
=3pc 0

On Separoids





On Separoids
Ricardo Strausz UNAM
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Prólogo
El material que se desarrolla en las páginas de esta tesis, es la culminación de
la investigación que comencé, junto con mi tutor y otros colaboradores, en el
último lustro del siglo pasado. Si bien parte de este material ya ha aparecido en
otros textos, la recopilación final fue hecha durante una estancia en Budapest,
Hungrı́a. Dicha estancia fué financiada por la Fundación Soros (a través de la
Universidad de Europa Central) que, a manera de intercambio, me comprometió
a terminar mi tesis y dejar ahı́ una copia de ésta; es por esto que el cuerpo
principal de esta tesis se presenta en inglés. Sin embargo, incluye también un
amplio resumen en español (con referencias a los resultados principales) para
facilitar su lectura.

El texto, además de ser un tratado de la teorı́a de los separoides, pretende
ser autocontenido y explicativo; la teorı́a es muy nueva asi que no supuse ningún
conocimiento previo —salvo, por supuesto, una formación sólida en las ramas
más comunes de la Matemática. Esto me llevó a organizar el material en un
orden “que se llevara bien” con la lógica que surge detrás de los resultados,
más que con un orden histórico o, quizás, didáctico. Sin embargo, en un intento
de fortalecer la intuición que va detrás de la formalidad, incluı́ una amplia in-
troducción (en inglés) que recorre con ejemplos concretos las definiciones más
importantes, y en el resumen (en español) seguı́ un orden levemente diferente
al texto central.

K Al momento de organizar todo el material, me encontré que habı́a
parte de éste que, si bien no era lógicamente necesario para los re-
sultados principales de la tesis, tenı́a que incluirlo si pretendı́a dar una
exposición completa de la teorı́a. Ası́ que decidı́ incluir este material
en parrafos como éste. El lector, si ası́ lo quiere, puede saltárselos sin
perder información fundamental.

Dado que hay muchas referencias cruzadas, para facilitar la navegación
dentro del texto, he decidido darles la siguiente forma: cuando se hace refer-
encia a un resultado dentro de la misma sección, se refiere simplemente con
un número; si el resultado está en otra sección, pero en el mismo capı́tulo, se
refiere con dos números (sección.parrafo); y, finalmente, si está en otro capı́tulo,
se refiere con tres números (capı́tulo.sección.parrafo).

También, para enfatizar el contexto histórico que rodea a la teorı́a, la biblio-
grafı́a es referida con el nombre de los autores y el año de la publicación.

Finalmente, he incluido una amplia colección de imágenes al margen que,
además de revestir el texto, ayudan a explotar la intuición que surge de la geo-
metrı́a intrı́nseca a la teorı́a.





Resumen
El origen de la teorı́a de los separoides puede ser rastreada a los principios del
siglo XX cuando Radon demuestra el teorema de Helly usando que

Teorema (Radon 1921). Dada una familia de puntos P ⊆ IEd, si el cardinal
de P es suficientemente grande, a saber |P| ≥ d + 2, entonces existen dos
subconjuntos ajenos A,B ⊂ P cuyos cascos convexos se intersectan:

A ∩B = φ y 〈A〉 ∩ 〈B〉 6= φ.

Sin embargo el nombre, y la axiomática que aquı́ se estudiará, no se acuñó
sino hasta finales de los años 90 (véase Strausz 1998) cuando se describió la
topologı́a de la familia de hiperplanos transversales a una familia de conjuntos
convexos (cf. Arocha, Bracho, Montejano, Oliveros & Strausz 2002).

Los separoides son simplemente una abstracción del teorema de Radon:
un separoide es una relación simétrica † ⊂

(
2S

2

)
en una familia de subconjuntos

—léase “. . .no se separa de. . . ”— que tiene dos propiedades: si A,B ⊆ S
entonces

• A †B =⇒ A ∩B = φ,
•• A †B y C ⊆ S \A =⇒ A †B ∪ C. (∗)

El separoide se identifica con el conjunto S. El orden y el tamaño son los cardi-
nales |S| y | † |, respectivamente.

Asi, dada una familia de puntos P ⊂ IEd se puede definir un separoide
S = S(P) con la relación

A †B ⇐⇒ A ∩B = φ y 〈A〉 ∩ 〈B〉 6= φ,

y claramente las dos condiciones (∗) se cumplen. La noción de “la dimensión
del generado afı́n” de P se traduce en términos puramente combinatorios a la
noción de dimensión (combinatoria) d(S), viz. el orden (menos uno) del máximo
subseparoide de tamaño cero, donde todo par de subconjuntos disjuntos se
separan. A los separoides de tamaño cero los llamaremos simploides por ser
los asociados al conjunto de vértices de un simplejo. Entonces, si σ es un
simploide maximal de S, d(S) = |σ| − 1.

La motivación principal de esta tesis fué la pregunta: ¿cuándo se puede
“realizar” un separoide con puntos? Es decir, dado un separoide “en abstracto”
S, ¿cuándo podemos garantizar que existe una familia de puntos P tal que
S ≈ S(P)? Llamaremos a éstos, separoides de puntos .
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1. Convexidad Abstracta

Como sugieren Danzer et al. (1963), la interrelación entre los teoremas de
Radon, Helly y Carathéodory “podrán ser entendidos mejor formulando varios
conjuntos de axiomas para la teorı́a de convexidad”. La primera aproximación
axiomática a la convexidad fue hecha por Levi (1951) y la teorı́a de los sepa-
roides puede ser vista como un nuevo intento en esta dirección.

Ası́ como cada configuración de puntos tiene asociada un separoide —y
de hecho, la configuración puede ser “recuperada” de esta información combi-
natoria (cf. Goodman & Pollack 1983)— a cada familia de conjuntos convexos
F se le puede asociar un separoide S = S(F). Éste captura la estructura de
separación de la familia con la relación

A | B ⇐⇒ 〈A〉 ∩ 〈B〉 = φ

(A | B se lee “A se separa de B”).
Claramente la relación |⊂

(
2S

2

)
, llamada de separación , define un separoide

en los términos anteriores, a saber

A †B ⇐⇒ A ∩B = φ y A 6 |B.

La relación de separación satisface las siguientes propiedades (una definición
equivalente de separoide): si A,B ⊆ S entonces

• A | A =⇒ A = φ
•• A | B y A′ ⊂ A =⇒ A′ | B .

