Tarea III

Probabilidad II

21 de marzo de 2006

1. La densidad conjunta de X y Y está dada por

$$f(x,y) = c(y^2 - x^2)e^{-y}$$
 $-y \le x \le y$, $0 < y < \infty$.

- a) Determine el valor de c.
- b) Encuentre las densidades marginales de X y Y.
- 2. El número de gentes que entran en una farmacia a una cierta hora es una variable aleatoria Poisson con parámetro $\lambda=10$. Calcule la probabilidad condicional de que a lo más 3 hombres entren en la farmacia si 10 mujeres entraron en esa hora. Haga explicitas sus suposiciones.
- 3. Sean X_1 , X_2 y X_3 tres variables aleatorias distribuidas uniformemente en el intervalo (a, b). Calcule la probabilidad de que la mayor de ellas sea mayor que la suma de las otras dos.
- 4. La función de probabilidad punto masa de X y Y está dada por

$$p(1,1) = \frac{1}{8}$$
 $p(1,2) = \frac{1}{4}$ $p(2,1) = \frac{1}{8}$ $p(2,2) = \frac{1}{2}$

- a) Calcule la función de probabilidad condicional punto masa de X dado Y = i con i = 1, 2.
- b) Determine si X y Y son independientes.
- c) Calcule $\mathbb{P}(XY \leq 3)$, $\mathbb{P}(X + Y > 2)$ y $\mathbb{P}(X/Y > 1)$.
- 5. La densidad conjunta de X y Y está dada por

$$f(x,y) = xe^{-x(y+1)}$$
 $x > 0$, $y > 0$.

- a) Encuentre la densidad condicional de X dado Y=y, y la densidad condicional de Y dado X=x.
- b) Encuentre la densidad de Z = XY.
- 6. Sean X_1 , X_2 , X_3 , X_4 y X_5 variables aleatorias independientes idénticamente distribuidas con distribución exponencial con parámetro λ .

1

- a) Calcule $\mathbb{P}\{\min(X_1, X_2, X_3, X_4, X_5 \leq a\}.$
- b) Calcule $\mathbb{P}\{\max(X_1, X_2, X_3, X_4, X_5 \leq a\}.$