef ||Bēf̄ |+ |Bef ||Bēf |

)
,

that is equivalent to

|Be||Bēf | ≥ α|Bef ||Bē|.

The proofs of the third and the fourth statements are similar to this one.

The fifth statement can be proved from the second statement by the following

inequalities:

Pr[f |ē] =
|Bēf |
|Bē|

≥ α
|Bef |
|Be|

= αPr[f |e].

The proof of the last statement is similar to this one.

Of course, every matroid is α-correlated for some α ∈ [0, 1] but the aim is to find

a class of matroids with an α-correlation that makes it closer to the notion of being

balanced, so we have the following definitions.

Definition 4.4.3. For α ∈ [0, 1], a matroid M is α-balanced, if every minor of M is

α-correlated.

The balance number of a matroid M is the real number

a(M) = sup{α ∈ [0, 1]|M is α-balanced}.

Example 1 revisited. As we saw, the matroid S8 is not negatively correlated,

but from Table 4.4.1 we get that the balance number of S8 is 8
9
.

x and y Bxȳ Bx̄y Bxy Bx̄ȳ BxȳBx̄y and BxyBx̄ȳ
g, h 16 8 12 12 128 < 144
g, a0 16 12 12 8 192 > 96
h, a0 12 16 8 12 192 > 96
a1, a2 16 16 8 8 256 > 64
a3, a4 13 13 11 11 139 > 121

(4.4.1)
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Here a0 is any element in {a, b, c, d, e, f}. The pair {a1, a2} is any of the pairs {a, b},
{c, d} or {e, f}. Elements a3 and a4 are any pair in {a, b, c, d, e, f} that is not any of

the previous cases.

As for balanced matroids, given a fixed α, α-balanced matroids are a structured

class of matroids in the sense that it is a class of matroids closed under minors ( by

definition ), direct sum and 2-sum. For the proof of this statement we need first the

following technical lemma.

Lemma 4.4.4. Let M and N be α-balanced matroids then the following statements

are true.

1. The direct sum M ⊕N , is α-correlated.

2. The 2-sum of M ⊕2 N , is α-correlated.

Proof. For the proof we introduce some notation. For a matroid M , the quantity

|Bȧ1,...,ȧk | is denoted by mȧ1,...,ȧk , where ȧi is either ai or āi. So, for example, me,f̄ is

the number of bases containing element e and not containing f and m denotes the

total number of bases.

For the first statement note the important fact that if e ∈M , then (M ⊕N)/e =

(M/e) ⊕ N and (M ⊕ N) \ e = (M \ e) ⊕ N , see [?]. Let D = M ⊕ N , we want to

prove that for all e and f , αde,fdē,f̄ ≤ dē,fde,f̄ . Let e and f ∈ E(D), then we have

three cases. If e and f are in E(M) then de,f = me,fn, dē,f̄ = mē,f̄n, dē,f = mē,fn

and de,f̄ = me,f̄n. By hypothesis

αme,fmē ≤ mē,fme,f̄ ,

so, we obtain that

αde,fdē,f̄ = αme,fmē,f̄n
2 ≤ mē,fme,f̄n

2 = dē,fde,f̄ .

The case e and f in E(N) is similar. If e is in E(M) and f is in E(N) then

de,f = menf , dē,f̄ = mēnf̄ , dē,f = mēnf and de,f̄ = menf̄ . So, as α ≤ 1,

αde,fdē,f̄ ≤ de,fdē,f̄ = menfmēnf̄ = dē,fde,f̄ .

For the second statement note that for e ∈ M \ g, where g is the base point for

the 2-sum of M and N , (M ⊕2N)/e = (M/e)⊕2N and (M ⊕2N)\e = (M \e)⊕2N ,

see [?]. Also, if B is a basis of M ⊕2 N , then B = B1∪̇B2, where B1 is a basis of M

and B2 is a basis of N and either g ∈ B1 or g ∈ B2 but nor both, see page ??.
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Let S = M ⊕2 N , we want to prove that for all e and f ,

αse,fsē,f̄ ≤ sē,fse,f̄ . (4.4.2)

Let e and f ∈ E(S) and g be the base point in M and N . Again we have three cases.

If e and f are in E(M) \ g, then

se,f = mg,e,fnḡ +mḡ,e,fng,

sē,f̄ = mg,ē,f̄nḡ +mḡ,ē,f̄ng,

sē,f = mg,e,f̄nḡ +mḡ,e,f̄ng,

se,f̄ = mg,ē,fnḡ +mḡ,ē,fng.

First, we expand left-hand side of 4.4.2 and add the expression

0 ≡ αngnḡ(mg,e,fmg,ē,f̄ +mḡ,e,fmḡ,ē,f̄ )

− αngnḡ(mg,e,fmg,ē,f̄ +mḡ,e,fmḡ,ē,f̄ ).

αse,fsē,f̄ = αn2
ḡ(mg,e,fmg,ē,f̄ ) + αn2

g(mḡ,e,fmḡ,ē,f̄ )

+ αngnḡ(mg,e,fmḡ,ē,f̄ +mḡ,e,fmg,ē,f̄ )

= αnḡ(nḡ − ng)(mg,e,fmg,ē,f̄ ) + αng(ng − nḡ)(mḡ,e,fmḡ,ē,f̄ )

+ αngnḡ(mg,e,fmḡ,ē,f̄ +mḡ,e,fmg,ē,f̄ +mg,e,fmg,ē,f̄ +mḡ,e,fmḡ,ē,f̄ ),

now, we apply the following simplification

mg,e,fmḡ,ē,f̄ +mḡ,e,fmg,ē,f̄ +mg,e,fmg,ē,f̄ +mḡ,e,fmḡ,ē,f̄

= mg,e,fmē,f̄ +mḡ,e,fmē,f̄

= mē,f̄me,f .

So, the last term in the previous inequalities can be simplified to

αnḡ(nḡ − ng)(mg,e,fmg,ē,f̄ ) + αng(ng − nḡ)(mḡ,e,fmḡ,ē,f̄ ) + αngnḡ(mē,f̄me,f ).

Now, we use that M , M/g and M \ g are α-balanced to get the following inequalities

αmē,f̄me,f ≤ mē,fmē,f ,

αmg,e,fmg,ē,f̄ ≤ mg,e,f̄mg,ē,f ,

αmḡ,e,fmḡ,ē,f̄ ≤ mḡ,ē,fmḡ,e,f̄ .
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Therefore the last term obtained in our inequalities is less than or equal to

nḡ(nḡ − ng)(mg,e,f̄mg,ē,f ) + ng(ng − nḡ)(mḡ,ē,fmḡ,e,f̄ ) + ngnḡ(mē,fme,f̄ ),

expanding the term mē,fme,f̄ we obtain

nḡ(nḡ − ng)(mg,e,f̄mg,ē,f ) + ng(ng − nḡ)(mḡ,ē,fmḡ,e,f̄ )

+ ngnḡ(mg,ē,fmg,e,f̄ +mg,ē,fmḡ,e,f̄ +mḡ,ē,fmg,e,f̄ +mḡ,ē,fmḡ,e,f̄ ),

and simplifiying the expression we finally get

n2
ḡ(mg,ē,fmg,e,f̄ ) + n2

g(mḡ,ē,fmḡ,e,f̄ )

+ ngnḡ(mg,ē,fmḡ,e,f̄ +mḡ,ē,fmg,e,f̄ )

= (mg,ē,fnḡ +mḡ,ē,fng)(mg,e,f̄nḡ +mḡ,e,f̄ng)

= sē,fse,f̄ .