Surge la siguiente pregunta: ¿cuándo se puede “realizar” un separoide
con conjuntos convexos? Es decir, dado un separoide S, ¿cuándo podemos
garantizar que existe una familia de conjuntos convexos F tal que S ≈ S(F)?
Aquı́ la respuesta es “fácil” (véase Arocha et al. 2002, Bracho & Strausz 2000
y Strausz 2003):

Teorema Básico de Representación [1.2.3]. Todo separoide (finito) S puede
ser representado por una familia de conjuntos convexos. Más aún, se puede
representar con convexos compactos si y sólo si el separoide es acı́clico (i.e.,
si φ | S); en tal caso, la realización puede ser hecha en el espacio afı́n de
dimensión |S| − 1.

Este resultado juega un papel “polar” (cf. Björner et al. 1993 sec. 5.3)
al teorema de representación topológica para matroides orientados de Folkman
& Lawrence (1978). Los matroides orientados son separoides que cumplen
además con otro par de condiciones; una abstracción de las configuraciones
de puntos que usan la polaridad intrı́nseca del espacio euclidiano (los detalles
están en el capı́tulo 3): si por cada punto (un vector en IRd) tomamos su hiper-
plano polar, a cada configuración de puntos se le puede asociar una configu-
ración de hiperplanos concurrentes (en el origen). Si consideramos ahora la
intersección de estos últimos con la esfera unitaria, obtenemos una configu-
ración de subesferas (de codimensión uno) que contiene toda la información
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combinatoria de la configuración original. Si permitimos que dichas subesferas
se “enchuequen” un poco —que sigan siendo esferas, desde el punto de vista
topológico— pero que conserven las dimensiones esperadas de sus intersec-
ciones, lo que conseguimos es un matroide orientado. Más aún, el teorema
de representación de Folkman & Lawrence demuestra que éstos son todos los
matroides orientados. Surge la pregunta, ¿qué les pasó a los puntos polares
cuando “enchuecamos” las subesferas? El teorema básico de representación
responde a esta pregunta haciendo notar que los puntos “engordaron” para con-
vertirse en conjuntos convexos. Sin embargo, la estructura combinatoria que
se conserva es más general, es la de los separoides.

El teorema básico de representación nos permite introducir un invariante
nuevo: la dimensión geométrica gd(S), la mı́nima dimensión donde se puede rea-
lizar el separoide. Es usando la noción de dimensión geométrica que los sepa-
roides encuentran su primera aplicación en la teorı́a de transversales geomé-
tricas (véase Arocha et al. 2002):

Teorema de Esencialidad [1.5.2]. Sea F una familia de conjuntos convexos
en IRd+1 y sea S = S(F) su separoide. Si gd(S) < d entonces T (F) ↪→ IP d, el
espacio de hiperplanos transversales a F , no es homotópicamente nulo.

Para ejemplificar este resultado, considérense los 3 lados de algún triángulo
en el plano y obsérvese que hay, topológicamente, tantas lı́neas transversales
a estos 3 convexos como hay lı́neas por un punto. Esto es, el espacio de
transversales sólo depende de la estructura combinatoria del separoide, no de
su realización. En otras palabras, si cada 2 convexos comparten un punto
entonces todos comparten un “punto virtual”.

Surge la pregunta: si cada d + 2 convexos admiten una d-transvesal ¿ad-
miten todos una d-transversal virtual? El teorema de esencialidad contesta la
pregunta afirmativamente para el caso en que gd(S) < d− 1 y por tanto puede
ser visto como un teorema tipo Helly en el que se ha cambiado la noción de
intersección por la de 0-transversal virtual .

Hay otros conceptos geométricos que pueden ser traducidos en términos
puramente combinatorios. Se dice que un separoide S está en posición general
si cualesquiera d(S) + 1 elementos inducen un simploide. Esto corresponde a
que no se intesecten 2 a 2, que no exista una lı́nea transversal por cada 3, que
no exista un plano transversal por cada 4, etc...

Otra noción útil de ı́ndole puramente combinatorio —uno de los axiomas
de matroide orientado— es la “unicidad” de las particiones de Radon. Decimos
que S es un separoide de Radon si para cualesquiera dos particiones de Radon
minimales A †B y C †D,

A ∪B ⊆ C ∪D =⇒ {A,B} = {C,D}.

No es difı́cil ver que los separoides de puntos son de Radon. Tenemos además
el siguiente
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Teorema 1.3.4. Sea S un separoide en posición general. Si d(S) = gd(S)
entonces S es un separoide de Radon.

La demostración del teorema anterior, pasa por la siguiente generalización
del teorema de Carathéodory (1907)

Lemma 1.3.1. Sea K =
⋃
i∈I Ki ⊆ IRd la unión de una familia de conjuntos

convexos. Si x ∈ 〈K〉 entonces existe J ⊆ I, con |J | ≤ d+1, tal que x ∈ 〈Kj〉j∈J .

y una aplicación inmediata a los separoides que garantiza la “buena realización”
de cada partición minimal de Radon

Teorema 1.3.2. Sea S = {Ki} la realización de un separoide. Si A † B es una
partición de Radon minimal, entonces para cada convexo, Ka ∈ A y Kb ∈ B,
existe un punto aa ∈ Ka y bb ∈ Kb tal que 〈aa〉 ∩ 〈bb〉 6= φ.

Se puede ver entonces que la teorı́a de separoides permite traducir no-
ciones geométricas a otras puramente combinatorias, y encierra ası́ reinter-
pretaciones de los teoremas de Radon, Helly y Carathéodory —piedras angu-
lares de la teorı́a combinatoria de los conjuntos convexos.

2. Separoides de Puntos

Uno de los problemas centrales dentro de la teorı́a de los matroides orientados
—separoides de Radon que cumplen además el axioma de eliminación débil —
es encontrar caracterizaciones “significativas” de los separoides de puntos. Se
sabe (cf. Shor 1991) que este problema, desde el punto de vista polar de la
representación topológica, es “NP-hard”.

Sin embargo, desde el punto de vista geométrico intrı́nseco a los sepa-
roides, se pueden caracterizar aquellos separoides de puntos que están en
posición general:

Teorema 2.0.1. Un separoide en posición general es un separoide de puntos
si y sólo si sus dimensiones geométrica y combinatoria coinciden.

