Almost isomorphisms of Markov shifts

(joint work with Mike Boyle and Jérôme Buzzi)

Ricardo Gómez

Universidad Nacional Autónoma de México

Saint-Flour International Probability Summer School 2007

Contents

- Quick reminder
 - Countable state Markov shifts
 - Classification
- 2 Almost isomorphisms
 - Definitions
 - Main result
 - Applications and beyond

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 \mathcal{V} set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma\colon \Sigma\to \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

 \mathcal{E} set of edges

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma\colon \Sigma\to \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

IRREDUCIBLE

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

 \mathcal{E} set of edges

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma\colon \Sigma\to \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

APERIODIC

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

$$G = (\mathcal{V}, \mathcal{E})$$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma \colon \Sigma \to \Sigma \qquad \forall x \in \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

 $G = (\mathcal{V}, \mathcal{E})$

 ν set of vertices

set of edges

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma\colon \Sigma\to \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

A Markov shift is determined by a countable directed graph

 $G = (\mathcal{V}, \mathcal{E})$

 ν set of vertices

$$\Sigma = \{x = (x_n) \in \mathcal{E}^{\mathbb{Z}} \mid x_{n+1} \text{ follows } x_n\}$$

$$\sigma\colon \Sigma\to \Sigma$$

$$\forall x \in \Sigma$$

$$\sigma(x)_n = x_{n+1}$$

Loop graph

$$f \in \mathbb{Z}_+[[z]]$$
, say $f(z) = \sum_{n=1}^{\infty} f_n z^n$

- Distinguised vertex v
- \bigcirc f_n first return loops to v
- Every vertex but v lies on a unique loop

Petal graph

$$f \in \mathbb{Z}_+[[z]]$$
, say $f(z) = \sum_{n=1}^{\infty} f_n z^n$

- Distinguised vertex v
- \bigcirc f_n first return loops to v
- Every vertex but v lies on a unique loop

Loop graph

$$f \in \mathbb{Z}_+[[z]]$$
, say $f(z) = \sum_{n=1}^{\infty} f_n z^n$

- Distinguised vertex v
- \bigcirc f_n first return loops to v
- Every vertex but v lies on a unique loop

Loop graph

$$f \in \mathbb{Z}_+[[z]]$$
, say $f(z) = \sum_{n=1}^{\infty} f_n z^n$

- Distinguised vertex v
- \bigcirc f_n first return loops to v
- Every vertex but v lies on a unique loop

Loop graph

$$f \in \mathbb{Z}_+[[z]]$$
, say $f(z) = \sum_{n=1}^{\infty} f_n z^n$

- Distinguised vertex v
- \bigcirc f_n first return loops to v
- O Every vertex but v lies on a unique loop

Let the *loop shift* σ_f be $\Sigma(\mathcal{G}_f)$

Recall entropy

Entropy

$$h(\Sigma) = \log(\lambda) = \limsup |t_n|^{1/n}$$

 t_n equals the number of loops at an arbitrary vertex

Not necessarily first return loops

It is the supremum of the *measure theoretic* entropies over all invariant Borel probabilities (*Gurevich entropy*)

Recall entropy

Entropy

$$h(\Sigma) = \log(\lambda) = \limsup |t_n|^{1/n}$$

 t_n equals the number of loops at an arbitrary vertex

Not necessarily first return loops

It is the supremum of the *measure theoretic* entropies over all invariant Borel probabilities (*Gurevich entropy*)

Contents

- Quick reminder
 - Countable state Markov shifts
 - Classification
- 2 Almost isomorphisms
 - Definitions
 - Main result
 - Applications and beyond

Σ	Markov shift
$log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

- ① Σ is *transient* if $f(1/\lambda) < 1$
- ② Σ is *recurrent* if $f(1/\lambda) = 1$
- ③ Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f_n z^n$	Loop system at
$\int (\mathcal{L}) - \sum_{n=1}^{\infty} J_n \mathcal{L}$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- **2** Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- **2** Σ is **recurrent** if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is *strongly positive recurrent* if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- 2 Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is **positive recurrent** if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is *strongly positive recurrent* if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$\int f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- 2 Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **3** Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- 2 Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f_n z^n$	Loop system at
$\int (\mathcal{L}) - \sum_{n=1}^{\infty} J_n \mathcal{L}$	fixed vertex v

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- **2** Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- **1** Σ is *strongly positive recurrent* if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f(z^n)$	Loop system at
$f(z) = \sum_{n=1}^{\infty} f_n z^n$	fixed vertex v

Vere-Jones [VJ-67]