The case where e and f are in N is similar. If e is in M \ g and f is in N \ g we have:

se,f = mg,enḡ,f +mḡ,eng,f ,

sē,f̄ = mg,ēnḡ,f̄ +mḡ,ēng,f̄ ,

sē,f = mg,ēnḡ,f +mḡ,ēng,f ,

se,f̄ = mg,enḡ,f̄ +mḡ,eng,f̄ .

As M and N are α-balanced we have,

0 ≤ (mg,ēmḡ,e − αmg,emḡ,ē)(nḡ,fng,f̄ − αng,fnḡ,f̄ ),

expanding this expression we have

αmg,emḡ,ēnḡ,fng,f̄ + αmḡ,emg,ēng,fnḡ,f̄ ≤ mg,ēmḡ,enḡ,fng,f̄ + α2mg,emḡ,ēng,fnḡ,f̄ .

Using first this inequality and then the fact that α ∈ [0, 1] we obtain,

αse,fsē,f̄ = αmg,emg,ēnḡ,fnḡ,f̄ + (αmg,emḡ,ēnḡ,fng,f̄

+ αmḡ,emg,ēng,fnḡ,f̄ ) + αmḡ,emḡ,ēng,fng,f̄

≤ αmg,emg,ēnḡ,fnḡ,f̄ + (mg,ēmḡ,enḡ,fng,f̄

+ α2mg,emḡ,ēng,fnḡ,f̄ ) + αmḡ,emḡ,ēng,fng,f̄

≤ mg,emg,ēnḡ,fnḡ,f̄ +mg,ēmḡ,enḡ,fng,f̄

+mg,emḡ,ēng,fnḡ,f̄ +mḡ,emḡ,ēng,fng,f̄

= sē,fse,f̄ .
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Theorem 4.4.5. Let M and N be α-balanced matroids, with α ∈ [0, 1], then the

following statements are true.

1. M∗ is α-balanced.

2. M ⊕N is α-balanced.

3. M ⊕2 N is α-balanced.

Proof. The first statement follows from Theorem 4.4.2. The second statement follows

from Lemma 4.4.4 and the fact that any minor of M ⊕N is the direct sum of a minor

of M and a minor or N , see [?]. The third also follows from Lemma 4.4.4 and the

fact that any minor of M ⊕2 N is the direct sum of a minor of M and a minor or N ,

see [?].

Proof of Theorem 4.2.11. Note that taking α = 1 in Corollary 4.4.5, we have a proof

of the second and third statement of Theorem 4.2.11.

4.5 A New Conjecture

While working on the conjecture of Mihail–Vazarani, we realised how difficult the

expression 4.1.1 is to relate to any operation on matroids, such as direct sum or two

sum, so we came up with the idea of taking a slightly stronger property that was

more malleable. We, therefore, propose the following property.

Definition 4.5.1. For k ∈ N, a matroid M is said to be a k–expander if the bases–

exchange graph G(M) has strong cut set expansion at least k, that is, for all subsets

A of bases we have

|C(A)| ≥ k|A||B − A|
|B|

, (4.5.1)

where as in definition 4.1.1, C(A) is the cut determined by A.

To check the property given by the equation 4.5.1 we need the matroid to have at

least 2 bases. In what follow we assume that matroids with just 1 or 0 bases are k

expanders to avoid specifying in every statement if M has or has not at least 2 bases.

We have already pointed out that all balanced matroids have strong cut set ex-

pansion at least 2, so all balanced matroids are 2-expander matroids. Even more, the

class of 2-expander matroids contains properly the class of balanced matroids as the

following proposition shows.
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Theorem 4.5.2. The matroid S8 is near–balanced and a 2-expander matroid.

Proof. Consider the matroid S8 as in example 1, take the element a, then it is dis-

played in Table 4.4.1 that BxāBx̄a > BxaBx̄ā for all x 6= a. Also, every minor of

S8 is regular, so, by definition 4.3.1, S8 is near–balanced. Using Theorem 4.3.10 we

conclude that S8 is a 2–expander matroid.

Suppose now that there exists a matroid M and a subset of its bases A ⊂ B(M),

with |A| ≤ |B(M)|(1 − 1√
2
) and C(A) = |A|, then the matroid M ⊕M would not

satisfy the Matroid–Expansion Conjecture as the bases X = {B ∈ B(M ⊕M)|B′ ⊂
B for some B′ ∈ A} would be a set of bases of M ⊕M with size less than |B(M⊕M)|

2

and |C(X)| < |X|. So, either the bound in the Matroid–Expansion Conjecture is not

tight and we can strengthen it or the Conjecture is not true. We hope for the first

possibility and as we already have a stronger property than cut set expansion 1, we

propose the following stronger conjecture.

Conjecture 4.5.3. All matroids are 2–expander matroids.

A nice property of general k–expander matroids, for a fixed k, is that they are

closed under the operation of taking direct sums. To prove this result we need a

technical lemma.

For an m × n matrix R with entries in {0, 1} we denote by xi the number of

non–zero entries in the row i and by yj the corresponding number in column j. Also,

we define the function f(x, p) = x(p−x)
p

, where 0 ≤ x ≤ p. Obviously, we have∑m
i=1 xi =

∑n
j=1 yj but also we have

Lemma 4.5.4.
m∑
i=1

f(xi, n) +
n∑
j=1

f(yj,m) ≥ f(
m∑
i=1

xi, nm). (4.5.2)

In order to prove Lemma 4.5.4 we use the following result.

Lemma 4.5.5. Inequality 4.5.2 is equivalent to the following inequality about the row

and column sums of the matrix R.

m∑
i=1

xi +
1

nm

(
m∑
i=1

xi

)2

≥ 1

n

m∑
i=1

x2
i +

1

m

n∑
j=1

y2
j . (4.5.3)
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Proof. We have the following series of equivalent inequalities:

m∑
i=1

f(xi, n) +
n∑
j=1

f(yj,m) ≥ f(
m∑
i=1

xi, nm)

m∑
i=1

xi(n− xi)
n

+
n∑
j=1

yj(m− yj)
m

≥ (
∑m

i=1 xi)(nm−
∑m

i=1 xi)

nm

m∑
i=1

xi −
m∑
i=1

x2
i

n
+

n∑
j=1

yj −
n∑
j=1

y2
j

m
≥

m∑
i=1

xi −
(
∑m

i=1 xi)
2

nm

m∑
i=1

xi +
(
∑m

i=1 xi)
2

nm
≥ 1

n

m∑
i=1

x2
i +

1

m

n∑
j=1

y2
j .

