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Abstract

We present several results concerning the Laborde-Payan-Xuang
conjecture stating that in every digraph there exists an independent set
of vertices intersecting every longest path. The digraphs we consider
are defined in terms of local semicompleteness and local transitivity.
We also look at oriented graphs for which the length of a longest path
does not exceed 4.
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1 Introduction

Given a digraph, does there exist a maximal independent set of vertices
that is transversal to all longest paths (every longest path has a vertex on
the set)? This question was posed by Laborde, Payan and Xuong in 1982
(see [10]). They conjectured that the answer is always yes. The problem
is still open in general, but a number of partial results are known even for
more general settings. For example, in [9] Galeana-Sánchez and Gómez con-
sider not only longest paths but non-augmentable paths and present results
for generalizations of tournaments. Another example is the so called path
partition conjecture (see [7]), proved to be true for several generalizations
of tournaments (see [4]). The traceability conjecture (see [8]) is related to
a particular case of the path partition conjecture that also generalizes the
Laborde, Payan and Xuong conjecture for oriented graphs.

In this paper we restrict ourselves to study the original question for
several kinds of digraphs. We divide them into three types according to
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the hypothesis defining them. The first two types involve local conditions,
namely semicompleteness and transitivity. The third type of digraphs that
we consider are oriented graphs for which the length of a longest path is at
most 4.

Let us fix some definitions and notation. Let D be a digraph with vertex
set V (D) and arc set A(D) ⊂ V (D)×V (D) with no loops (so (u, u) /∈ A(D)
for all u ∈ V (D)). We say that D is oriented if there exist no vertices
x, y ∈ V (D) such that (x, y), (y, x) ∈ A(D). A (directed) path in D is a
sequence of distinct vertices T = (x0, . . . , xn) such that (xi−1, xi) ∈ A(D)
for every i = 1, . . . , n. Let V (T ) = {x0, . . . , xn} and let n be the length of T .
Let u, v ∈ V (D). A shortest path from u to v is a path from u to v of minimal
length. The (directed) distance dD(u, v) is the length of a shortest path in
D from u to v (so dD(u, v) = 0 if and only if u = v and dD(u, v) =∞ if there
is no path from u to v). A digraph is (weakly) connected if the underlying
graph is connected. Let Γ+(u) = {x ∈ V (D) | dD(u, x) = 1} and Γ−(v) =
{y ∈ V (D) | dD(y, v) = 1}; let δ+(u) = |Γ+(u)| and δ−(v) = |Γ−(v)|. Let

L+(D) = {x ∈ V (D) | ∃ longest path in D starting at x}

and
L−(D) = {y ∈ V (D) | ∃ longest path in D ending at y}.

A set of vertices I ⊂ V (D) is independent if dD(x, y) > 1 for every x, y ∈ I
with x 6= y. An independent set I is maximal if for every z ∈ V (D) \ I, the
set I ∪ {z} is not independent. An independent set K ⊂ V (D) is a kernel
if for every v ∈ V (D) \K there exists x ∈ K such that (v, x) ∈ A(D) (i.e.
d(v, x) = 1). An independent set Q ⊂ V (D) is a quasikernel if for every
v ∈ V (D) \K there exists x ∈ K such that d(v, x) ≤ 2. An independent set
S ⊂ V (D) is a solution (quasisolution) if for every v ∈ V (D)\S there exists
x ∈ S such that d(x, v) = 1 (d(x, v) ≤ 2). Given B ⊂ V (D), let D[B] be the
subdigraph induced by B and let D−B be the digraph that results from D
by removing the vertices in B. We say that D is semicomplete if every pair
of vertices in V (D) are adjacent. We say that D is locally in-semicomplete
(locally out-semicomplete) if for every vertex v ∈ V (D), D[Γ−(v)] (D[Γ+(v)])
is semicomplete. A vertex v ∈ V (D) is a transitivity point if for every pair
of distinct vertices x, y ∈ V (D)\{v} for which (x, v), (v, y) ∈ A(D), we have
(x, y) ∈ A(D).