1 Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f_n z^n$	Loop system at
n=1	fixed vertex v

2
$$\Sigma$$
 is *recurrent* if $f(1/\lambda) = 1$

lacksquare Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Σ	Markov shift
$\log(\lambda)$	Entropy
$f(z) = \sum_{n=0}^{\infty} f_n z^n$	Loop system at
n=1	fixed vertex v

 $\limsup f_n^{1/n} < \lambda$

Vere-Jones [VJ-67] and Gurevich [Gu-69]

- **1** Σ is *transient* if $f(1/\lambda) < 1$
- ② Σ is *recurrent* if $f(1/\lambda) = 1$
- **3** Σ is *positive recurrent* if $f(1/\lambda) = 1$ and $\sum nf_n/\lambda^n < \infty$
- lacksquare Σ is strongly positive recurrent if $\limsup f_n^{1/n} < \lambda$

Theorem

- \square Σ is SPR
- Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
- Some (every) local zeta function has non-trivial meromorphic extension
- ① Σ has a (unique) measure of maximal entropy μ and (Σ, μ) is *exponentially filling*

Theorem

- \bullet Σ is SPR
- Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
- Some (every) local zeta function has non-trivial meromorphic extension
- $\ \ \Sigma$ has a (unique) measure of maximal entropy μ and (Σ,μ) is *exponentially filling*

Theorem

- \bigcirc Σ is SPR
- Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
- Some (every) local zeta function has non-trivial meromorphic extension
- ① Σ has a (unique) measure of maximal entropy μ and (Σ, μ) is exponentially filling

Theorem

TFAE conditions on an irreducible Markov shift Σ

- \bullet Σ is SPR
- Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
- Some (every) local zeta function has non-trivial meromorphic extension

LOCAL ZETA

Theorem

- \bullet Σ is SPR
- Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
- Some (every) local zeta function has non-trivial meromorphic extension
- Σ has a (unique) measure of maximal entropy μ and (Σ, μ) is exponentially filling

Contents

- Quick reminder
 - Countable state Markov shifts
 - Classification
- 2 Almost isomorphisms
 - Definitions
 - Main result
 - Applications and beyond

Entropy-conjugacies

FACT

Entropy conjugacy is a partial isomorphism that respects large entropy measure

We are to look at a nice class of isomorphisms that shall produce entropy conjugacies

Entropy-conjugacies

FACT

Entropy conjugacy is a partial isomorphism that respects large entropy measure

We are to look at a nice class of isomorphisms that shall produce entropy conjugacies

Magic word

$$\varphi\colon (\Sigma_1,\mu)\to (\Sigma_2,\nu)$$

A Σ_2 -block W is a *magic word* for φ if

- 1 Existence.
 - If $z\in \Sigma_2$ sees W infinitely many times in past and future, then z has a preimage under φ
- 2 Uniqueness.

If WUW is a Σ_2 -block, then for μ -a.e. $x,y\in\Sigma_1$ such that

$$(\varphi x)[0, |WUW| - 1] = WUW = (\varphi y)[0, |WUW| - 1]$$

we have

$$x[0, 0 + |WU| - 1] = y[0, 0 + |WU| - 1]$$

Magic word

$$\varphi\colon (\Sigma_1,\mu)\to (\Sigma_2,\nu)$$

A Σ_2 -block W is a *magic word* for φ if

- 1 Existence.
 - If $z\in \Sigma_2$ sees W infinitely many times in past and future, then z has a preimage under φ
- 2 Uniqueness.

If WUW is a Σ_2 -block, then for μ -a.e. $x,y\in\Sigma_1$ such that

$$(\varphi x)[0, |WUW| - 1] = WUW = (\varphi y)[0, |WUW| - 1]$$

we have

$$x[0, 0 + |WU| - 1] = y[0, 0 + |WU| - 1]$$

Magic word

$$\varphi\colon (\Sigma_1,\mu)\to (\Sigma_2,\nu)$$

A Σ_2 -block W is a *magic word* for φ if

- 1 Existence.
 - If $z\in \Sigma_2$ sees W infinitely many times in past and future, then z has a preimage under φ
- Uniqueness.

If WUW is a Σ_2 -block, then for μ -a.e. $x, y \in \Sigma_1$ such that

$$(\varphi x)[0, |WUW| - 1] = WUW = (\varphi y)[0, |WUW| - 1]$$

we have

$$x[0, 0 + |WU| - 1] = y[0, 0 + |WU| - 1]$$

Almost isomorphism

Definition

Two Markov shifts Σ_1 and Σ_2 are *almost isomorphic* if there exist a Markov shift Σ and injective one-block codes $\alpha \colon \Sigma \to \Sigma_1$ and $\beta \colon \Sigma \to \Sigma_2$ each of which has a magic word (see [BBG-06]).