To prove inequality 4.5.3 we construct a triple of directed graphs in which the

number of edges correspond to the above numbers and then we use a counting argu-

ment.

Suppose R is an m×n matrix with entries in {0, 1}. Define a graph G as follows:

the vertices are the mn entries of the matrix, that is {Ri,j}, and if Ri,j = 1 then there

is an arrow to Rk,l if Rk,l = 0 and there are two arrows if Rk,l = 1. The total number

of arrows is
∑m

i=1 xi(nm+
∑m

i=1 xi).

Now, we construct graphs G1 and G2. The vertex set of G1 is also the set of

entries of R and if Ri,j = 1 then there is an arrow Ri,j → Rk,l, for all k ∈ {1, . . . ,m}
if Ri,l = 1. In a particular row, say i, every entry Ri,j = 1 is going to have mxi edges

going out, so the total number of arrows going out from the ith row is mx2
i . Therefore,

the total number of arrows in G1 is m
∑m

i=1 x
2
i . We repeat this construction, now by

columns, to get G2 with a total number of arrows of n(
∑m

i=1 y
2
i ).

With these two graphs we construct G′ = G1 +G2. We are going to prove that G

has more arrows than G′.

First we compare the number of arrows between vertices of the same row, say i,

and consider the entry Ri,j. If Ri,j = 0, it does not have arrows going out in either

graph. If Ri,j = 1, it has two loops in G and two loops in G′. If there is an entry

Ri,l = 1, with l 6= j, then there are two arrows from Ri,j to Ri,l in G and just one in

G′. If there is an entry Ri,l = 0, with l 6= j, then there is an arrow from Ri,j to Ri,l

in G and none in G′. The same analysis works by columns.

For the arrows between vertices that are not in the same row or column we proceed

by pairs of vertices that form the corners of a rectangle, that is for the quadruple Ri,j,

Ri,l, Rk,j and Rk,l, for i < k and j < l. In the Figure 4.4 we denote by a full dot if the
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corresponding entry is one, and by a non-full dot if it is zero. In each case the number

of arrows in a quadruple in G is at least the number of arrows in the corresponding

quadruple in G′.

Figure 4.4: The different quadruples of vertices in G and G′ together with their edges
for the proof of Lemma 4.5.4.

We conclude that the number of arrows in G is at least the number of arrows in

G′, therefore

m∑
i=1

xi(nm+
m∑
i=1

xi) ≥ m
m∑
i=1

x2
i + n

n∑
j=1

y2
j . (4.5.4)

And this finishes the proof of Lemma 4.5.4
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Theorem 4.5.6. Let k be a positive integer, then if M and N are k–expander ma-

troids, M ⊕N is also a k–expander matroid.

Proof. The bases–exchange graph of the matroid M ⊕N is the product graph of the

two graphs G(M) and G(N). So, each basis S in M ⊕ N is a pair of bases (B,C),

where B is a basis of M and C is a basis of N . The edges of G(M ⊕N) go between

pairs with the same first entry and whose second entries are neighbours in N or with

the same second entry and whose first entries are neighbours in M . Suppose that

|B(M)| = m and |B(N)| = n, then, every basis of M ⊕N labels an entry of a m× n
matrix. Now, let A be a subset of bases of M ⊕N , we want to bound the number of

edges in the corresponding cut. Construct the matrix R of size m× n with an entry

equal to 1 if that entry corresponds to a basis in A and 0 otherwise. The edges in the

cut go between bases in the same row or the same column, and by hypothesis this

number is, in each row i, kf(xi, n) and in each column j is kf(yj,m). Now, we can

apply the previous lemma and obtain that the number of edges in the cut C(A) is at

least kf(
∑m

i=1 xi, nm).

We are unable to prove Conjecture 4.5.3 and while trying to prove it by an induc-

tion argument, the following notion seems both natural and interesting.

Definition 4.5.7. For k ∈ N, a matroid M is said to k–expand weakly if for all

e ∈ E(M) and all A ⊂ B we have that

|C(A) ∩ E(Ge(M))| ≥ kN1N2

N1 +N2

(
n1

N1

− n2

N2

)2

(4.5.5)

where n1 = |A ∩ Be|, n2 = |A ∩ Bē|, N1 = |Be| and N2 = |Bē|.

Clearly, for k > k′, if a matroid M k–expands weakly, then it k′-expands weakly.

The relation between being a k–expander matroid and to k-expand weakly is partially

answered in Theorem 4.5.9 and Corollary 4.5.10. First, a technical lemma.

Lemma 4.5.8. Let 0 ≤ n1 ≤ N1 and 0 ≤ n2 ≤ N2 then for the function f(x, p) =
x(p−x)

p
we have

f(n1, N1) + f(n2, N2) +
kN1N2

N1 +N2

(
n1

N1

− n2

N2

)2

= f(n1 + n2, N1 +N2).

Proof. Consider the quantity

f(n1 + n2, N1 +N2)− f(n1, N1)− f(n2, N2),
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that is

k(n1 + n2)(N1 +N2 − n1 − n2)

N1 +N2

− kn1(N1 − n1)

N1

− kn2(N2 − n2)

N2

.

Expanding this expression we obtain the following long expression

k(n1N
2
1N2 + n1N1N

2
2 − n2

1N1N2 − n1n2N1N2)

(N1 +N2)N1N2

+
k(n2N

2
1N2 + n2N1N

2
2 − n2

2N1N2 − n1n2N1N2)

(N1 +N2)N1N2

− k(n1N
2
1N2 + n1N1N

2
2 − n2

1N1N2 − n2
1N

2
2 )

(N1 +N2)N1N2

− k(n2N
2
1N2 + n2N1N

2
2 − n2

2N
2
1 − n2

2N1N2)

(N1 +N2)N1N2

.

After some simplification we get

=
k(n2

1N
2
2 − 2n1n2N1N2 + n2

2N
2
1 )

(N1 +N2)N1N2

=
k(n1N2 − n2N1)2

(N1 +N2)N1N2

=
kN1N2

N1 +N2

(
n1

N1

− n2

N2

)2

,

and the result follows.

Theorem 4.5.9. Let k ∈ N and M be a matroid. Suppose there exists an element

e such that M \ e and M/e are k–expander matroids and also that M and e satisfy

equation 4.5.5 for k and all subsets A of bases, then M is a k–expander matroid.