Como lo muestra el siguiente ejemplo, la hipótesis de la posición general no
se puede quitar sin agregar algún ingrediente más. Considérese el separoide de
orden tres S = {1, 2, 3} generado por las dos particiones minimales 1 † 2 y 2 † 3.
Por un lado, S se puede realizar con un segmento (representando al 2) y sus
dos puntos extremos; por el otro, como 1 | 3, el subseparoide S′ = {1, 3} induce
un simploide de dimensión 1. Claramente S no es el simploide de dimensión 2,
por tanto su dimensión geométrica y combinatoria coinciden. Sin embargo es
fácil ver que S no se puede realizar con puntos —la relación † es transitiva en
los singuletes de los separoides de puntos.

Los ejemplos pequeños de pseudolı́neas sugieren la siguiente

Conjetura. Un matroide orientado M es un separoide de puntos si y sólo si

d(M) = gd(M).
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Dado que no podemos caracterizar a los puntos (al menos todavı́a), surge
la pregunta ¿cómo se ve “el espacio” de todas las configuraciones de pun-
tos? En otras palabras, ¿podemos asociar a cada configuración un punto de
algún espacio topológico? Por supuesto, estamos buscando aqui algún espa-
cio “significativo” que nos ayude a entender la relación entre la geometrı́a y la
combinatoria de los separoides.

Una vez más, la respuesta es afirmativa. Para esto, entenderemos por
una configuración de puntos un subconjunto finito y ordenado de IRd, módulo
la accion del grupo afı́n FA(d). Es decir, dos subconjuntos P = (p1, . . . ,pn) y
Q = (q1, . . . ,qn) representan la misma configuración si y sólo si existe una trans-
formación afı́n ϕ: IRd → IRd tal que ϕ(pi) = qi, para i = 1, . . . , n. Claramente,
si P y Q representan la misma configuración, definen el mismo separoide (i.e.,
S(P) = S(Q)). Por otro lado, de la definición, se antoja pensar en el espacio
de todas las configuraciones de n puntos en dimensión d —que denotaremos
FA
d
n— con la topologı́a cociente de IRn×d. Tenemos el siguiente

Teorema 2.1.2. FA
d
n es homeomorfo a Gd(IRn−1), la grassmanniana de sub-

espacios lineales de IRn−1 de dimensión d.

Este resultado, seguido del encaje de Plücker (véase e.g., Björner et al.
1993), sugiere considerar a FA

d
n como subespacio de IPn−2. Surge la pregunta

¿cómo “estratifican” los separoides a Gd(IRn−1)? En otras palabras, ¿tiene FA
d
n

alguna descripción puramente combinatoria? Cuando la codimensión —la dife-
rencia (n− d− 2)— es pequeña, se sabe que la respuesta es afirmativa (véase
más abajo) sin embargo el caso general sigue siendo un problema abierto.

Dado un separoide S se puede construir un complejo “cúbico” —un sub-
complejo de algún hipercubo— cuyos vértices representan las particiones de
Radon maximales . Como el separoide no está determinado por éstas, dicho
complejo es “olvidadizo”, sin embargo, en casos importantes —matroides ori-
entados, puntos— el complejo determina completamente al separoide. Dicho
complejo será llamado complejo de Radon y lo definiremos más abajo. Por el mo-
mento, a manera de motivación, permı́taseme mencionar que es la combinatoria
del n-cubo, a traves del complejo de Radon, la que “domina” la estratificación
de la grassmanniana inducida por los separoides de puntos.

La familia de subconjuntos 2S del n-conjunto S puede ser identificada con
los vértices del n-cuboQn; haciendo esto, las caras del n-cubo son identificadas
con los intervalos del orden parcial ⊆ inducido por la contención, i.e., las caras
de Qn son de la forma

[A,B] := {C ∈ 2S : A ⊆ C ⊆ B}.

Regresando al separoide S, si consideramos aquellos subconjuntos A que
“no se separan de su complemento”, A †A, y nos fijamos en el subcomplejo de
Qn que inducen, el complejo resultante es lo que llamamos el complejo de Radon
del separoide y lo denotamos por R(S).
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Teorema 2.2.3. Si P ⊂ IRd es un separoide de puntos de orden n, entonces
R(P) es, homotópicamente, una esfera de dimensión n − d − 2. Más aún, el
separoide esta en posición general si y sólo si el complejo es homeomorfo a
dicha esfera.

En particular, cuando tenemos d+2 puntos en dimensión d, el complejo es
una 0-esfera —dos subcubos antı́podas— y podemos dar la siguiente descrip-
ción combinatoria.

Teorema 2.3.1. El espacio de d + 2 puntos en dimensión d, módulo el grupo
afı́n, es

FA
d
d+2 = (Qn \ {φ, φ})∗/{A,A}.

También podemos contar cuantos de estos son politopos —cuando cada
punto se separa de su complemento— para exhibir una nueva prueba de

Teorema 2.4.1 (Grümbaum 1967). Existen exactamente b 1
4d

2c tipos de polito-
pos (convexos) con d+ 2 vértices en IRd.

El caso d = 1 es igualmente simple. Ya el caso n = d+3 es suficientemente
complicado; la descripcion combinatoria de la estratificación de la grassma-
nniana es (véase también Garcı́a-Colı́n 2003)

Teorema 2.3.3. Las facetas de FA
d
d+3 son los ciclos antipodales de Qn \ {φ, φ}

de longitud 2n. Dos facetas se intersectan en una colı́nea si y sólo si sus dos
cı́clos correspondientes difieren en exactamente dos puntos antı́podas.

En este caso no es tan fácil contar todos los tipos de politopos —una
fórmula explı́cita puede llevar 6 lı́neas de texto para escribirse (cf. Lloyd 1970)—
sin embargo el complejo de Radon muestra fácilmente que (véase Montellano-
Ballesteros & Strausz 2003)

Teorema. Existen exactamente ν(2n)− dn2 e politopos convexos con n = d+ 3
vértices en IRd en posición general, donde ν(2n) denota el número de collares
bicoloreados antipodales de tamaño 2n.

Para n > d + 3 ni el método anterior, ni ninguno que se conozca, sirve
para contar tipos de politopos. La principal obstrucción es que aparecen “es-
feras” dentro de Qn que no corresponden a ninguna configuración de puntos.
La estructura que preservan estas esferas, al parecer, es la de los matroides
orientados. En esta dirección tenemos el siguiente

Teorema 3.2.5. Una gráfica G es la gráfica de circuitos de un matroide orientado
uniforme si y sólo si es una gráfica antipodal de orden 2

(
n
d+2

)
y existe un encaje

i-métrico G ↪→ Qn−d−2
n en el (n− d− 2)-dual del n-cubo.
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3. Universalidad
Dados dos separoides S, T , una función ϕ:S → T será llamada un morfismo de
separoides si, para todo A,B ∈ 2T

A | B =⇒ ϕ−1(A) | ϕ−1(B).