Almost isomorphism

Definition

Two Markov shifts Σ_1 and Σ_2 are *almost isomorphic* if there exist a Markov shift Σ and injective one-block codes $\alpha \colon \Sigma \to \Sigma_1$ and $\beta \colon \Sigma \to \Sigma_2$ each of which has a magic word (see [BBG-06]).

Contents

- Quick reminder
 - Countable state Markov shifts
 - Classification
- 2 Almost isomorphisms
 - Definitions
 - Main result
 - Applications and beyond

Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they are entropy conjugate.

Theorem (MANN: [BBG-06])

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they have the same entropy and period.

Remark

If Σ_1 is SPR and is almost isomorphic to Σ_2 , then Σ_2 is SPR.

Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they are entropy conjugate.

Theorem (MAIN: [BBG-06])

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they have the same entropy and period.

Remark

If Σ_1 is SPR and is almost isomorphic to Σ_2 , then Σ_2 is SPR.

Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they are entropy conjugate.

Theorem (MAIN: [BBG-06])

Two SPR irreducible Markov shifts Σ_1 and Σ_2 are almost isomorphic if and only if they have the same entropy and period.

Remark

If Σ_1 is SPR and is almost isomorphic to Σ_2 , then Σ_2 is SPR.

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

GOAL:

Given *SPR* irreducible and aperiodic Markov shifts Σ_1 and Σ_2 of equal entropy $\log \lambda$, find an *AI*

- Reduce to loop shifts
- Find a loop shift defined by

$$c \in \mathbb{Z}_+[[z]]$$

and one block codes

$$\alpha \colon \sigma_c \to \sigma_f$$
 and $\beta \colon \sigma_c \to \sigma_g$

BASIC MOVE

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a *basic move* on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a *basic move* on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a *basic move* on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a *basic move* on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a *basic move* on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$
 REMEMBER

- Start with $f^{(0)} = f$ and $g^{(0)} = g$
- Suppose that we are given $f^{(k)}$ and $g^{(k)}$
- If $f^{(k)} = g^{(k)}$, let $c = f^{(k)}$ and stop
- Otherwise choose N minimal such that $f_N^{(k)} \neq g_N^{(k)}$
- Suppose $f_N^{(k)} > g_N^{(k)}$, let $g^{(k+1)} = g^{(k)}$ and perform a basic move on $f^{(k)}$

$$1 - f^{(k+1)}(z) = \frac{1 - f^{(k)}(z)}{1 - z^N}$$

$$\lim_{k \to \infty} f^{(k)} = c = \lim_{k \to \infty} g^{(k)}$$

Are the resulting maps good?

A closer look at the sequence of basic moves

There is a sequence of nondecreasing integer numbers

$$(r_1,r_2,\dots)$$

with r_n being the length of the loop in turn to be "removed"

It looks like

$$(\underbrace{1,1,\ldots,1}_{R_1},\underbrace{2,2,\ldots,2}_{R_2},\ldots)$$

The resulting map possesses a magic word if

$$R_n \le f_n \text{ for } n \ge 1$$
 and $R_n < f_n \text{ for } n = r_1$

...and it is an entropy conjugacy if in addition

$$\limsup R_n^{1/n} < \lambda$$

A closer look at the sequence of basic moves

There is a sequence of nondecreasing integer numbers

$$(r_1,r_2,\dots)$$

with r_n being the length of the loop in turn to be "removed"

It looks like

$$(\underbrace{1,1,\ldots,1}_{R_1},\underbrace{2,2,\ldots,2}_{R_2},\ldots)$$

The resulting map possesses a magic word if

$$R_n \le f_n \text{ for } n \ge 1$$
 and $R_n < f_n \text{ for } n = r_1$

...and it is an entropy conjugacy if in addition

$$\limsup R_n^{1/n} < \lambda$$

A closer look at the sequence of basic moves

There is a sequence of nondecreasing integer numbers

$$(r_1, r_2, \dots)$$

with r_n being the length of the loop in turn to be "removed"