Proof. Let A be a subset of bases of M . Then C(A) can be partitioned into the

edges that are in the subgraph of G(M) that is isomorphic to G(M \ e), the edges

in the subgraph isomorphic to G(M/e) and the edges in C(A) ∩ E(Ge(M)). Let

|A ∩ Be| = n1, |A ∩ Bē| = n2, |Be| = N1 and |Bē| = N2, then by hypothesis the first

two sets of edges have total cardinality

kn1(N1 − n1)

N1

+
kn2(N2 − n2)

N2

.

Also by hypothesis we have that

|C(A) ∩ E(Ge(M))| ≥ kN1N2

N1 +N2

(
n1

N1

− n2

N2

)2

.
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Adding up, we get that the cardinality of C(A) is such that

|C(A)| ≥ k

(
n1(N1 − n1)

N1

+
n2(N2 − n2)

N2

+
N1N2

N1 +N2

(
n1

N1

− n2

N2

)2
)

= k

(
(n1 + n2)(N1 +N2 − n1 − n2)

N1 +N2

)
= k
|A||B(M) \ A|
|B(M)|

.

As this was for an arbitrary A ⊂ B(M), we conclude that M is a k-expander

matroid.

Corollary 4.5.10. If every matroid 2–expands weakly then every matroid is a 2–

expander matroid.

Proof. By using Theorem 4.5.9 and induction on the size of the matroid.

It is easy to check that for 0 ≤ n1 ≤ N1 and 0 ≤ n2 ≤ N2 then

N1N2

N1 +N2

(
n1

N1

− n2

N2

)2

≤
∣∣∣∣n1 −

N1

2

∣∣∣∣+

∣∣∣∣n2 −
N2

2

∣∣∣∣ . (4.5.6)

Therefore, if M is balanced, by Theorem 4.2.4, it has the cross-cut property and by

equation 4.5.6 it 1-expands weakly. Also, by doing several cases, it can be checked

that S8 1-expands weakly so it is reasonable to believe that all matroids 1–expand

weakly. However, we think that the following stronger conjecture is true.

Conjecture 4.5.11. All matroids 2–expand weakly.

4.6 Conclusion and open problems

We have introduced several classes and properties on matroids For a matroid M ,

the notion of balanced fractional matching and enforcing of ratios are related by the

following diagram.

M is balanced. ⇔ For all minors N of M , N
enforces ratios.

⇔

For all minors N of M ,
Ge(N) admits a frac-
tional matching, for all
e ∈ E(N).

⇓
For all minors N of M , N
has the crossed-cut property
on every element of E(N).

⇓
M has cut set expansion ≥ 1.
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All these implications were discussed or proved in Section 4.2 and Section 4.3.

The classes of α-balanced matroids, for 0 ≤ α ≤ 1, are clearly related by

Balanced matroids ⊂ α-balanced matroids,

α1-balanced matroids ⊂ α2-balanced matroids,

where 0 ≤ α ≤ 1 and 0 ≤ α1 ≤ α2 ≤ 1.

Finally, balanced, near-balanced and k-expander matroids are related by

Balanced
matroids

⊂ near-balanced
matroids

⊆ 2-expander
matroids

⊇ 3-expander
matroids

⊇ · · · ,

And for a matroid M we also have

For all minors N of M ,
N k-expands weakly.

⇒ M is a k-expander
matroid.

The notion of α–balanced is a very natural generalisation of balance and is of

a certain intrinsic interest but probably the most important question about it is if

there is a relation, as we believe, between the conjecture of Mihail and Vazirani,

and values of α close to 1. Ideally, one would like for a fixed α0, that there exists

a polynomial, p(x), such that if M is an α0-balanced matroid, then M has cut set

expansion 1/p(|E(M)|). For example, in the case of balanced matroids, α0 = 1 and

p(x) is the constant polynomial 1.

Conjecture 4.5.3 seems to be more appropriate to work with such a structured

notion as matroids, and Theorem 4.5.6 gives evidence for this thought. The next step

would be to prove that this theorem remain true if we replace direct sum by 2–sum.

The more general problem is to determine which class of matroids is the one that

satisfies this conjecture, that we already know that contains balanced matroids and

so all regular matroids.
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Appendix A

Indices.c
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Appendix B

Indices.c

There follows a printout of the C program which I wrote to generate the indices of

the matrix Tn defined in page 32. The indices correspond to the standard forms Sn,

defined in page 29, for a fixed integer n which is the input of the program.

The program is based on the result mentioned during the proof of Theorem 1.8.18,

that every standard form has the parenthesis property. In fact, and we omit the proof

of this, all standard forms in Sn can be constructed by concatenate every standard

form of Sn−1 with a label in {1, . . . , n}, and consider all of those which satisfy the

parenthesis property. Now, this construction can be done easily by using a stack and

the program consists on a straightforward implementation of the stack plus a function

that generates all the labels that can be concatenated to an already constructed

standard form checking that the new sequence satisfies the parenthesis property.

B.1 indices.c

#include<stdio.h>

#include<stdlib.h>

#define MAXLEVEL 20 /* Maximum possible size of the standard forms. */

#define NO 0

Stack structure that represents the indices of the transfer-matrix.

struct node{

int val;

struct node *next; /* List of possible sons. */

} stack[MAXLEVEL+1]; /* Stack of components. */
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int top; /* The top of the stack. */

Stack functions.

void init_stack(void);

List functions.

void delete(int place);

void insert(int val, int place);

Function that creates the possible labels.

void create_sons(int top, int level);

File functions.

int on_screen( void);

I-O functions.

int read_level(void);

main()

{

int i,j; /* Counters. */

long int row; /* Number of indices. */

FILE *index; /* File to keep the standard forms. */

int screen; /* Option to display. */

int level; /* The size of the standard forms. */

char file[20]; /* The name of the file to store. */

/* the standard forms. */

/* Read option to write the results in a file or the screen. */

screen = on_screen();

if ( screen == NO ){

printf("Give the file to store the indices\n");

scanf("%s", file);

printf("The data will be stored in file %s",file);
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if ( (index=fopen(file, "wb"))== NULL ){

printf("I cannot open the file to store data, sorry\n");

exit(1);

}

printf("So the data will be stored in file %s\n", file);

} /* End of if */

level= read_level();

init_stack(); /* Initialisation of stack. */

top=1; row=1; /* Initialisation. */

if ( screen ) printf("The indices are:\n");

else{

/* The first integer is the size of the standard forms. */

fwrite(&level, sizeof(int), 1, index);

/* The second is the total of the indices. */

fwrite(&row, sizeof(long int), 1, index);

}

stack[top].val=1; /* The first value is always 1. */

create_sons(top, level);

while (top > 0 && top < level){

if ( top == level-1 ) {

/* We found some standard form of desired size. */

while( stack[top].next!= NULL){

/* We print all the standard forms that start with */

/* stack[1].val,. . ., stack[level-1].val */

/* and the last value is an element of the queue */

/* stack[level-1]. */
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stack[top+1].val=stack[top].next->val;

if ( screen ) printf("%d\t", row);

for(j=1; j< level+1; j++){

if ( screen )

printf(" %d ", stack[j].val);

else

fwrite(&(stack[j].val), sizeof(char), 1, index);