If a digraph D possesses a kernel K, then K is obviously an independent
transversal of longest paths in D. Of course, not every digraph possesses
a kernel, but we show that if B is a set of vertices in a strongly connected
digraph D such that D−B possesses a kernel K, then K is an independent
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transversal of longest paths in D, provided that the in-neighborhood of every
out-neighor of every vertex in B induces a semicomplete subdigraph in D
(Theorem 2.2). A similar result is obtained by switching in and out (The-
orem 2.4). It is well known that every strongly connected semi-complete
digraph is hamiltonian. More generally, a strongly connected digraph is
hamiltonian if it is locally in-semi-complete, i.e. if the in-neighborhood of
every vertex induces a semicomplete digraph (see [2], Theorem 5.5.1). We
show that if the semicomplete in-neighborhood requirement is restricted to
out-neighbors of terminal vertices of longest paths, hamiltonicity is still guar-
anteed in strongly connected digraphs (Theorem 2.5) and the existence of an
independent transversal of longest paths is guaranteed even in digraphs that
are not strongly connected (Theorem 2.6). In fact, under these conditions
every quasikernel is an independent transversal of longest paths in D (and
it is known that every digraph has a quasikernel [6].)

Then we consider local transitivity. We prove that if every vertex in the
outer-neighborhood of a vertex which is a terminal vertex of a longest path
is a transitivity point, then every quasikernel intersects every longest path
(Theorem 3.1), and the dual result is stated (Theorem 3.2).

To finish we proof that if the length of a longest path in an oriented graph
D is at most 4, then there exists an independent transversal of longest paths
formed by terminal vertices of longest paths (Theorem 4.2).

Remark 1.1. Let D be a connected digraph. If D is hamiltonian, then each
subset of vertices of D intersects every longest path in D.

Proof. If D is hamiltonian, then every longest path T has length |V (D)|−1
and V (T ) = V (D). From here the result follows.

Lemma 1.2. Let D be a connected digraph. Let T be a longest path in D
and suppose that D[V (T )] is hamiltonian. Then D is hamiltonian.

Proof. Let k be the length of the longest path in D, (x0, . . . , xk, x0) be
a hamiltonian cycle in D[V (T )] and suppose that D is not hamiltonian.
Then V (D) \ V (T ) 6= ∅. Hence, since D is connected, there exist adja-
cent vertices xi ∈ V (T ) and z ∈ V (D) \ V (T ). If (xi, z) ∈ A(D) then either
(xi+1, . . . , xk, x0, . . . , xi, z) or (x0, . . . , xk, z) is a path of length k+1 which is
a contradiction. If (z, xi) ∈ A(D) then either (z, xi, xi+1, . . . , xk, x0, . . . , xi−1)
of (z, x0, . . . , xk) is a path of length k + 1, a contradiction. Therefore, D is
hamiltonian.
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2 Locally semicomplete digraphs

Here we look at digraphs having appropriate subsets of vertices inducing
semicomplete digraphs. Locally semicomplete digraphs were introduced by
Bang-Jensen in [1]. Many classic theorems for tournaments hold for this
class of digraphs which are generalizations of tournaments. See [3] for a
comprehensive survey on generalizations of tournaments.

Strictly speaking, we are not going to consider locally semicomplete di-
graphs but a wider class that requires the semicomplete condition to hold
on a particular set of vertices. We will use the following result.

Lemma 2.1. Let D be a digraph. Suppose that there exists B ⊂ V (D)
such that D − B possesses a kernel. Let K be a kernel in D − B and let
T = (x0, . . . , xn) be a longest path in D. If V (T ) ∩K = ∅, then xn ∈ B.

Proof. If xn /∈ B, then there exists z ∈ K such that (xn, z) ∈ A(D) and
hence (x0, . . . , xn, z) is a path in D contradicting that T is a longest path.

Theorem 2.2. Let D be a strongly connected digraph. Suppose that there
exists B ⊂ V (D) such that

1. D −B possesses a kernel.

2. For every x ∈ B and v ∈ Γ+(x), D[Γ−(v)] is semicomplete.

Then every kernel of D −B intersects every longest path in D.

Proof. Let K ⊂ V (D) \ B be a kernel in D − B. Suppose that there exists
a longest path T = (x0, . . . , xn) in D such that V (T ) ∩K = ∅. Then, by
Remark 1.1, D is not hamiltonian. Lemma 2.1 implies that xn ∈ B. Since
D is strongly connected, δ+(xn) > 0. Moreover, Γ+(xn) ⊂ {x0, . . . , xn−1}
because T is a longest path in D. Choose T so that i0 = min{i | (xn, xi) ∈
A(D)} is minimal among all longest paths in D not intersecting K. If
i0 = 0, then D[V (T )] is hamiltonian and hence Lemma 1.2 implies that D
is hamiltonian, a contradiction. Henceforth we assume that i0 > 0.

