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Countable state Markov shifts

A Markov shift is determined by a countable directed graph

G = (V, E)
V set of vertices E set of edges

Σ = {x = (xn) ∈ EZ | xn+1 follows xn}

σ : Σ→ Σ ∀x ∈ Σ σ(x)n = xn+1
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Countable state Markov shifts

A Markov shift is determined by a countable directed graph

G = (V, E)
V set of vertices E set of edges

Σ = {x = (xn) ∈ EZ | xn+1 follows xn}

σ : Σ→ Σ ∀x ∈ Σ σ(x)n = xn+1

⇒ f(z) =
∞∑

n=1

fnzn
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Countable state Markov shifts

A Markov shift is determined by a countable directed graph

G = (V, E)
V set of vertices E set of edges

Σ = {x = (xn) ∈ EZ | xn+1 follows xn}

σ : Σ→ Σ ∀x ∈ Σ σ(x)n = xn+1

⇒fn := #
{

First return loops
to v of length n

}
f(z) =

∞∑

n=1

fnzn
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Loop shifts

Loop graph

f ∈ Z+[[z]], say f (z) =
∞∑

n=1
fnzn

Distinguised vertex v

fn first return loops to v

Every vertex but v lies on a unique loop
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f ∈ Z+[[z]], say f (z) =
∞∑
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Distinguised vertex v

fn first return loops to v

Every vertex but v lies on a unique loop

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Countable state Markov shifts
Classification

Loop shifts

Loop graph Gf

f ∈ Z+[[z]], say f (z) =
∞∑

n=1
fnzn

Distinguised vertex v

fn first return loops to v

Every vertex but v lies on a unique loop

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Countable state Markov shifts
Classification

Loop shifts

Loop graph Gf

f ∈ Z+[[z]], say f (z) =
∞∑

n=1
fnzn

Distinguised vertex v

fn first return loops to v

Every vertex but v lies on a unique loop

⇒f(z) =
∞∑

n=1

z2n+2
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Loop shifts

Loop graph Gf

f ∈ Z+[[z]], say f (z) =
∞∑

n=1
fnzn

Distinguised vertex v

fn first return loops to v

Every vertex but v lies on a unique loop

Let the loop shift σf be Σ(Gf )
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Recall entropy

Entropy

h(Σ) = log(λ) = lim sup |tn|1/n

tn equals the number of loops at an arbitrary vertex

Not necessarily first return loops

It is the supremum of the measure theoretic entropies over all
invariant Borel probabilities (Gurevich entropy)
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Recall entropy

Entropy

h(Σ) = log(λ) = lim sup |tn|1/n

tn equals the number of loops at an arbitrary vertex

Not necessarily first return loops

It is the supremum of the measure theoretic entropies over all
invariant Borel probabilities (Gurevich entropy)

⇒f(z) =
∞∑

n=1

z2n+2 =
z4

1− z2
⇒ h =

1
2

log
2√

5− 1
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Classification in terms of entropy and loop systems

Σ Markov shift
log(λ) Entropy

f (z) =
∞∑

n=1
fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ
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Σ Markov shift
log(λ) Entropy

f (z) =
∞∑

n=1
fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ
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Σ Markov shift
log(λ) Entropy

f (z) =
∞∑

n=1
fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ
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Classification in terms of entropy and loop systems

Σ Markov shift
log(λ) Entropy

f (z) =
∞∑

n=1
fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ

R

PR

SPR
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Σ Markov shift
log(λ) Entropy

f (z) =
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1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1
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log(λ) Entropy

f (z) =
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1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ

Vere-Jones [VJ-67]
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Σ Markov shift
log(λ) Entropy

f (z) =
∞∑
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fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑
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Classification in terms of entropy and loop systems

Σ Markov shift
log(λ) Entropy

f (z) =
∞∑

n=1
fnzn Loop system at

fixed vertex v

1 Σ is transient if f (1/λ) < 1

2 Σ is recurrent if f (1/λ) = 1

3 Σ is positive recurrent if f (1/λ) = 1 and
∑

nfn/λn <∞

4 Σ is strongly positive recurrent if lim sup f 1/n
n < λ

Vere-Jones [VJ-67] and Gurevich [Gu-69]

h∞(Σ) < h(Σ)

lim sup f1/n
n < λ
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SPR characterizations