}

if ( screen ) printf("\n");

row++;

delete(top);

} /* End of nested while. */

top--; /* Pop queue. */

} /* End of if. */

else{

/* We take another element from the queue at the top. */

if ( stack[top].next==NULL )

/* We finish the queue at the top */

/* and go down to a previous queue. */

top--; /* Pop */

else{

/* We take the next element in the queue and */

/* construct all possible extensions. */

stack[top+1].val=stack[top].next->val;

delete(top);

top++; /* Push queue. */

create_sons(top, level);
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} /* End of nested else. */

} /* End of main else. */

} /* End of main while. */

/* Adjustment as we increase row during */

/* the operation when we left the while. */

row--;

/* Present the results of the program. */

if ( screen )

printf("The total number of indices is %d\n", row);

else{

if ( fseek(index, sizeof(int),SEEK_SET) ==0){

fwrite(&row, sizeof(long int), 1, index);

printf("There has been stored %ld", row);

printf(" rows of %d entries\n", level);

printf("that is a total of %ld bites\n", row*level+8);

printf("in the file %s\n", file);

}

else{

printf("There is an error when trying to store");

printf(" the number of indices\n");

exit(2);

} /* End of nested else. */

fclose(index);

} /* End of main else. */

exit(0);

} /* End of function main*/
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Implementation of stack functions.

void init_stack(void)

{

int i;

for (i=0; i< MAXLEVEL; i++){

stack[i].val=0;

stack[i].next=NULL;

}

} /* End of function init stack. */

Implementation of list procedures.

void delete(int place)

{

if (stack[place].next == NULL)

printf("There is an error in delete fuction\n");

else

stack[place].next = stack[place].next->next;

} /* End of function delete . */

void insert(int val, int place)

{

struct node *new;

new = (struct node *) malloc( sizeof(struct node));

if (new == NULL)

printf("There is a fatal error\n");

else{

new->val = val;

new->next= stack[place].next;

stack[place].next= new;
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}

}/* End of function insert. */

This function creates all the possible extension to a given standard form, that

is, find all possible labels {1, . . . , level} which when concatenate to the standard

form of size level-1, already constructed in the data structure stack, will produce

a standard form of size level. The algorithm works as follows: a label is forbidden

if we encounter it previously surrounded by a pair of equal labels. So we just go

through all the labels, finding all the forbidden ones and the rest of them are possible

extensions.

void create_sons(int top, int level)

{

int forbiden[MAXLEVEL+1]; /* List of forbidden sons. */

int new_top, /* To simulate a new stack. */

min, /* Minimum label seen. */

max_total, /* Maximum label in the stack. */

last_seen, /* Last label seen. */

i; /* Counter. */

new_top=top;

max_total=0;

min=stack[new_top].val;

for (i=0; i < level+1; i++)

forbiden[i]=0;

while( new_top > 0) {

last_seen = stack[new_top].val;

new_top--;

if (last_seen > max_total)

max_total= last_seen;

if (last_seen < min )

min = last_seen;

else if (last_seen > min)

forbiden[last_seen]=1;
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} /* End of while. */

if ( (max_total+1) < level )

for( i=max_total+2; i< level+1; i++)

forbiden[i]=1;

for(i=1; i< level+1; i++)

if (forbiden[i]!= 1)

insert(i, top);

} /* End of function create sons. */

Read option to store the results in a file or display on the screen.

int on_screen(void)

{

char c=’\0’;

printf("Do you want the data to be stored in a file y/n\n");

scanf("%c", &c);

while ( (c!= ’y’) && (c!= ’n’) ) {

printf("Type y or n");

scanf("%c", &c);

}

if ( c == ’n’ )

return(1); /* The result will be display in the screen. */

else

return(0); /* The result will be stored in a file. */

} /* End of function in screen. */

Read the side of the standard forms.

int read_level(void)

{

int lev;
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printf("Give the size of the standard forms,");

printf(" the maximum is 20\n");

while ( scanf("%d", &lev)!= 1)

printf("Type an integer between 1 and 20\n");

return(lev);

} /* End of function read level. */
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Appendix C

Matrix.c
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Appendix D

Matrix.c

We now present a printout of the C program which I wrote to compute the matrix

Tn|x=x0
y=y0

of page 35, and which has as input the point (x0, y0).

Also in this appendix, we present a program to compute T ′n|x=x0
y=y0

of page 47.

D.1 matrix.c

The program assumes that we have in a file the indices of the matrix Tn, that are

constructed using the program of Appendix B. The program is a straightforward

implementation of the theory of Section 1.6.

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define MAXLEVEL 20 /* Maximum possible size of the indices. */

int dad[2*MAXLEVEL+1]; /* The tree for the union-find structure. */

Operation for the union-find data structure

void ini_dad(void);

int root(int x);

int find( int x, int y, int doit);

To generate a set of horizontal edges

void edges(int *a, unsigned x, int level);

To find a standard form in the table of standard forms
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int look_place( int *conf, char *table, int level, long int total);

main()

{

FILE *index; /* File where the standard forms are stored. */

FILE *result; /* File to store the adjacency matrix. */

char *file; /* Name of the file with the indices. */

int level; /* Size of the indices. */

int total; /* Total number of standard forms. */

int x_val, y_val; /* Values to compute the Tutte polynomial. */

int old_comp; /* The number of components in the old and */

int new_total_comp; /* new standard form. */

int top_hor; /* Total number of possible horizontal and */

int top_ver; /* vertical edges in n-comb graph. */

unsigned iter1; /* Counters for the three levels of iteration */

unsigned iter2; /* for the construction of the matrix. */

unsigned iter3;

int size; /* Size of the set of edges extending the */

/* square lattice. */

int rank; /* Increase on the rank that will */

/* produce the extension. */

char buffer[MAXLEVEL]; /* Array to store a standard form. */

char *table; /* Set of standard forms. */

int i,j; /* General counters. */

int vertical[MAXLEVEL]; /* Set of vertical and horizontal edges */

int horizontal[MAXLEVEL]; /* of n-comb graph. */

int old[MAXLEVEL]; /* Labels of components in old and new */

int new[MAXLEVEL]; /* set of standard forms. */

double *row; /* Buffer for the values of a row in the matrix. */

/*********** MAIN PROGRAM ***************/
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/* Initialisation of buffer. */

for (i=0; i< MAXLEVEL; i++)

buffer[i]=0;

/* Open the file where the standard forms are stored. */

printf("Give the file where the standard forms are stored\n");

scanf("%s", file);

if ( (index=fopen(file, "rb"))== NULL ){

printf("I cannot open the file %s to read the data, sorry\n", file);

exit(1);