By 2, D[Γ−(xi0)] is semicomplete since xn ∈ B and xi0 ∈ Γ+(xn). Now,
xn, xi0−1 ∈ Γ−(xi0) and thus xn and xi0−1 are adjacent, but (xn, xi0−1) /∈
A(D) because we chose i0 minimal. It follows that (xi0−1, xn) ∈ A(D) and
hence T1 = (x0, . . . , xi0−1, xn, xi0 , . . . , xn−1) is a longest path in D with
V (T1) = V (T ). Now we proceed by induction. Suppose that j ≥ 1 is such
that j < n− i0 − 1 and xn−j−1 ∈ B, (xi0−1, xn−j) ∈ A(D) and also that we
have the longest path Tj+1 = (x0, . . . , xi0−1, xn−j , . . . , xn, xi0 , . . . , xn−j−1).
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Since V (Tj+1) = V (T ), Lemma 2.1 implies xn−j−1 ∈ B. Since xn−j ∈
Γ+(n − j − 1), D[Γ−(xn−j)] is semicomplete. We have xn−j−1, xi0−1 ∈
Γ−(xn−j) and therefore xn−j−1 and xi0−1 are adjacent but (xn−j−1, xi0−1) /∈
A(D) because we chose i0 minimal. It follows that (xi0−1, xn−j−1) ∈ A(D)
and Tj+2 = (x0, . . . , xi0−1, xn−j , . . . , xn, xi0 , . . . , xn−j−1) is a longest path in
D (see Figure 1).

xi0x0 xi0−1 xi0+1 xnxn−1

KK

BB

Figure 1: Vertices of T in B and existence of arcs.

Clearly, Γ+(xk) ∩ (V (D) \ V (T )) = ∅ for all k = i0, . . . , n because
otherwise D would have a path of length n + 1. Moreover, Γ+(xk) ∩
{x0, . . . , xi0−1} = ∅ because we chose i0 to be minimal. But then there ex-
ists no path from any vertex in {xi0 , . . . , xn} to any vertex in {x0, . . . , xi0−1},
contradicting that D is strongly connected.

Remark 2.3. Theorem 2.5 is a generalization of the fact that every strongly
connected and locally semicomplete digraph is hamiltonian (see Theorem
5.5.1 in [2]).

Now we look at what happens when switching between inner and outer
neighborhoods in Theorem 2.2.

Theorem 2.4. Let D be a strongly connected digraph. Suppose that there
exists B ⊂ V (D) such that

1. D −B possesses a kernel.

2. For every x ∈ B and v ∈ Γ−(x), D[Γ+(v)] is semicomplete.

Then every kernel of D −B intersects every longest path in D.

Proof. Let K ⊂ V (D) \B be a kernel in D−B. Suppose that there exists a
longest path T = (x0, . . . , xn) in D such that V (T )∩K = ∅. If there exists

5



y ∈ B and z ∈ K such that (y, z) ∈ A(D), then we can let B′ = B − {y}
so that K is now a kernel in D − B′ and for every x ∈ B′ and v ∈ Γ−(x),
D[Γ+(v)] is semicomplete and V (T ) ∩K = ∅. Thus we can assume that B
is minimal in the sense that there exist no edges starting in B and ending
in K.

Since V (T ) ∩ K = ∅ and T is a longest path, xn ∈ B by Lemma
2.1. Suppose that V (T ) ∩ (V (D) \B) 6= ∅ and let j = max{i | xi /∈ B}.
Then there exists z ∈ K such that (xj , z) ∈ A(D) because K is a kernel
of D − B. By 2, z and xj+1 are adjacent because both belong to Γ+(xj)
and xj ∈ Γ−(xj+1). Since xj+1 ∈ B and z ∈ K, (xj+1, z) /∈ A(D) and
thus (z, xj+1) ∈ A(D), but then (x0, . . . , xj , z, xj+1, . . . xn) is a path in D of
length n+ 1, contradicting that T is a longest path.

Now suppose that V (T )∩(V (D) \B) = ∅, that is, suppose that V (T ) ⊂
B. Since D is strongly connected, there exists 0 ≤ j ≤ n such that Γ+(xj) *
V (T ). Let j be maximal with the property that Γ+(xj) * V (T ) and let
z ∈ Γ+(xj) − V (T ). If j = n, then (x0, . . . , xn, z) is a path in D of length
n + 1, contradicting that T is a longest path. Therefore j < n. Since
xj ∈ Γ−(xj+1), 2 implies that Γ+(xj) is semicomplete. Hence z and xj+1

are adjacent. We have (xj+1, z) /∈ A(D) because we chose j maximal. If
(z, xj+1) ∈ A(D), then (x0, . . . , xj , z, xj+1, . . . , xn) is path in D of length
n+ 1, contradicting that T is a longest path.