Theorem

TFAE conditions on an irreducible Markov shift Σ

1 Σ is SPR

2 Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]

3 Some (every) local zeta function has non-trivial
meromorphic extension

4 Σ has a (unique) measure of maximal entropy µ and (Σ, µ)
is exponentially filling
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TFAE conditions on an irreducible Markov shift Σ

1 Σ is SPR

2 Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]
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SPR characterizations

Theorem

TFAE conditions on an irreducible Markov shift Σ

1 Σ is SPR

2 Removing an edge strictly lowers entropy [UF-96, S-92, GS-98, R-03]

3 Some (every) local zeta function has non-trivial
meromorphic extension

4 Σ has a (unique) measure of maximal entropy µ and (Σ, µ)
is exponentially filling EXPONENTIALLY FILLING
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Entropy-conjugacies

FACT
Entropy conjugacy is a partial isomorphism that respects
large entropy measure

We are to look at a nice class of isomorphisms
that shall produce entropy conjugacies
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Good finitary isomorphisms

Magic word

ϕ : (Σ1, µ)→ (Σ2, ν)

A Σ2-block W is a magic word for ϕ if

1 Existence.
If z ∈ Σ2 sees W infinitely many times in past and future, then z has a
preimage under ϕ

2 Uniqueness.
If WUW is a Σ2-block, then for µ-a.e. x, y ∈ Σ1 such that

(ϕx)[0, |WUW| − 1] = WUW = (ϕy)[0, |WUW| − 1]

we have
x[0, 0 + |WU| − 1] = y[0, 0 + |WU| − 1]

Boyle-Buzzi-Gómez Almost isomorphisms
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Good finitary isomorphisms

Magic word

ϕ : (Σ1, µ)→ (Σ2, ν)

A Σ2-block W is a magic word for ϕ if

ϕx ϕx

ϕyϕy

x

y

x

y
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Good finitary isomorphisms

Magic word

ϕ : (Σ1, µ)→ (Σ2, ν)

A Σ2-block W is a magic word for ϕ if

ϕx ϕx

ϕyϕy

x

y

x

y

W WU

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Definitions
Main result
Applications and beyond

Almost isomorphism
Definition

Two Markov shifts Σ1 and Σ2 are almost isomorphic if there exist a Markov

shift Σ and injective one-block codes α : Σ→ Σ1 and β : Σ→ Σ2 each of

which has a magic word (see [BBG-06]).
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Almost isomorphism
Definition

Two Markov shifts Σ1 and Σ2 are almost isomorphic if there exist a Markov

shift Σ and injective one-block codes α : Σ→ Σ1 and β : Σ→ Σ2 each of

which has a magic word (see [BBG-06]).

ϕ = β ◦ α−1

α β

Σ

Σ1 Σ2
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Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ1 and Σ2 are almost isomorphic if and
only if they are entropy conjugate.

Theorem (MAIN: [BBG-06])

Two SPR irreducible Markov shifts Σ1 and Σ2 are almost isomorphic if and
only if they have the same entropy and period.

Remark

If Σ1 is SPR and is almost isomorphic to Σ2, then Σ2 is SPR.

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Definitions
Main result
Applications and beyond

Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ1 and Σ2 are almost isomorphic if and
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Almost isomorphism and entropy-conjugacy for SPR

Theorem

Two SPR irreducible Markov shifts Σ1 and Σ2 are almost isomorphic if and
only if they are entropy conjugate.

Theorem (MAIN: [BBG-06])

Two SPR irreducible Markov shifts Σ1 and Σ2 are almost isomorphic if and
only if they have the same entropy and period.

Remark

If Σ1 is SPR and is almost isomorphic to Σ2, then Σ2 is SPR.
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Sketch of the proof

GOAL:
Given SPR irreducible and aperiodic Markov shifts

Σ1 and Σ2 of equal entropy logλ, find an AI

Reduce to loop shifts

Find a loop shift defined by

c ∈ Z+[[z]]

and one block codes

α : σc → σf and β : σc → σg

with magic words

σc

α

~~}}
}}

}}
}} β

  A
AA

AA
AA

A

σf ϕ
//_______ σg
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An inductive construction

σc

!!!
!