Un morfismo será llamado homomorfismo si cumple además que, para todo
α, β ∈ 2S

α † β minimal =⇒ ϕ(α) † ϕ(β) minimal.

Denotaremos por S −→ T la existencia de algún homomorfismo. La relación
S ≤ T ⇐⇒ S −→ T define un preorden en la classe SS de todos los separoides.
Si identificamos además a aquellos separoides tales que T ≤ S y S ≤ T ,
conseguimos una clase parcialmente ordenada.

Si denotamos por σd al simploide de dimensión d, y por Kn al separoide
completo —de tamaño máximo— de orden n, es fácil probar que

Proposición 4.0.

1. |S| < n =⇒ Kn 6−→ S
2. K1 −→ S ⇐⇒ S 6−→ K0

3. S ≈ σd ⇐⇒ S 6−→ K1

4. S ≈ σd ⇐⇒ ∀T 6= K0, S −→ T.

Por ejemplo, el enunciado 2 dice que, el filtro principal de K1 = σ0 es el
complemento del ideal principal de K0 que no es otra cosa que decir que un
separoide tiene algún elemento si y sólo si no se mapea en el vacı́o. En la
literatura, (σ0,K0) es llamado un par dual (cf. Nešetřil & Tardif 2000).

De hecho, el orden de los homomorfismos (SS,−→) es una latiz que tiene a
la suma y al producto de separoides, como supremo e ı́nfimo, respectivamente.
Dichas operaciones existen y satisfacen las propiedades universales esperadas:

S −→ P ×Q ⇐⇒ S −→ P y S −→ Q,

P +Q −→ S ⇐⇒ P −→ S y Q −→ S.

Diremos que un separoide es conexo si no puede ser expresado como la
suma (la unión ajena) de dos separoides

T −→ T0 + T1 =⇒ T −→ T0 o T −→ T1.

En estos términos, podemos expresar el teorema de Radon como

Teorema 4.2.1. P ⊂ IEn es un separoide de puntos de orden d(P)+ 2 si y sólo
si

P 6−→ K1 y P −→ K2 + σ,

donde σ es un simploide. Más aún, P está en posición general si y sólo si σ = φ.
En otras palabras, los elementos de FA

d
d+2 son los separoides bipartitos .



El orden de los homomorfismos es también un orden denso

Teorema 4.3.2. Si S < T entonces existe un P tal que S < S + P × T < T .

La estructura de orden de los separoides es en cierta forma, muy parecida
al orden de los homomorfismos de gráficas. Los dos son ordenes universales
para la teorı́a de conjuntos.

Teorema 4.4.1. Dado cualquier conjunto parcialmente ordenado (C,≤) existe
un “funtor” f :C → SS tal que, a, b ∈ C

a ≤ b ⇐⇒ f(a) −→ f(b).

Más aún, el teorema anterior —cuando se extiende la noción de homomor-
fismo al infinito— se puede extender a clases parcialmente ordenadas y por
tanto (cf. Nešetřil & Strausz 2002)

Teorema 4.4.3. Toda categorı́a puede ser representada como una subcategorı́a
de los separoides y sus homomorfismos.

4. Hiperseparoides

Asi como los separoides “codifican” el teorema de Radon, los hiperseparoides lo
hacen con el teorema de Tverberg

Teorema (Tverberg 1966). Si P ⊂ IEd es suficientemente grande, a saber
|P| ≥ (k−1)(d+1)+1, entonces puede ser dividido en k partes disjuntas cuyos
cascos convexos se intersectan.

Claramente, para k = 2 el teorema de Tverberg es el de Radon. El teorema
de representación junto con el teorema de Tverberg implican inmediatamente
que

Teorema 4.5.2. |S| ≥ (k − 1)(gd(S) + 1) + 1 =⇒ S −→ Kk.

Esto motiva la siguiente definición: un k-separoide es un sitema de familias

de subconjuntos T ⊂
(
2S

k

)
que relaciona conjuntos disjuntos —no tiene “loops”—

y es un filtro en el orden parcial canónico —el heredado de (2S × . . .× 2S ,⊆).
El teorema de representación para separoides puede ser generalizado a

Teorema 4.5.5. Todo k-separoide acı́clico S pude ser representado por una
familia de cuerpos convexos {Ai}i∈S en IE|S|−1 y sus particiones de Tverberg
son

{Ai}ki=1 ∈ T ⇐⇒
{
Ai ∩Aj = φ si i 6= j, y⋂k
i=1〈Ai〉 6= φ .

Surgen las preguntas ¿cuándo podemos garantizar que un k-separoide es
representable con puntos del euclidiano? . . . ¿será cierto que todo k-separoide
“uniforme”, con gd(S) = d(S), es de puntos?
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Preface
This Ph.D. thesis is concerned with the application (and generalization) of the
classical theorems of Helly, Radon and Carathéodory which stands as the origin
of the Combinatorial Geometry of Convex Sets. More precisely, the combinatorial
structure defined by the separations of a (finite) family of convex sets in the
Euclidean d-space, will be developed. Namely, two subfamilies are said to be
separated if there exists a hyperplane that leaves them on opposite sides of it
or, equivalently, if their convex hulls do not intersect. The most basic —and
trivial— properties of this relation on the subsets of the family, are the axioms of
a separoid.

These three theorems were discovered in the first quarter of the last century
and can be formulated as follows:

• Helly’s Theorem. Let K be a family of convex sets in IRd. If every
d+ 1 (and fewer) members of K have a common point, then there is a
common point to all members.
• Radon’s Theorem. Let X be a set of d + 2 or more points in IRd.
Then X contains two disjoint subsets whose convex hulls have a com-
mon point.
• Carathéodory’s Theorem. Let X be a set in IRd and p a point in
the convex hull of X. Then there is a subset Y of X consisting of d+ 1
or fewer points such that p lies in the convex hull of Y .

The reader will find some variations and generalizations of these results
in the following pages. The aim of this thesis is to develop some branches of
Combinatorial Geometry from a particular point of view: separoids. It is, at the
same time, a survey and a basic reference to the subject.