Theorem 2.5. Let D be a strongly connected digraph. Suppose that for
every vertex x ∈ L−(D) and v ∈ Γ+(x), D[Γ−(v)] is semicomplete. Then D
is hamiltonian.

Proof. Let T = (x0, . . . , xn) be a longest path in D. We have that Γ+(xn) 6=
∅ because D is strongly connected and Γ+(xn) ⊂ V (T ) because T is a
longest path. Choose T so that i0 = min{i | (xn, xi) ∈ A(D)} is mini-
mal among all longest paths in D. Now, suppose that D is not hamilto-
nian. It follows from Lemma 1.2 that D[V (T )] is not hamiltonian and hence
i0 > 0. Then as in the proof of Theorem 2.2, we can show that Γ+(xk) ∩
(V (D) \ V (T )) = ∅ for all k = i0, . . . , n and Γ+(xk) ∩ {x0, . . . , xi0−1} = ∅,
contradicting that D is strongly connected.

Now we look at quasikernels. It is a well known fact that every digraph
D possesses a quasikernel (see [6]). Given a quasikernel Q of D, the set of
vertices V (D) are partitioned into three groups, namely,

V (D) = Q ∪ Γ−(Q) ∪
(
Γ−(Γ−(Q))−

(
Q ∪ Γ−(Q)

))
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where
Γ−(A) =

⋃
z∈A

Γ−(z)

for every A ⊂ V (D) (see Figure 2).

Γ−(Γ−(Q)) \
(
Q ∪ Γ−(Q)

)

Γ−(Q)

Q

Figure 2: Partition of the set of vertices of a digraph D for a given quasi-
kernel Q.

We now show that a digraph D that satisfies the local semi-complete
condition of Theorem 2.6 has an independent transversal of longest paths,
even if D is not strongly connected.

Theorem 2.6. Let D be a digraph. Suppose that for every x ∈ L−(D) and
z ∈ Γ+(x), D[Γ−(z)] is semicomplete. Then every longest path intersects
every quasikernel Q.

Proof. Let Q ⊂ V (D) be a quasikernel.Suppose that T = (x0, . . . , xn) is a
longest path in D with V (T ) ∩Q = ∅. There exists u ∈ Q such that either
(xn, u) ∈ A(D) or there eixists w ∈ Γ−(Q) such that (xn, w, u) is a path in
D. If (xn, u) ∈ A(D), then (x0, . . . , xn, u) is a path in D of length n + 1,
contradicting that T is a longest path. So we have Γ+(xn) ⊂ V (T ). Choose
T so that i0 = min{i | (xn, xi) ∈ A(D)} is minimal among all longest paths
in D not intersecting Q. Proceeding in as in the proof of Theorem 2.2, the
result follows.

We can state the corresponding dual results for solutions, the dual defini-
tion of kernel, and quasisolutions, the dual definition of quasikernel. Again,
every digraph possesses a quasisolution; and given one, there is a partition
of the set of vertices similar to the one described in Figure 2, with the ar-
rows pointing up and with all occurrences of ‘−’ replaced by ‘+’. We let the
reader verify the details.
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3 Locally transitive digraphs

Theorem 3.1. Let D be a digraph. Suppose that for every x ∈ L−(D),
if v ∈ Γ+(x), then v is a transitivity point. Then every quasikernel of D
intersects every longest path in D.

Proof. Suppose that there exists a quasikernel Q ⊂ V (D) and a longest
path T = (x0, . . . , xn) such that V (T ) ∩ Q = ∅. Since Q is a quasikernel
and xn /∈ Q, there exists u ∈ Q such that either (xn, u) ∈ A(D) or there
exists w ∈ Γ−(Q) such that (xn, w, u) is a path in D. If (xn, u) ∈ A(D),
then (x0, . . . , xn, u) is a path in D of length n + 1, contradicting that T
is a longest path. Hence we must have w ∈ V (T ), say w = xi for some
i ∈ {0, . . . , n − 1} (see Figure 3). By hypothesis xi is a transitivity point
and therefore (xn, u) ∈ A(D), a contradiction.

xix0 x1 xi−1 xi+1 xn−1 xn

u

Figure 3: Existence of a vertex u ∈ Q such that (xn, u) ∈ A(D).