!
!

"""
"

"
"

σf(2)

##########
σg(2)

$$$$$$$$$$

σf(1)

##########
σg(1)

$$$$$$$$$$

σf(0) σg(0)
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An inductive construction

= σf σg =

σc

!!!
!

!
!

"""
"

"
"

σf(2)

##########
σg(2)

$$$$$$$$$$

σf(1)

##########
σg(1)

$$$$$$$$$$

σf(0) σg(0)

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Definitions
Main result
Applications and beyond

An inductive construction

= σf σg =

σc

!!!
!

!
!

"""
"

"
"

σf(2)

##########
σg(2)

$$$$$$$$$$

σf(1)

ϕ1

##########
σg(1)

ψ1

$$$$$$$$$$

σf(0) σg(0)

σc

!!!
!

!
!

"""
"

"
"

σf(2)

##########
σg(2)

$$$$$$$$$$

σf(1)

ϕ1

##########
σg(1)

ψ1

$$$$$$$$$$

σf(0) σg(0)
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The inductive construction in loops lemma

Start with f (0) = f and g(0) = g

Suppose that we are given f (k) and g(k)

If f (k) = g(k), let c = f (k) and stop

Otherwise choose N minimal such that f (k)
N 6= g(k)

N

Suppose f (k)
N > g(k)

N , let g(k+1) = g(k) and perform a basic move on f (k)

1− f (k+1)(z) =
1− f (k)(z)

1− zN
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Are the resulting maps good?
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A closer look at the sequence of basic moves

There is a sequence of nondecreasing integer numbers

(r1, r2, . . . )

with rn being the length of the loop in turn to be “removed”

It looks like
(1, 1, . . . , 1,︸ ︷︷ ︸ 2, 2, . . . , 2,︸ ︷︷ ︸ . . . )

R1 R2

The resulting map possesses a magic word if

Rn ≤ fn for n ≥ 1 and Rn < fn for n = r1

...and it is an entropy conjugacy if in addition

lim sup R1/n
n < λ
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Arrange things properly for magic word

Lemma

We can suppose that σf and σg are irreducible and aperiodic
loop shifts of equal entropy logλ > 0 and there is 1 ≤ β < λ
such that for sufficiently large N

1 |On(σf )| = |On(σg)| = 0 for all n < N

2 min{fn, gn} ≥ βn for all n ≥ N
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Arrange things properly for entropy conjugacy

Lemma

If σf and σg are strong positive recurrent loop systems of equal
entropy logλ > 0, then for some κ < λ

|On(σf )| = |On(σg)|+ o(κn)

SPR-ZETA
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Contents

1 Quick reminder
Countable state Markov shifts
Classification

2 Almost isomorphisms
Definitions
Main result
Applications and beyond
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Applications to other dynamical systems

Theorem ([BBG-06])
The following measurable dynamical systems have natural
extensions which are entropy-conjugate to the disjoint union of
finitely many SPR Markov shifts of equal entropy

1 Subshifts of quasifinite type [Bu-05]

2 Piecewise monotonic interval maps with non-zero
topological entropy

3 The multi-dimensional β-transformations [Bu-97]

4 C∞ smooth entropy-expanding maps
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Beyond...

I. Beyond strong positive recurrence

Main question

Are equal entropy irreducible PR Markov shifts entropy-conjugate?

II. Weights

1 Thermodynamic formalism

2 Markov chains CHAINS
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This is the end...

M E R C I !
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Local zeta function

Definition

Let Σ be a Markov shift defined by a graph G = (V, E).
The local zeta function at v ∈ V is

ζv(z) = exp

( ∞∑
n=1

zn

n
#{Loops through v of length n}

)
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Exponentially recurrent

Definition

(Σ, µ) is exponentially filling if for every open set X ⊂ Σ with

µ(X) > 0

we have

lim sup
n→∞

(µ
{

x ∈ Σ | x /∈ ∪n
k=1σ

−k(X)
}

)1/n < 1
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Basic move

Lemma

Let σf be a loop shift. Write

f = h + k

with h, k ∈ Z+[[z]]. Then

1− f
1− k

= 1− hk∗ = 1− h− hk − hk2 − hk3 − . . .