}

printf("So the data will be read from file %s\n", file);

if ( fread(&level, sizeof(int), 1, index) == 1 )

printf("The size of the square lattice is %d\n", level);

else{

printf("There is an error in the file\n");

exit(1);

}

if ( fread(&total, sizeof(int), 1, index) == 1 )

printf("And the number of standard forms is %d\n",total);

else{

printf("There is an error in the file\n");

exit(1);

}

/* Creating space to store the standard forms. */

if( (table = (char *) calloc( level*total, sizeof(char)))==NULL){

printf("There is not enough memory to store the indices\n");

exit(2);

}
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/* Reading the standard forms. */

j = 0;

while ( fread(buffer, sizeof(char), level, index) == level ){

for( i=0; i<level; i++)

table[level*j+i]= buffer[i];

j++;

}

/* Close the file of standard forms. */

fclose(index);

/* Space for the row of the adjacency matrix. */

if( (row = (double *) calloc( total, sizeof(double)))==NULL){

printf("There is not enough memory to compute ");

printf(" the matrix\n sorry\n");

exit(2);

}

/* Read point (x val, y val) to evaluate the Tutte Polynomial. */

printf("Give the value of x where you wish to compute T(x, y)\n");

scanf("%d", &x_val);

printf("Give the value of y where you wish to compute T(x, y)\n");

scanf("%d", &y_val);

/* Open the file to store the matrix. */

printf("Give the file to store the matrix\n");

printf("The matrix will occupy %d bites\n", total*total*8);

scanf("%s", file);

if ( (result=fopen(file, "wb"))== NULL ){

printf("I cannot open a file to stored data, sorry\n");

exit(1);

}

printf("So the matrix will be stored in file %s\n", file);

/* We store the dimension of the matrix in the file. */

fwrite(&total, sizeof(int), 1, result);
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/* Computing the adjacency matrix at value x val, y val. */

/* Number of iterations for each row of the matrix. */

top_hor=(unsigned) ldexp(1, level);

top_ver= (unsigned) ldexp(1, level-1);

/* Iteration through all indices of the matrix. */

for( iter1=0; iter1< total; iter1++){

/* Initialisation of the graph Gβ,B, */

/* see page 32. */

for(i=0; i<level; i++)

old[i]=table[iter1*level+i];

for(i=0; i<total; i++)

row[i]=0.0;

/* We iterate over all possible extensions of horizontal edges. */

for(iter2=0; iter2 < top_hor ; iter2++){

for(i=0; i< level;i++) horizontal[i]=0;

edges(horizontal,iter2,level); /* Create horizontal edges. */

/* We iterate over all possible extensions of vertical edges. */

for(iter3=0; iter3 < top_ver; iter3++){

for(i=0; i< level-1; i++) vertical[i]=0;

edges(vertical,iter3,level-1); /* Create vertical edges. */

size = 0;

ini_dad();

/* At the beginning every vertex is in a different component. */

for(i=0; i<level; i++)

new[i]= i+1;

/* First, we construct the connected components */

/* for the old standard form. */

for ( i=0; i+1 < level; i++ )

for(j=i+1; j < level; j++)

if ( old[i]==old[j])

find(i+level+1, j+level+1, 1);
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/* We count the number of components of the previous */

/* standard form. */

old_comp = 0;

for ( i=level+1; i < 2*level+1; i++)

if ( dad[i] == 0 ) /* It is a root and a new component. */

old_comp++;

/* We change the connected components due to */

/* the addition of the vertical edges. */

for ( i=0; i < level-1; i++)

if ( vertical[i]==1 ){ /* New vertical edge. */

find(i+1, i+2, 1);

size++;

}

/* And we change the connected components due to */

/* the addition of the horizontal edges. */

for (i=0; i < level; i++ )

if ( horizontal[i]==1 ){ /* New horizontal edge. */

find(i+level+1, i+1, 1);

size++;

}

/* Change the label of the roots in the new standard form. */

for (i=1, j=1; i < level+1; i++ )

if ( dad[i]==0 ){ /* Its a root. */

new[i-1]=j;

j++;

}

/* Using the components we relabel the new standard form. */

for (i=1; i < level+1; i++ ){

j= root(i);

new[i-1]=new[j-1];

}
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/* Compute the new total of components after adding */

/* horizontal and vertical edges. */

new_total_comp= 0;

for ( i=1; i < 2*level+1; i++)

if ( dad[i] == 0 ) /* it is a root and a new component. */

new_total_comp++;

/* We obtain the increase or decrease in the rank. */

rank= new_total_comp-old_comp-level;

/* Find the index in the adjacency matrix of the new standard form. */

i = look_place( new, table, level, total);

/* We compute the value x−rankysize−rank */

/* at the point x =x val and y =y val. */

if ( rank+size == 0 ){

if (rank==0)

row[i]=row[i]+1;

else

row[i]=row[i]+pow(x_val,rank);

} /* End of main if. */

else{

if(rank==0)

row[i]=row[i]+pow(y_val, rank+size);

else

row[i]=row[i]+pow(x_val,rank)*pow(y_val, rank+size);

} /* End of main else */

} /*End of iteration over extensions of vertical edges. */

} /*End of iteration over extensions of horizontal edges. */

/* Store the result for this row of the adjacency matrix. */

fwrite(row, sizeof(double), total, result);

}/* End of iteration through all indices of the matrix. */
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/* Close the file of the matrix. */

fclose(result);

printf("We succesfully store the matrix\n");

}/* End on main */

Function implementation

Implementation of the Union-Find data structure

void ini_dad(void)

Initialisation of the Union-Find structure.

{

int i;

for (i=1; i < 2*MAXLEVEL+1; i++ )

dad[i]=0;

}/*End of function ini dad. */

int root(int x)

Find the connected component of vertex x.

{

int i=x;

while ( dad[i] > 0 ) i=dad[i];

return(i);

}/*End of function root. */

int find( int x, int y, int doit)

The function returns 0 if the vertices x and y are in the same connected component;

and 1 if they are in different connected components. Additionally, if the option doit

is 1, it makes the both vertices to be in the same connected component.

{

int i=x, j=y;

while ( dad[i] > 0 ) i = dad[i];

while ( dad[j] > 0 ) j = dad[j];
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if ( (doit != 0) && (i != j) ){

if ( j > i ) dad[j] = i;

else dad[i] = j;

}

return( i != j );

}/*End of function find. */

Figure D.1: Example for the function edges

void edges(int *a, unsigned x, int level)

To generate a set of horizontal (vertical) edges, we identify an edge with a bit, so

the presence of edge means bit on. For example, the graph in figure D.1 has number

1 + 0× 21 + 1× 22 = 5.