Theorem 3.1 admits a dual version. We state it and let the reader verify
the details.

Theorem 3.2. Let D be a digraph. Suppose that for every x ∈ L+(D), if
v ∈ Γ−(x), then v is a transitivity point. Then every quasisolution of D
intersects every longest path in D.

4 Digraphs with “short” longest paths

In this section we will prove that if the length of a longest path of an oriented
graph is at most 4, then there exists an independent set of vertices in L−(D)
that intersects every longest path.

Lemma 4.1. Let D be an oriented graph and let k ≥ 1 be the length of a
longest path in D. Let B ⊆ L−(D) be an independent set that intersects
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the maximum number of longest paths in D. Suppose P is a longest path in
D such that V (P ) ∩ B = ∅. Then there exist a vertex x ∈ B and longest
paths Q and T in D such that the following holds. Write P = (p0, . . . , pk),
Q = (q0, . . . , qk) and T = (t0, . . . , tk).

1. (x, pk) ∈ A(D).

2. qk = x.

3. ts = x for some s ∈ {0, . . . , k − 1} and pk /∈ V (T ).

4. pk = qr for some r ∈ {1, . . . , k − 2}.

5. qr+1 = pn for some n ∈ {1, . . . , k − 2}.

6. ts+1 = qm for some m ∈ {1, . . . , k − 2}.

Proof. If B ∪ {pk} is independent, then it intersects more longest paths in
D than B, a contradiction. Then it is not independent and hence pk is
adjacent to at least one vertex in B. If (pk, z) ∈ A(D) for some z ∈ B,
then (p0, . . . , pk, z) is a path of length k + 1, a contradiction. Then Bpk

=
{z ∈ B | (z, pk) ∈ A(D)} 6= ∅. Suppose that for each z ∈ Bpk

and every
longest path T in D with z ∈ V (T ), pk ∈ V (T ). Then (B \ Bpk

) ∪ {pk} is
independent, intersects every path intersected by B but also intersects P ,
a contradiction. Then there exist x ∈ Bpk

and a longest path T in D such
that x ∈ V (T ) and pk /∈ V (T ). Now, T does not end at x because otherwise
(t0, . . . , tk = x, pk) is a path in D of length k + 1, a contradiction. Then
there exists s ∈ {0, . . . , k−1} such that x = ts. Now, since x ∈ B ⊆ L−(D),
there exists a longest path Q in D with qk = x. From here 1, 2 and 3
follow. Now, observe that for every longest path Q = (q0, . . . , qk) in D, if
for some z ∈ V (D), (qk, z) ∈ A(D), then we have z ∈ V (Q) (otherwise
(q0, . . . , qk = x, z) is a path in D of length k + 1, a contradiction) and
therefore z = qs for some s ∈ {0, . . . , k}. Since D has no loops, z 6= qk; and
since (qk−1, qk) ∈ A(D) and D is oriented, z 6= qk−1. Also, if z = q0, then
(z = q0, q1 . . . , qk) is a hamiltonian cycle in V (Q), which by Lemma 1.2 is
a contradiction. Thus, z = qs with s ∈ {1, . . . , k − 2}. From here, since
{(x = qk, pk), (pk = qr, qr+1), (qk = ts, ts+1)} ⊆ A(D), 4, 5 and 6 follow.

Theorem 4.2 (Laborde-Payan-Xuong for k ≤ 4). Let D be an oriented
graph. If the length of a longest path in D is at most 4, then there exists an
independent set B ⊂ L−(D) that intersects every longest path.
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Proof. Here we present the proof for the case k = 4. By analogous arguments
as in this proof, the reader can verify the cases k = 1, 2, 3. Henceforth, let
k = 4.

Let B ⊂ L−(D) be an independent set intersecting the maximum number
of longest paths in D. Suppose that there exists a longest path P in D such
that V (P ) ∩B = ∅. Let x, Q and T be as in Lemma 4.1 so that

1. (x, p4) ∈ A(D).

2. q4 = x.

3. ts = x for some s ∈ {0, 1, 2, 3} and p4 /∈ V (T ).

4. p4 = qr for some r ∈ {1, 2}.

5. qr+1 = pn for some n ∈ {1, 2}.

6. ts+1 = qm for some m ∈ {1, 2}.