K I use paragraphs as this one to easily differentiate the main text from
aside information and comments. Such paragraphs contain material
which, eventhough it is not essencial for the main line of research, it
suplements the theory and points out some bibliographical items.

As a result of this research some papers have (and will) be published. Most
of it was made together with my supervisor Javier Bracho and in collaboration
with Jorge Luis Arocha and Luis Montejano. Also, there are some parts that
were elaborated with Juan José Montellano-Ballesteros and Deborah Oliveros.
Nevertheless, many other people have helped in developing this theory; Victor
Neumann-Lara, who gave me the basis to find the Radon complex of a separoid;
Francisco Larrion, who taught me everything I know about category theory and
helped me generalize the Representation Theorem for all separoids; Eugene
Schepin, who put us on the road of such a theorem for the acyclic case; Karoly
Böröczky, who refined Theorem 2.0.1; Jaroslav Nešetřil, who suggested the
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approach of Chapter 4, and many other friends who have read and commented
some or all of these results.

K Many of these results and proofs are in: Strausz 1998; Arocha,
Bracho, Montejano, Oliveros & Strausz 1999; Bracho & Strausz 2001;
Montellano & Strausz 2001; Strausz 2001; Nešetřil & Strausz 2002 and
Strausz 2002.

I have classified all this material in four chapters: Separoids, Configurations
Oriented Matroids and Homomorphisms. In the first one, you will find the basis
of the theory and all the results that can be applied to the other three. The
second one deals with geometric examples of separoids, in particular the point
separoids are studied in detail. The third chapter is devoted to apply all previously
developed material to the Theory of Oriented Matroids —the most explored area
of separoids. In the fourth one, a new categorical approach is adopted and
the universality and density of separoids homomorphisms is proved. I added
an introduction to introduce the theory in the basis of examples so the reader
will find there some specific pictures to think on while the theory is developed.
Appendix B contains a large bibliography about the subject.

Finally, I want to thank Merari and the rest of my family, including all those
who live —and lived— here in Hungary. They gave me all the emotional support
I needed to end it.

Dino
Budapest 2002
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Separoids provide a broad setting to describe those combinatorial properties that
arise from families of convex sets and the separations they define. Mathematical
objects which appear to be totally different, such as configurations of points,
arrengments of affine subspaces, directed and undirected graphs, oriented matroids,
convex polytopes and separation axioms of topological spaces, find a common
generalization in the language of separoids.

Separoids arise in the context of geometric transversal theory in an attempt to
answer the question: How does the space of hyperplanes transversal to a family
of convex sets in IEd looks like? As already pointed out by Goodman, Polack
& Wenger the existence of a transversal hyperplane depends on the existence
of a suitable oriented matroid. We found that the space of all such hyperplanes
is essential (as a subset of IP d−1) if the geometric dimension of the underlying
separoid is less than d − 1. Also in terms of the geometric dimension, those
separoids that arise from a configuration of points in general position have been
characterized: A general position separoid is a point separoid if and only if its
combinatorial dimension and its geometric dimension are equal.

Further research lead us to an equivalent version of the Basic Sphericity
Theorem (Folkman & Lawrence 1978): The Radon complex of an oriented ma-
troid is homologically equivalent to a sphere. Moreover, if the matroid is uniform,
the complex is homeomorphic to such a sphere. This result was the first step to
reach the characterization of the cocircuit graphs for uniform oriented matroids.

Oriented matroids are separoids which satisfies a couple of extra properties
(they will be formally defined in Chapter 3). Folkman and Lawrence introduced
oriented matroids as a combinatorial description of sphere systems. Las Vergnas
used oriented matroids to describe a purely combinatorial setting of convexity
and, at the same time, Bland described how oriented matroids can be used to
encode the basics properties of linear programs also in a purely combinatorial
level. Independently, Dreiding, Dress, Haegi and Wirth introduced the equivalent
notion of chirotopes to describe chirality of molecules in organic chemistry. All
these approaches took place between the late 1960’s and the early 1980’s.
Nevertheless, geometric objects that where studied much earlier turned out to
be equivalent to oriented matroids. For instance, arrangements of pseudolines as
already studied by Levi 1926, Ringel 1956 and Grümbaum 1969, are equivalent
to oriented matroids in dimension 2. It is not my objective in the present to
describe the theory of oriented matroids in its full extent but most of the theory
developed here can (and will) be applied to it.

K An introduction to the subject can be found in the book of Björner,
Las Vergnas, Sturmfels, White & Ziegler 1993, the survey of Bokowski
1993 and the Ph.D thesis of Richter-Gebert 1992.

Finally, separoids had been studied from a categorical point of view to prove
that the homomorphisms order is universal, viz., any partially ordered class can be
embedded into the homomorphisms order of separoids.
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0. Some Motivating Examples

Let me introduce the theory in an informal way by giving some basic examples
to have some specific pictures in mind when the theory is developed.

Consider a (d + 1) × n matrix M = (x1, . . . , xn) ∈ (IRd+1)n and the n-
set X = {1, . . . , n}. Each of the n columns of M is interpreted as a vector
in the real vector space IRd+1. If these vectors span the space, the minimal
linear dependences yield the circuits of a matroid of rank d + 1. Such linear
dependencies look like∑

i∈X
λixi = 0 with λi ∈ IR, not all zero

and the sets C = {i : λi 6= 0} corresponding to the minimal ones are the circuits
of the matroid. The associated separoid is the family of pairs A †B given by

A = {i : λi < 0}, B = {i : λi > 0},

for all the minimal dependencies among the xi.

K Interesting vector configurations to be studied from this point of
view are given, for example, by the vertices of polytopes and by the
root systems of semisimple Lie algebras.

For a more specific example, let x1, . . . , x4 be the vectors in IR3 given by
the columns of the matrix

M =

 0 1 0 0
1 0 1 0
1 0 0 1

 .

From M we get the separoid of rank 3 on X = {1, 2, 3, 4}, for which the linear
dependence x1 − x3 − x4 = 0 translates into the circuit 1 † 34.

Every vector configuration in IRd+1\{0} corresponds to a point configuration
in a d-dimensional affine space. For this, choose a linear form ` such that `(xi) 6=
0 for all i, define

FA
d := {x ∈ IRd+1 : `(x) = 1}

as a model of affine space, and associate to each vector xi the point pi =
1

`(xi)
xi ∈ FA

d. Here, vectors xi with `(xi) < 0 determine “reoriented affine
points”.