{

int i;

for( i=0; (i< level) && ( x!= 0); x>>=1){

if( x & 01 )

a[i]=1;

else

a[i]=0;

i++;

}

}/*End of function edges. */
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int look_place( int *conf, char *table, int level, long int total)

Find the place of the standard form in the table of indices by using binary search.

{

int l;

int r;

int place;

int i;

l=0; r=total-1;

while ( r >= l ) {

place= (l+r)/2;

i=0;

while( (i< level) && ( conf[i]==table[place*level+i] ) )

i++;

if ( i >= level ) return(place);

if ( conf[i] <= table[place*level+i] )

l = place+1; /* It is in the lower half. */

else

r = place-1; /* It is in the upper half. */

} /* End of main while. */

return(-1);

} /*End of function look place. */

D.2 matrix2.c

The program matrix2.c is almost the same as matrix.c, the only changes are in the

following code

...
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/* Number of iterations for each row of the matrix. */

top_hor=(unsigned) ldexp(1, level);

top_ver= (unsigned) ldexp(1, level-1);

/* Iteration through all indices of the matrix. */

for( iter1=0; iter1< total; iter1++){

/* Initialisation of the graph Gβ,B, */

/* see page 32. */

for(i=0; i<level; i++)

old[i]=table[iter1*level+i];

for(i=0; i<total; i++)

row[i]=0.0;

/* We iterate over all possible extensions of horizontal edges. */

for(iter2=0; iter2 < top_hor ; iter2++){

for(i=0; i< level;i++) horizontal[i]=0;

edges(horizontal,iter2,level); /* Create horizontal edges. */

...

So, we change the previous code by the following.

...

/* Number of iterations for each row of the matrix */

/* Here is a big chance with respect to matrix.c. */

/* Now, we always have the edge (1, 0) ∼ (2, 0) presented.*/

top_hor=(unsigned) ldexp(1, level-1);

/* The next line is unchanged. */

top_ver= (unsigned) ldexp(1, level-1);

/* Iteration through all indices of the matrix. */

for( iter1=0; iter1< total; iter1++){

/* Initialisation of the graph Gβ,B, */

/* see page 32. */

for(i=0; i<level; i++)

old[i]=table[iter1*level+i];

for(i=0; i<total; i++)

row[i]=0.0;

133



/* We iterate over all possible extensions of horizontal edges. */

for(iter2=0; iter2 < top_hor ; iter2++){

for(i=0; i< level;i++) horizontal[i]=0;

/* Here, there is another change. */

/* The use of the number iter2*2+1 in the function */

/* edges, ensures that the edge (1, 0) ∼ (2, 0) is */

/* always present. */

edges(horizontal,iter2*2+1,level); /* Create horizontal edges. */

...

All the rest of the program remains the same.
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Appendix E

Vector.c
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Appendix F

Vector.c

We present a printout of the C program which I wrote to compute the vector
−→
Xn

t|x=x0

of 1.6.5 and the vector ~1 of all entries 1, both of which are important for the computa-

tion of 1.6.1. The program has as input x0 and uses the file generated by indices.c

to get the indices of
−→
Xn, and it is a straightforward computation of 1.6.5.

F.1 vector.c

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define MAXLEVEL 20 /* Maximum possible size of the indices. */

#define MAXSIZE 25 /* Maximum length of file name. */

int dad[MAXLEVEL+1]; /* The tree for the union-find structure. */

Operation for the union-find data structure.

void ini_dad(void);

int root(int x);

int find( int x, int y, int doit);

To generate a set of edges.

void edges(int *a, unsigned x, int level);

To find a standard form in the table of standard forms.

int look_place( int *conf, char *table, int level, long int total);
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main()

{

FILE *index; /* File where the standard forms are stored. */

FILE *result; /* File to store the adjacency matrix. */

char file[MAXSIZE]; /* Name of the file with the indices. */

char file2[MAXSIZE]; /* Name of the file with the results. */

int level; /* Size of the indices. */

int total; /* Total number of standard forms. */

int x_val; /* Value to compute the Tutte polynomial. */

int top_ver; /* Vertical edges in n-comb graph. */

unsigned count; /* Counters for the iteration. */

int size; /* Size of the set of edges of the */

/* realization, see page 32.*/

char buffer[MAXLEVEL]; /* Array to store a standard form. */

char *table; /* Set of standard forms. */

int i,j; /* General counters. */

int vertical[MAXLEVEL]; /* Set of edges. */

int new[MAXLEVEL]; /* Labels of components set of */

/* standard forms. */

double *vector; /* The vector defined in equation 1.6.5 */

/* evaluated at x val. */

double *ones; /* Vector with all entries equal to 1. */

********** MAIN PROGRAM **************

/* Initialisation of buffer. */

for (i=0; i< MAXLEVEL; i++)

buffer[i]=0;

/* Open the file where the standard forms are stored. */

printf("Give the file where the indices are stored\n");

scanf("%s", file);
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if ( (index=fopen(file, "rb"))== NULL ){

printf("I cannot open the file %s to read the data, sorry\n",file);

exit(1);

}

printf("So the data will be read from file %s\n", file);

if ( fread(&level, sizeof(int), 1, index) == 1 )

printf("The size of the square lattice is %d\n", level);

else{

printf("There is an error in the file\n");

exit(1);

}

if ( fread(&total, sizeof(int), 1, index) == 1 )

printf("And the number of indices is %d\n",total);

else{

printf("There is an error in the file\n");

exit(1);

}

/* Read the x val to evaluate the vector in equation 1.6.5. */

printf("At which value of x are you going to evaluate\n");

scanf("%d",&x_val);

/* Open the file to store the vector. */

printf("Give the file to store the vector\n");

printf("The file will occupy %d bites\n", (total*2+1)*8);

scanf("%s", file2);

if ( (result=fopen(file2, "wb"))== NULL ){

printf("I cannot open the file to store data, sorry\n");

exit(1);

}

printf("So the vectors will be stored in the file %s\n", file2);
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/* Creating space to store the standard forms. */

if( (table = (char *) calloc( level*total, sizeof(char)))==NULL){

printf("There is not enough memory to store the indices\n");

exit(2);

}

/* Reading the standard forms. */

j = 0;

while ( fread(buffer, sizeof(char), level, index) == level ){

for( i=0; i<level; i++)

table[level*j+i]= buffer[i];

j++;

}

/* Close the file of standard forms. */

fclose(index);

/* Space for vector and ones arrays. */

if( (vector = (double *) calloc( total, sizeof(double)))==NULL){

printf("There is not enough memory to store the indices\n");

exit(2);

}

if( (ones = (double *) calloc( total, sizeof(double)))==NULL){

printf("There is not enough memory to store the one’s vector\n");

exit(2);

}

/* Initialisation of the vector array. */

for(i=0; i< total; i++)

vector[i]=0;

/* Number of all possible realizations, */

/* see page 32. */

top_ver= (unsigned) ldexp(1, level-1);