Case 1. p4 = q1.
By 6, ts+1 = qm for some m ∈ {1, 2}. By 3, q1 = p4 6∈ V (T ) and therefore
ts+1 = q2. By 1 and 3 we see that (ts, p4) = (x, p4) ∈ A(D) and p4 6∈ V (T );
and since (p4, ts+1) = (q1, q2) ∈ A(D), we see that (t0, . . . , ts, p4, ts+1, . . . , t4)
is a path of lenght 5 in D, which is a contradiction.
Case 2. p4 = q2.
By 5, q3 = pn for some n ∈ {1, 2}, and by 6, ts+1 = qm for some m ∈ {1, 2}.
Since q2 = p4 6∈ V (T ), ts+1 = q1. We claim that ts+1 ∈ V (P ). Suppose
this is not the case. Hence (p0, . . . , pn = q3, q4 = ts, ts+1 = q1, q2 = p4) is a
path in D of lenght at most 4 which implies that n = 1. Thus (p2, . . . , p4 =
q2, q3 = p1, q4 = ts, ts+1) is path of lenght 5 which is a contradiction. Thus
the claim is proved.

Therefore q1 = ts+1 = pr for some r ∈ {0, . . . , 4}. By 3, p4 6∈ V (T ),
hence ts+1 6= p4. If ts+1 = p0, then (q4 = ts, ts+1 = p0, . . . , p4) is a path of
length 5 which is a contradiction. So, ts+1 6= p0. ts+1 6= pn because D is
oriented and (pn, ts) = (q3, q4) ∈ A(D). If ts+1 = pn+1, then (p0, . . . , pn =
q3, q4 = ts, ts+1 = pn+1, . . . , p4) is a path of lenght 5, which is a contradiction.
Hence ts+1 6= pn+1. Thus, ts+1 ∈ {p1, p2, p3} \ {pn, pn+1} where q3 = pn.
This allows only two possible subcases, either n = 1 and therefore q3 = p1

and ts+1 = p3; or n = 2 and then q3 = p2 and ts+1 = p1.
Subcase 2.1. q3 = p1 and ts+1 = p3.
Since, by 3, p4 6∈ V (T ), we have that (t0, . . . , ts, ts+1 = p3, p4) is a path in
D and therefore s ≤ 2. Since T is a path of length 4, there is z ∈ V (D)
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such that z = ts+2. The path (q4 = x, p4 = q2, q3 = p1, p2, p3 = ts+1) has
length 4, and thus ts+2 ∈ {q4, q2, q3, p2, ts+1}. Clearly ts+2 6= ts+1 and also
ts+2 6= q4 = ts. Since q2 = p4 /∈ V (T ), ts+2 6= q2. Finally, ts+2 6= p2 because
(p2, p3) = (p2, ts+1) ∈ A(D) and D is oriented. Then ts+2 = q3 = p1. Since
p4 6∈ V (T ), it follows that (t0, . . . , ts, ts+1 = p3, p4 = q2, q3 = ts+2, . . . , t4) is
a path of length 5, a contradiction.
Subcase 2.2. q3 = p2 and ts+1 = p1.
Recall that ts+1 = q1. Now, (t0, . . . , ts, ts+1 = q1, q2) is a path in D because
q2 = p4 /∈ V (T ) and therefore s ≤ 2. As before, there is z ∈ V (D) such
that z = ts+2. Since(p3, p4 = q2, q3, q4 = ts, ts+1) is a path in D of length 4,
ts+2 ∈ {p3, p4, q3, q4, ts+1}. Clearly ts+2 6= ts+1 because D is oriented. Since
p4 /∈ V (T ), ts+2 6= p4. Next, ts+2 6= q4 because q4 = ts and finally ts+2 6= q3
because otherwise (t0, . . . , ts, ts+1 = q1, q2 = p4, q3 = ts+2, . . . , t4) is a path
of length 5, a contradiction. Then ts+2 = p3 and the length of the path
(p0, p1 = ts+1, ts+2 = p3, p4 = q2, q3 = p2, q4 = ts) is 5, a contradiction.
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augmentable paths in generalization of tournaments. Discrete Math.
308, 12 (2008) 2460-2472.

[10] J.M. Laborde, C. Payan and N.H. Xuong. Independent sets and longest
paths in digraphs. Graphs and other combinatorial topics. Proceedings
of the Third Czechoslovak Symposium of Graph Theory. (1982) 173-
177.

12