These “negative points” are somewhat annoying to have to deal with, al-
though sometimes unavoidable. However, if the vector configuration does not
contain any positive linear dependence (

∑
λixi = 0 with λi ≥ 0), then we can

choose ` such that `(xi) > 0 for all i, which results in an honest affine point
configuration. This corresponds to the situation where the separoid is acyclic: it
does not contain a circuit of the form φ †B.
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Now, every affine point configuration gives rise to an acyclic separoid whose
minimal Radon partitions (the circuits of the matroid) are given by the minimal
affine dependences ∑

i∈X
λipi = 0 with

∑
i∈X

λi = 0.

Starting from the vector configuration in IR3 discussed in the example above,
with `(x) =

∑
xi and dropping the first coordinate, we obtain the point configu-

ration

P =
(

1
2 0 1 0
1
2 0 0 1

)
.

Now, from P we obtain the separoid of dimension 2 on X = {1, 2, 3, 4}, for
which the affine dependence p1− 1

2p3− 1
2p4 = 0 (with 1− 1

2 −
1
2 = 0) translates

into the minimal Radon partition 1 † 34. Observe that from the affine point of
view, the linear dependence p1 + p2 − 1

2p3 − 1
2p4 = 0 is not a minimal Radon

partition of the separoid.

Since the parameters λi of such minimal dependences are unique up to a
common scalar, those equations can be rewritten as

−
∑
i∈A

λipi =
∑
i∈B

λipi,

−
∑
i∈A

λi =
∑
i∈B

λi = 1,

and therefore we can redefine the relation as

A †B ⇐⇒ 〈A〉 ∩ 〈B〉 6= φ,

where 〈.〉 denotes the convex hull operator. In this new context, we are including
all such partitions —not only the minimal ones.

In the previous example we have two more Radon partitions: 12 † 34 and
1 † 234, so the separoid is

({1, 2, 3, 4}; 1 † 34, 1 † 234, 12 † 34) .

What happens if we delete the (minimal) partition 1 † 34 but keep the other two?
It is not hard to see that the separoid is not any more the separoid of an affine
configuration of points (nor a linear one). However it is the separoid of a family
of (convex) segments in the affine 3-space: A family of four convex sets given by

F = {〈a1b1〉, 〈a2b2〉,p3,p4} ,

satisfies the desired properties if

a1 = (0, 1, 1) b1 = (1
3 ,

1
3 ,

1
3 )

a2 = (0, 0, 0) b2 = (1, 0, 0)
p3 = (0, 1, 0) p4 = (0, 0, 1).
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1. Main Concepts
From the previous examples, many concepts can be introduced. First of all, it
must be clear now that not every separoid arises from a family of points, so it is
natural to ask: Which separoids arise from such a family? We will call this kind
of objects point separoids. A combinatorial characterization of these separoids is
still unknown, but we will study them deeply on Chapter 2. An obstruction ofF to
be a point separoid is that it contains two different minimal Radon partitions on
the same set. If this is not the case, we will call the separoid a Radon separoid,
so P is a Radon separoid and F is not.

These two separoids are quite similar —all Radon partitions of F are con-
tained also in P. If that is the case, then we will say that there exists a morphism
F −→ P, and call the class of all separoid morphisms, the separoid category.

If we restrict ourselves to point separoids over the same n-set and of the
same dimension d, the natural partial order given by

P > P ′ ⇐⇒ P −→ P ′

describes a stratification of a manifold known as the Grassmanninan. This poset
will be denoted by FA

d
n and proved to be homeomorphic to Gd(IRn−1), the space

of all d-subspaces of the vector space IRn−1.

K It will be proved that FA2
4 is the face lattice of the hemicuboctahedron

—a well known polyhedron homeomorphic to the projective plane IP 2 =
G2(IR3).
The separoid F cannot be realized as a point configuration, but it was real-

ized as a family of convex sets. It is also natural to ask: Which separoids can be
realized as a family of convex sets? In contrast with point separoids, separoids of
convexes can easily be characterized: They are all separoids. Therefore, each
separoid has as an invariant the minimal dimension where it can be realized; this
number will be called the geometric dimension of the separoid. The geometric
dimension of F is 3 while its combinatorial one is 2.

This invariant will be useful to study the space of hyperplane transversals
to a family of convex sets. Observe that there is no line transverse to the four
points of P and that there are two planes transverse to the elements of F , that
is, the space of hyperplanes transverse to P is empty and that of F consists of
two points.

Also, the geometric dimension will be used to characterize those point sep-
aroids which are in general position —separoids (of dimension d) whose minimal
Radon partitions consist of exactly d+2 points. SeparoidF is in general position
and P is not.

An oriented matroid is a matroid whose (ordered) bases have received an
orientation compatible with the so called Grassmann-Plüker relations. Although
not every matroid is orientable, every point separoid is an oriented matroid.
However not every oriented matroid is a point separoid, i.e., oriented matroids are
more general than point separoids. On the other hand, every oriented matroid
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is a Radon separoid but not the other way around, so separoids are even more
general than oriented matroids. They will be studied in Chapter 3.

Recall the vector configuration M associated to P. If the 3-sets of X are
ordered lexicografically, their orientations can be extracted from the matrix M
as the signs of the determinants of its minors, i.e., if (ijk) is a 3-subset of X we
assign to it the sign given by

χ(ijk) = sgn |xixjxk|.

If we do this with all 3-sets (123, 124, 134, 234), we obtain the list + − 0 + . This
list encodes the whole separoid P in a very compact way —it is a list of

(
n
d+1

)
elements of {−, 0,+}. Unfortunately, such a compact code is not known for all
kinds of separoids. It would be nice to find one!

2. One more example

As our final example, take four points in the line and consider all pairs A † B of
disjoint subsets A,B ⊂ X = {1, 2, 3, 4} such that 〈A〉 ∩ 〈B〉 6= φ. Now draw an
edge between a pair of such subsets A ∼ A′ whenever they differ in only one
element |A4A′| = 1. The resulting graph is a cycle of length eight. It will be
called the Radon complex of the separoid. Observe that all linear orders on four
elements are in a one-to-one correspondence with this kind of cycles inside the
4-cube. We are thinking about the vertices of Q4 as the family of subsets 2X of
the 4-set X.

K It will be proved that FA1
4 is the projective polyhedron depicted below.

... in contrast to the matroid case oriented matroids carry information about
the topology and the convexity of the underlying configurations.