It looks like

$$(\underbrace{1,1,\ldots,1}_{R_1},\underbrace{2,2,\ldots,2}_{R_2},\ldots)$$

The resulting map possesses a magic word if

$$R_n \le f_n \text{ for } n \ge 1$$
 and $R_n < f_n \text{ for } n = r_1$

...and it is an entropy conjugacy if in addition

$$\limsup R_n^{1/n} < \lambda$$

Arrange things properly for magic word

Lemma

We can suppose that σ_f and σ_g are irreducible and aperiodic loop shifts of equal entropy $\log \lambda > 0$ and there is $1 \le \beta < \lambda$ such that for sufficiently large N

Arrange things properly for entropy conjugacy

Lemma

If σ_f and σ_g are strong positive recurrent loop systems of equal entropy $\log \lambda > 0$, then for some $\kappa < \lambda$

$$|\mathcal{O}_n(\sigma_f)| = |\mathcal{O}_n(\sigma_g)| + o(\kappa^n)$$

SPR-ZETA

Contents

- Quick reminder
 - Countable state Markov shifts
 - Classification
- 2 Almost isomorphisms
 - Definitions
 - Main result
 - Applications and beyond

Applications to other dynamical systems

Theorem ([BBG-06])

The following measurable dynamical systems have natural extensions which are entropy-conjugate to the disjoint union of finitely many SPR Markov shifts of equal entropy

- Subshifts of quasifinite type [Bu-05]
- Piecewise monotonic interval maps with non-zero topological entropy
- **1** The multi-dimensional β -transformations [Bu-97]
- ullet C^{∞} smooth entropy-expanding maps

Beyond...

I. Beyond strong positive recurrence

Main question

Are equal entropy irreducible PR Markov shifts entropy-conjugate?

- II. Weights
 - Thermodynamic formalism
 - Markov chains

This is the end...

MERCI!

Local zeta function

Definition

Let Σ be a Markov shift defined by a graph $G = (\mathcal{V}, \mathcal{E})$.

The local zeta function at $v \in \mathcal{V}$ is

$$\zeta_{v}(z) = \exp\left(\sum_{n=1}^{\infty} \frac{z^{n}}{n} \#\{\text{Loops through } v \text{ of length } n\}\right)$$

Exponentially recurrent

Definition

 (Σ,μ) is *exponentially filling* if for every open set $X\subset\Sigma$ with

$$\mu(X) > 0$$

we have

$$\limsup_{n \to \infty} (\mu \left\{ x \in \Sigma \mid x \notin \bigcup_{k=1}^{n} \sigma^{-k}(X) \right\})^{1/n} < 1$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - hk - hk^2 - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - hk - hk^2 - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - \frac{h}{h} - hk - hk^2 - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - \frac{hk}{h} - hk^2 - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - hk - \frac{hk^2}{h} - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - hk - hk^2 - \frac{hk^3}{1-k} - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

Lemma

Let σ_f be a loop shift. Write

$$f = h + k$$

with $h, k \in \mathbb{Z}_+[[z]]$. Then

$$\frac{1-f}{1-k} = 1 - hk^* = 1 - h - hk - hk^2 - hk^3 - \dots$$

$$\varphi \colon \sigma_{hk^*} \to \sigma_f$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

$$k^*h = h + kh + k^2h + k^3h \dots$$

$$f = h + k$$

f = h + k

BACK TO INDUCTION

Magic word isomorphisms

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

- Magic word isomorphisms of countable state Markov chains are classified in [G-03] as compositions of elementary isomorphisms
- Structure similar to "positive" algebraic K-theory
- Have finite expected coding time if the chains are exponentially recurrent

Magic word isomorphisms

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

- Magic word isomorphisms of countable state Markov chains are classified in [G-03] as compositions of elementary isomorphisms
- Structure similar to "positive" algebraic K-theory
- Have finite expected coding time if the chains are exponentially recurrent

Magic word isomorphisms

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

- Magic word isomorphisms of countable state Markov chains are classified in [G-03] as compositions of elementary isomorphisms
- Structure similar to "positive" algebraic K-theory
- Have finite expected coding time if the chains are exponentially recurrent

Magic word isomorphisms

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

- Magic word isomorphisms of countable state Markov chains are classified in [G-03] as compositions of elementary isomorphisms
- Structure similar to "positive" algebraic K-theory
- Have finite expected coding time if the chains are exponentially recurrent