and there is an injective one-block code
with a magic word

ϕ : σhk∗ → σf
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Coding for basic move

k∗h = h + kh + k2h + k3h . . . f = h + k

k

k
k

h

h

hk h

k

k

k

h
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k hk hk khhk kh h
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Coding for basic move
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BACK TO INDUCTION
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Magic word isomorphisms

Magic word isomorphisms

ϕ : (Σ1, µ)→ (Σ2, ν)

ϕ is a magic word isomorphism if both ϕ and ϕ−1 have magic words

Magic word isomorphisms of countable state Markov chains are
classified in [G-03] as compositions of elementary isomorphisms

Structure similar to “positive” algebraic K-theory

Have finite expected coding time if the chains are exponentially
recurrent
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Magic word isomorphisms

Magic word isomorphisms

ϕ : (Σ1, µ)→ (Σ2, ν)

ϕ is a magic word isomorphism if both ϕ and ϕ−1 have magic words

Magic word isomorphisms of countable state Markov chains are
classified in [G-03] as compositions of elementary isomorphisms

Structure similar to “positive” algebraic K-theory

Have finite expected coding time if the chains are exponentially
recurrent

TAMALE
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Isomorphisms

Isomorphism

ϕ : (Σ1, µ)→ (Σ2, ν)

Full measure subsets

A ⊂ Σ1 and B ⊂ Σ2

Restriction ϕ|A : A→ B is

Bijective

Bimesurable

Shift-commuting

Measure preserving
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Isomorphisms

Isomorphism

ϕ : (Σ1, µ)→ (Σ2, ν)

Full measure subsets

A ⊂ Σ1 and B ⊂ Σ2

Restriction ϕ|A : A→ B is

Bijective

Bimesurable

Shift-commuting

Measure preserving

Finitary

Homeomorphism

In this case, for µ-a.e. x ∈ Σ1, there

exists a minimal n = n(x) such that

for µ-a.e. y ∈ Σ1 with

x[−n, n] = y[−n, n]

we have

(ϕx)0 = (ϕy)0
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Isomorphisms

Isomorphism

ϕ : (Σ1, µ)→ (Σ2, ν)

Full measure subsets

A ⊂ Σ1 and B ⊂ Σ2

Restriction ϕ|A : A→ B is

Bijective

Bimesurable

Shift-commuting

Measure preserving

Finitary

Homeomorphism

x0x−n xn

(ϕx)0
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Isomorphisms

Isomorphism

ϕ : (Σ1, µ)→ (Σ2, ν)

Full measure subsets

A ⊂ Σ1 and B ⊂ Σ2

Restriction ϕ|A : A→ B is

Bijective

Bimesurable

Shift-commuting

Measure preserving

Finitary

Homeomorphism

The expected coding time of ϕ isZ
n(x)dµ(x)

The classification of finitary isomor-

phisms with finite expected coding

time is open (see [P-77]) POPEY

Boyle-Buzzi-Gómez Almost isomorphisms



Quick reminder
Almost isomorphisms

Definitions
Main result
Applications and beyond

Classification of magic word isomorphisms
Rough idea of the proof

Reduce to loop shifts

ϕ : σf → σg

Find suitable magic words

Decompose g in a sandwich-fashion

g = l + r + b + h

Find factorization of basic moves

f = (b + l (l + h)∗ (b + r)) (r + h (l + h)∗ (b + r))∗

END
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Entropy-conjugacy

Entropy-negligible sets

Measurable system S : X → X

h(S) = sup{h(S, µ) | µ is a S-invariant Borel probability measure}

N ⊂ X is entropy negligible if there is h < h(S) such that

µ(N) = 0 for all ergodic µ for which h(S, µ) > h

Entropy conjugacy

Two measurable systems S : X → X and T : Y → Y

Entropy negligible subsets X0 ⊂ X and Y0 ⊂ Y

Bimeasurable bijection γ : X \ X0 → Y \ Y0

T ◦ γ = γ ◦ S for all x ∈ X \ X0
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