—JÜRGEN RICHTER-GEBERT, New Construction
Methods for Oriented Matroids (1992)
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Separoids are combinatorial objects that capture the structure arising from a
family of convex sets in IEd, where some subfamilies are naturally separated
from others. Namely, two subfamilies are said to be separated if there exists a
hyperplane that leaves them on opposite sides of it —the axioms of a separoid
are simply the obvious properties of this relation.

0. Basic Notions

A separoid S = (X, |) over the base set X 6= φ is a relation |⊆ 2X × 2X on the
subsets of X with the following properties: If A,B ⊂ X, then

◦ A | B =⇒ B | A,
◦◦ A | A =⇒ A = φ,
◦ ◦ ◦ A | B and A′ ⊂ A =⇒ A′ | B.

So we say that a separoid is a symmetric, quasi-antireflexive, ideal relation on the
family of subsets. The elements of | are called separations and, when speaking
of a separation A | B, it is said that “A is separated from B”. A separoid is acyclic
if the empty set is separated from the base one, i.e. if φ | X. The separations
with the empty set are called trivial separations and, in the sequel, almost all
separoids are finite and acyclic. Observe that it is enough to know maximal
separations to reconstruct the separoid —they encode the whole information.

It is easy to see that an ideal relation is quasi-antireflexive if and only if

◦ ◦ A | B =⇒ A ∩B = φ.

Now, let S and T be two separoids over the base setsX and Y respectively.
A separoid morphism S −→ T is a function ϕ:X → Y with the property that for all
A,B ⊆ Y ,

A | B =⇒ ϕ−1(A) | ϕ−1(B).

A separoid category is defined with such morphisms between separoids. Two
separoids are isomorphic if there exists a bijective morphism from one onto the
other whose inverse function is also a morphism.

Given a subset X ′ ⊆ X of the base set of a separoid S, the induced separoid
is defined as the restriction of | to X ′. An embedding is an injective morphism
between separoids such that it is an isomorphism between the domain and the
induced separoid of the image. The order is the number of elements in X.

There is a notion of dimension on separoids which is easily and intrinsically
determined. The d-dimensional simploid σ = σd is a separoid of order d+1 such
that every subset is separated from its complement, which by the third condition
yields A | B ⇐⇒ A ∩ B = φ. A simploid can be realized by the vertex set of a
simplex, hence its name —Figure 1.a, on page 10, represents σ2.

The (combinatorial) dimension of a separoid, denoted by d(S), is the maxi-
mum dimension of its induced simploids.
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With the definition of dimension at hand, it is quite easy to translate into
separoid terms the classic Radon’s theorem; they capture the combinatorial
essence of it (cf. Danzer, Grümbaum & Klee 1963).

0.1. Lemma (Radon). Let S = (X, |) be a d-dimensional separoid, then every
subset Y ⊆ X of cardinality greater than or equal to d+ 2 contains two disjoint
subsets A,B ⊂ Y such that they are not separated from each other.

Proof. It follows immediately from the fact that Y is not a simploid. o

A Radon partition consists of two non-separated disjoint sets, and it will be
denoted by A † B. Each part (A and B) is called a Radon component and the
union A ∪ B is known as the support of the partition. Considering the Radon
partitions of a separoid S = (X, |) as a relation † ⊂ 2X × 2X , it has the following
properties:

• A †B =⇒ B †A,
•• A †B =⇒ A ∩B = φ,
• • • A †B and C ⊆ X \A =⇒ A †B ∪ C.

This leads to an equivalent definition of a separoid. The separations can be
reconstructed with the obvious definition; A | B iff A ∩ B = φ and there are no
subsets A′ ⊆ A and B′ ⊆ B such that A′ †B′.

A minimal Radon partition is a Radon partition A † B for which each com-
ponent is minimal under contention, i.e.,

A′ ⊂ A =⇒ A′ | B and B′ ⊂ B =⇒ A | B′.

The set of all minimal Radon partitions of a given separoid determines it and will
be denoted by MRP , so A † B ∈ MRP means that A † B is a minimal Radon
partition.

Many authors have observed that the Radon’s theorem can be settled in a
more precise way (cf. Eckhoff 1993): Let X be a set of d + 2 points in IRd in
general position. Then X has a unique partition in two disjoint subsets whose
convex hulls have a common point. Moreover, this point is also unique. This
motivates the next definition.

A Radon separoid is a separoid with the property that for all A †B,C †D ∈
MRP such thatA∪B ⊆ C∪D it follows that {A,B} = {C,D}, i.e., the elements
of MRP are incomparable.

A separoid is said to be in general position if every subsetA ⊂ X of cardinality
d+ 1 is an induced simploid.

0.2. Lemma (general position). Let S be a d-dimensional separoid in general
position. If A † B ∈ MRP is a minimal Radon partition, then the cardinality of
the support A ∪B is at least d+ 2.

Proof. The cardinality of the support cannot be smaller because every subset
σ ⊂ S of cardinality d+ 1 or less is an induced simploid. o
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1. Examples
As in any interesting category, the important part of it are not the axioms them-
selves but the examples we think of when developing the theory. Here are some
of them.
The Objects:

1. Consider a subset X ⊂ IEd of the d-dimensional Euclidean space and
define the following relation

A | B ⇐⇒ 〈A〉 ∩ 〈B〉 = φ,

where 〈A〉 denotes the convex hull of A. If X is finite, the pair P = (X, |) is an
acyclic separoid and will be called a point separoid. In fact, the name of separoids
arises as a generalization of the fact that A | B is a non-trivial separation if and
only if there exists a hyperplane strictly separating 〈A〉 from 〈B〉. Theorem 2.0.1
characterizes an important class of point separoids.

2. Consider a family F of convex sets in IRd and define the separoid S(F)
as above, this is, two subsets of the familyA,B ⊂ F are separated if there exists
a hyperplane that leaves all members ofA strictly on one side of it and those ofB
on the other. If F is finite and the elements of F are compact, then S(F) = (F , |)
is an acyclic separoid and will be called a separoid of convex sets. The Geometric
Representation Theorem (Theorem 2.3) proves that every finite acyclic separoid
S is isomorphic to a separoid of convex sets in IRd, where d = |S| − 1. There is
also a Representation Theorem (Theorem 2.2) for the non-acyclic case but with
non-compact convex sets and in a huge dimension —as big as the number of
separations.

