

Prof. Ricardo Gómez Aíza

Ecuaciones Diferenciales I

TAREA I

1. Determine el orden de las siguientes ecuaciones diferenciales y diga si son lineales o no-lineales

a)
$$\frac{d^4y}{dx^4} + \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 1$$
 b) $\frac{dy}{dx} + xy^2 = 0$

b)
$$\frac{dy}{dx} + xy^2 = 0$$

$$c) \quad \frac{d^2y}{dx^2} + \sin(x+y) = \sin x$$

c)
$$\frac{d^2y}{dx^2} + \sin(x+y) = \sin x$$
 d) $\frac{d^3y}{dx^3} + x\frac{dy}{dx} + (\cos^2 x)y = x^3$

2. Verifique que las funciones y_n 's que se dan son soluciones de la ecuaciónes diferencial dada

a)
$$y'' + 2y' - 3y = 0$$

a)
$$y'' + 2y' - 3y = 0$$
 $y_1(x) = e^{-3x}$ $y_2(x) = e^x$

b)
$$y'' + y = \sec x$$

b)
$$y'' + y = \sec x$$
 $0 < x < \pi/2$ $y = (\cos x) \ln \cos x + x \sin x$

c)
$$y'''' + 4y''' +$$

c)
$$y'''' + 4y''' + 3y = x$$
 $y_1(x) = x/3$ $y_2(x) = e^{-x} + x/3$

$$d) \ y' - 2xy = 1$$

d)
$$y' - 2xy = 1$$
 $y = e^{x^2} \int_0^x e^{-t^2} dt + e^{x^2}$

3. Dibuje mediante isoclinas el campo direccional y algunas de las curvas integrales de las siguiente ecuaciones diferenciales

a)
$$y' = 3 - 2y$$
 b) $y' = 2x - 3y$

$$b) \quad y' = 2x - 3y$$

c)
$$y' = x^2 + y^2$$
 d) $y' = 1 - xy$

$$d) \quad y' = 1 - xy$$

4. Encuentre la solución general de las siguientes ecuaciones diferenciales, indicando explícitamente los intervalos en donde las soluciones dadas son válidas

a)
$$y' + 3y = x + e^{-2x}$$

b)
$$y' + \frac{1}{x}y = 3\cos 2x$$
 $x > 0$

$$c) \quad y' + 2xy = 2xe^{-x^2}$$

c)
$$y' + 2xy = 2xe^{-x^2}$$
 d) $(1+x^2)y' + 4xy = (1+x^2)^{-2}$

5. Encuentre la solución de la ecuaciones diferencial que satisface la condición inicial dada

a)
$$y' + \frac{2}{x}y = \frac{\cos x}{x^2}$$
 $y(\pi) = 0$ $x > 0$

$$y(\pi) = 0 \quad x > 0$$

b)
$$x^3y' + 4x^2y = e^{-x}$$
 $y(-1) = 0$

$$y(-1) = 0$$

c)
$$xy' + 2y = \sin x$$
 $y(\pi/2) = 1$

d)
$$xy' + (x+1)y = x$$
 $y(\ln 2) = 1$

$$y(\ln 2) = 1$$

6. Encuentre la solución al problema de valor inicial y determine el intervalo en el que la solución es válida

a)
$$y' + (\cot x)y = 4\sin x$$
 $y(-\pi/2) = 0$

$$y(-\pi/2) = 0$$

b)
$$x(2+x)y' + 2(1+x)y = 1 + 3x^2$$
 $y(-1) = 1$

$$y(-1) =$$

c)
$$(1-x^2)y' - xy = x(1-x^2)$$
 $y(0) = 2$

$$u(0) =$$

d)
$$xy' + y = e^x$$
 $y(1) = 1$