Tarea II

Probabilidad II

22 de febrero de 2006

En todos los ejercicios el espacio de probabilidad $(\Omega, \mathcal{A}, \mathbb{P})$ está fijo, y A, B, A_n , etc. son elementos de \mathcal{A} .

1. (#3.14), (#3.15), (#3.16)

Una compañía de seguros asegura un número igual de hombres y mujeres conductores. La probabilidad de que un conductor masculino tenga un accidente y reclame en un período de un año es $\alpha \in (0,1)$ y es independiente de lo que ha ocurrido en otros años. Lo mismo pasa para el sexo femenino excepto que la probabilidad es $\beta \in (0,1)$ (en general, $\beta \gg \alpha$). Suponga que la compañía selecciona a un conductor al azar.

- a) ¿Cuál es la probabilidad de que el conductor seleccionado reclame un seguro este año?
- b) ¿Cuál es la probabilidad de que el conductor seleccionado reclame seguros dos años consecutivos?
- c) Para cada i=1,2, sea A_i el evento que consiste en un reclamo de un conductor escogido al azar por la compañía en el año i. Desmuestre que $\mathbb{P}(A_2|A_1) \geq \mathbb{P}(A_1)$.
- d) ¿Cuál es la probabilidad de que un conductor femenino haga un reclamo?
- 2. (#3.18)

Suponga que $\mathbb{P}(A) > 0$. Demuestre que $\mathbb{P}(A \cap B | A \cup B) < \mathbb{P}(A \cap B | A)$.

3. (#3.7)

Sean $(A_n)_{n\geq 1}\in \mathcal{A}$ y $(B_n)_{n\geq 1}\in \mathcal{A}$. Suponga que $A_n\to A$ y $B_n\to B$ (recuerde que $A_n\to A$ quiere decir que $\mathbbm{1}_{A_n}(\omega)\to \mathbbm{1}_A(\omega)$ para toda $\omega\in\Omega$). Suponga que $\mathbb{P}(B)>0$ y $\mathbb{P}(B_n)>0$ para toda $n\geq 1$. Demuestre que

- a) $\lim_{n\to\infty} \mathbb{P}(A_n|B) = \mathbb{P}(A|B)$
- b) $\lim_{n\to\infty} \mathbb{P}(A|B_n) = \mathbb{P}(A|B)$
- c) $\lim_{n\to\infty} \mathbb{P}(A_n|B_n) = \mathbb{P}(A|B)$
- 4. (#3.17)

Suponga que A_1, A_2, \ldots, A_n son eventos independientes. Demuestre que la probabilidad de que ningún A_n ocurra es menor o igual a $\exp(-\sum_{i=1}^n \mathbb{P}(A_i))$.

5. (#3.11), (#3.12), (#3.13) (Urna de Polya).

Una urna contiene r bolas rojas y a bolas azules. Se escoje una bola al azar y se regresa a la urna junto con d bolas del mismo color. El experimento se repite indefinidamente.

- a) Encuentre la probabilidad de que la segunda bola sea azul.
- b) Encuentre la probabilidad de que la primera bola haya sido azul si la segunda fue azul.
- c) Sea A_n el evento de que la n^{th} bola es azul. Demuestre que $\mathbb{P}(B_n) = \mathbb{P}(B_1)$ para toda $n \geq 1$.
- d) Encuentre la probabilidad de que la primera bola haya sido azul si las n's subsecuentes fueron azules. ¿Cuál es el límite de esta probabilidad cuando $n \to \infty$?