Isomorphism

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

Full measure subsets

$$A \subset \Sigma_1$$
 and $B \subset \Sigma_2$

Restriction $\varphi|_A:A\to B$ is

- Bijective
- Bimesurable
- Shift-commuting
- Measure preserving

Isomorphism

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

Full measure subsets

$$A \subset \Sigma_1$$
 and $B \subset \Sigma_2$

Restriction $\varphi|_A:A\to B$ is

- Bijective
- Bimesurable
- Shift-commuting
- Measure preserving

Finitary

Homeomorphism

In this case, for μ -a.e. $x \in \Sigma_1$, there exists a minimal n = n(x) such that for μ -a.e. $y \in \Sigma_1$ with

$$x[-n, n] = y[-n, n]$$

we have

$$(\varphi x)_0 = (\varphi y)_0$$

Isomorphism

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

Full measure subsets

$$A \subset \Sigma_1$$
 and $B \subset \Sigma_2$

Restriction $\varphi|_A:A\to B$ is

- Bijective
- Bimesurable
- Shift-commuting
- Measure preserving

Isomorphism

$$\varphi \colon (\Sigma_1, \mu) \to (\Sigma_2, \nu)$$

Full measure subsets

$$A \subset \Sigma_1$$
 and $B \subset \Sigma_2$

Restriction $\varphi|_A:A\to B$ is

- Bijective
- Bimesurable
- Shift-commuting
- Measure preserving

Finitary

Homeomorphism

The *expected coding time* of φ is

$$\int n(x)d\mu(x)$$

The classification of finitary isomorphisms with *finite* expected coding

Classification of magic word isomorphisms

Rough idea of the proof

Reduce to loop shifts

$$\varphi \colon \sigma_f \to \sigma_g$$

- Find suitable magic words
- Decompose g in a sandwich-fashion

$$g = l + r + b + h$$

Find factorization of basic moves

$$f = (b + l(l + h)^* (b + r)) (r + h(l + h)^* (b + r))^*$$

Entropy-conjugacy

Entropy-negligible sets

Measurable system $S: X \to X$

 $h(S) = \sup\{h(S, \mu) \mid \mu \text{ is a } S\text{-invariant Borel probability measure}\}$

 $N \subset X$ is *entropy negligible* if there is h < h(S) such that

 $\mu(N)=0$ for all ergodic μ for which $h(S,\mu)>h$

Entropy conjugacy

Two measurable systems $S: X \to X$ and $T: Y \to Y$

Entropy negligible subsets $X_0 \subset X$ and $Y_0 \subset Y$

Bimeasurable bijection $\gamma \colon X \setminus X_0 \to Y \setminus Y_0$

 $T \circ \gamma = \gamma \circ S$ for all $x \in X \setminus X_0$

References 1

M. Boyle, J. Buzzi and R. Gómez

Almost isomorphism for countable state Markov shifts.

Journal für die reine und angewandte Mathematik (Crelle's Journal). (2006), 592, 23-47.

M. Boyle, J. Buzzi and R. Gómez

Good potentials for almost isomorphism of countable state Markov shifts. Stochastics and Dynamics. (2007) 7 Vol. 1, 1-15.

J. Buzzi

Subshifts of quasi-finite type

Invent. math. 159 (2005) no. 2, 369-406.

J. Buzzi

Intrinsic ergodicity of smooth interval maps Israel J. Math. **100** (1997), 125–161.

U.-R. Fiebig

A return time invariant for finitary isomorphisms.

Ergodic Theory Dynam. Systems 4 (1984) No. 2, 225-231.

References 2

U.-R. Fiebia

Symbolic dynamics and locally compact Markov shifts 1996. Habilitationsschrift, U. Heidelberg.

R. Gómez

Positive K-theory for finitary isomorphisms of Markov chains. Ergod. Th. and Dynam. Sys. (2003), 23, 1485-1504.

B.M. Gurevich

Shift entropy and Markov measures in the path space of a denumerable graph. (Russian)
Dokl. Akad. Nauk SSSR 187 (1969), 715–718; English translation: Soviet Math. Dolk. 10, 4, 911–915.

B. M. Gurevich and S. Savchenko

Thermodynamical formalism for symbolic Markov chains with a countable number of states (Russian) Uspekhi Mat. Nauk 53 (1998), 3–106; translation in Russian Math. Surveys 53 (1998), 245–344.

W. Parry

A finitary classification of topological Markov chains and sofic systems. Bull. London Math. Soc. **9** (1977), no. 1, 86-92.

References 3

S. Ruette

On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains

Pacific J. Math. 209 (2003), 365-380.

I. Salama

On the recurrence of countable topological Markov chains

Symbolic dynamics and its applications (New Haven, CT, 1991), Contemp. Math., 135 (1992), 349–360, Amer. Math. Soc., Providence, RI.

D. Vere-Jones

Ergodic properties of non-negative matrices.

Pacific J. Math. 22 (1967), 361-386.