/* Iteration through all possible realizations. */

for(count=0; count < top_ver; count++){
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ini_dad();

size=0;

/* Construction of a realization. */

for(i=0; i< level-1; i++) vertical[i]=0;

edges(vertical,count,level-1);

/* Construction of the standard form */

/* corresponding to this realization. */

for(i=0; i<level; i++)

new[i]= i+1;

for ( i=0; i < level-1; i++)

if ( vertical[i]==1 ){

/* New edge. */

size++;

find(i+1, i+2, 1);

}

/* Change the label of the roots. */

for (i=1, j=1; i < level+1; i++ )

if ( dad[i]==0 ){ /* Its a root. */

new[i-1]=j;

j++;

}

/* Using the components we relabel to get */

/* a standard form */

for (i=1; i < level+1; i++ ){

j= root(i);

new[i-1]=new[j-1];

}

/* Find the index in the vector of this standard form. */

i = look_place( new, table, level, total);
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/* Put the evaluation in the entry of the vector. */

if( size == 0)

vector[i]=1.0;

else{

if(x_val==0)

vector[i]=0;

else

vector[i]=pow(x_val,size);

}/* End of main if. */

}/*End of iteration over realizations. */

/* Create the vector with entries equal to 1. */

for(i=0; i<total; i++)

ones[i]=1.0;

/* We store the dimension of the vectors */

/* and write the vectors in the corresponding file. */

fwrite(&total, sizeof(int), 1, result);

printf("I wrote the size of the vectors\n");

fwrite(vector, sizeof(double), total, result);

printf("I wrote the initial vector\n");

fwrite(ones, sizeof(double), total, result);

printf("I wrote the 1’s vector\n");

fclose(result);

} /* End on main. */

For the implementation of the functions and procedures, see Section D.1 form

page 173 to 176.
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Appendix G

Matrix2.c

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define MAXLEVEL 20 /* Maximum possible size of the square lattice. */

int dad[2*MAXLEVEL+1]; /* The tree for the union-find structure. */

Operation for the union-find data structure.

void ini_dad(void);

int root(int x);

int find( int x, int y, int doit);

To generate a set of horizontal edges.

void edges(int *a, unsigned x, int level);

To find a standard form in the table of standard forms.

int look_place( int *conf, char *table, int level, long int total);

main()

{

FILE *index; /* File where the standard forms are stored. */

FILE *result; /* File to store the adjacency matrix. */

char *file; /* Name of the file with the indices. */

int level; /* Size of the square matrix. */

int total; /* Total number of standard forms */

int x_val, y_val; /* Values to compute the Tutte polynomial. */
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int old_comp; /* The number of components in the old and */

int new_total_comp; /* new standard form. */

int top_hor; /* Total number of possible horizontal and */

int top_ver; /* vertical edges in n-comb graph. */

unsigned iter1; /* Counters for the three levels of iteration */

unsigned iter2; /* for the construction of the matrix. */

unsigned iter3;

int size; /* Size of the set of edges extending the */

/* square lattice. */

int rank; /* Increase on the rank that will */

/* produce the extension. */

char buffer[MAXLEVEL]; /* Array to store a standard form. */

char *table; /* Set of standard forms. */

int i,j; /* General counters. */

int vertical[MAXLEVEL]; /* Set of vertical and horizontal edges */

int horizontal[MAXLEVEL]; /* of n-comb graph. */

int old[MAXLEVEL]; /* Labels of components in old and new */

int new[MAXLEVEL]; /* set of standard forms. */

double *row; /* Buffer for the values of a row in the matrix. */

/*********** MAIN PROGRAM ***************/

/* Initialisation of buffer. */

for (i=0; i< MAXLEVEL; i++)

buffer[i]=0;

/* Open the file where the standard forms are stored. */

printf("Give the file where the standard forms are stored\n");

scanf("%s", file);

if ( (index=fopen(file, "rb"))== NULL ){

printf("I cannot open the file %s to read the data, sorry\n", file);

exit(1);

}
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printf("So the data will be read from file %s\n", file);

if ( fread(&level, sizeof(int), 1, index) == 1 )

printf("The size of the square lattice is %d\n", level);

else{

printf("There is an error in the file\n");

exit(1);

}

if ( fread(&total, sizeof(int), 1, index) == 1 )

printf("And the number of standard forms is %d\n",total);

else{

printf("There is an error in the file\n");

exit(1);

}

/* Creating space to store the standard forms. */

if( (table = (char *) calloc( level*total, sizeof(char)))==NULL){

printf("There is not enough memory to store the indices\n");

exit(2);

}

/* Reading the standard forms. */

j = 0;

while ( fread(buffer, sizeof(char), level, index) == level ){

for( i=0; i<level; i++)

table[level*j+i]= buffer[i];

j++;

}

/* Close the file of standard forms. */

fclose(index);

/* Space for the row of the adjacency matrix. */

if( (row = (double *) calloc( total, sizeof(double)))==NULL){

printf("There is not enough memory to compute ");

printf(" the matrix\n sorry\n");

exit(2);

}
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/* Read point (x val, y val) to evaluate the Tutte Polynomial. */

printf("Give the value of x where you wish to compute T(x, y)\n");

scanf("%d", &x_val);

printf("Give the value of y where you wish to compute T(x, y)\n");

scanf("%d", &y_val);

/* Open the file to store the matrix. */

printf("Give the file to store the matrix\n");

printf("The matrix will occupy %d bites\n", total*total*8);

scanf("%s", file);

if ( (result=fopen(file, "wb"))== NULL ){

printf("I cannot open a file to stored data, sorry\n");

exit(1);

}

printf("So the matrix will be stored in file %s\n", file);

/* We store the dimension of the matrix in the file. */

fwrite(&total, sizeof(int), 1, result);

/* Computing the adjacency matrix at value x val, y val. */

/* Number of iterations for each row of the matrix */

/* Here is a big chance with respect to matrix.c. */

/* Now, we always have the edge (1, 0) ∼ (2, 0) presented.*/

top_hor=(unsigned) ldexp(1, level-1);

/* The next line is unchanged. */

top_ver= (unsigned) ldexp(1, level-1);

/* Iteration through all indices of the matrix. */

for( iter1=0; iter1< total; iter1++){

/* Initialisation of the graph Gβ,B, */

/* see page 32. */

for(i=0; i<level; i++)

old[i]=table[iter1*level+i];

for(i=0; i<total; i++)

row[i]=0.0;
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/* We iterate over all possible extensions of horizontal edges. */

for(iter2=0; iter2 < top_hor ; iter2++){

for(i=0; i< level;i++) horizontal[i]=0;

/* Here, there is another change */

/* The use of the number iter22 + 1 in the function */

/* edges, ensure that the edge (1, 0) ∼ (2, 0) is */

/* always present. */

edges(horizontal,iter2*2+1,level); /* Create horizontal edges. */

/*
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