3. Consider an oriented matroid M = (E,L) and identify it with the subset
L ⊆ {−, 0,+}E of its covectors in the usual manner. Let T = T (L) be the set
of topes, maximal covectors, and define the following relation |⊆ 2E × 2E on the
subsets of E: A,B ⊂ E are separated, A | B, if and only if there exists a tope
T ∈ T such that A ⊆ T+, and B ⊆ T−. The pair S(M) = (E, |) is a separoid.
In Chapter 3 this example will be studied in further detail, in particular it will be
shown that the oriented matroid can be reconstructed from its separoid, and
hence that separoids generalize oriented matroids.

4. Edelman (1984) has defined a complex which encodes the separoid of
an oriented matroid. He considers the set

Γ(T ) := {X ∈ {−, 0,+}E : X ≤ T and T ∈ T },

where T denotes the topes of an oriented matroid and ≤ denotes the conformal
relation, i.e., X ≤ Y if and only if X+ ⊆ Y + and X− ⊆ Y −. Clearly a signed
vector X ∈ Γ is in Edelman’s complex if and only if X+ | X−. He uses the Basic
Sphericity Theorem to prove that such a complex has the homotopy type of a
sphere. Theorem 3.2.3 is a direct consequence of this result —it is some how
the dual version of it.

5. As a special case of oriented matroids, a separoid can be defined from a
digraphD = (V,E). Let the set of edges be the base set and define two subsets



10 Chapter 1: Separoids

of it A,B ⊂ E to be separated A | B iff for every circuit of the graph in which the
arrows in one direction are contained in A, the arrows in the other direction are
not contained in B. S(D) = (E, |) is a separoid, and it is acyclic if and only if D
is so —hence the name.

6. Consider a graph G = (V,E) and define two vertices u, v ∈ V to be a
minimal Radon partition u † v if and only if they form an edge uv ∈ E. The pair
S(G) = (V, †) is also a separoid. This turns out to be a functoral embedding
and, since graphs endowed with homomorphisms are a universal category, the
universality of separoids follows (Theorem 4.4.1).

7. Consider a topological space T = (X, τ) and define two subsets A,B ⊂
X to be separated if and only if there exist disjoint neighborhoods of them, i.e.
if there exist α, β ∈ τ such that A ⊆ α,B ⊆ β and α ∩ β = φ. This is clearly an
acyclic separoid.

8. All acyclic separoids on three elements arise from one of the eight families
of convex sets in Figure 1. Those labeled a, b, e and h are the point separoids
of order 3; in fact, they come from the four essentially different oriented matroids
with three elements. They will be denoted byσ2, Λ3,K2+σ0 andK3, respectively.

Figure 1. The acyclic separoids of order 3

The Morphisms:
9. Consider a family of convex setsF , choose a point in each of its elements

to construct a point separoid P and define the obvious bijection ϕ:P → F . This
is a morphism since every hyperplane that separates A from B, subsets of F ,
also separates their respective points ϕ−1(A) and ϕ−1(B).

10. Consider a family of convex sets F in IRd and let π: IRd → IRe be an
affine projection. The obvious bijection π̂:F → π(F) is a morphism between
their separoids S(F) −→ S(π(F)).

11. Consider the embedding G 7→ S(G) suggested by Example 6. If
ϕ:G −→ H is a graph homomorphism, the same map ϕ:S(G) → S(H) is a
morphism of separoids (see Section 4.1).

12. Consider a family of convex sets F and give them a coloration ς:F →
{c1, . . . , ck}. If we denote by F ′ = {〈ς−1(ci)〉} the convex hulls of the color
classes’ family, the obvious mapF −→ F ′ is a morphism. This is a key ingredient
in our study of Tverberg’s theorem (Section 4.5).
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13. Consider a family of convex sets F and fatten them up. If F ′ denotes
the new family, the obvious bijection F −→ F ′ is a morphism.

14. Consider a family of convex sets F = {K1, . . . ,Kn} with a hyperplane
H transversal to all of them. If we denote by F ′ = {H ∩ K1, . . . ,H ∩ Kn}
the separoid of the intersections, then the obvious bijection F ′ −→ F is also a
morphism.

15. Strong and weak maps of oriented matroids are both examples of mor-
phisms between their respective separoids.

16. In Figure 1, bijective morphisms go from left to right between every
pair of separoids. Observe that there is no bijective morphism between those
separoids labeled d and e.

2. The Geometric Dimension

This section introduces a basic invariant in separoid theory. It will be show that
Example 2 is in fact the most general example, i.e. when thinking in separoids,
we can always have in mind a family of convex sets and use all the intuition that
comes from this picture without loss of generality. Let us start this section with
some general facts of the separoid’s category.

Given two separoids S and T over the sets X and Y respectively, their
product S×T is defined as a separoid over the set X ×Y with its two canonical
projections πX , πY and two subsets of it A,B ⊆ X × Y are separated iff at least
one projection is, i.e.,

A | B ⇐⇒ πX(A) | πX(B) or πY (A) | πY (B).

Clearly, this definition implies that the projections πX , πY are separoid mor-
phisms. To prove that this is the categorical product, we have to show that it
satisfies the universal property of the product, this is

2.1. Lemma (the product). Given two morphisms ϕ:U −→ S and ψ:U −→ T ,
there exists a unique morphism ξ:U −→ S × T such that ϕ = πSξ and ψ = πT ξ.

Proof. The category of sets (with functions) gives as unique candidate the
function ξ = (ϕ,ψ) so we only have to check that in fact this is a morphism of
separoids. For this, let A | B be a separation in S×T and suppose, without loss
of generality, that πS(A) | πS(B). Sinceϕ = πSξ, it follows thatϕξ−1(A) = πS(A)
and ϕξ−1(B) = πS(B). Therefore, since ϕ is a morphism,

ϕ−1ϕξ−1(A) | ϕ−1ϕξ−1(B).

Now, since ξ−1(A) ⊆ ϕ−1ϕξ−1(A) and ξ−1(B) ⊆ ϕ−1ϕξ−1(B), we conclude that

ξ−1(A) | ξ−1(B),

and therefore ξ is a morphism. o

Once the product has been defined for two separoids, the definition for a
finite number of separoids

∏m
i=1 Si is obvious.
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This product has a geometric counterpart. Let S and T be separoids of
convex sets in IRs and IRt, respectively. The geometric product S ⊗ T is a
family of convex set in IRs× IRt whose elements are of the form Ks×Kt, where
Ks ∈ S and Kt ∈ T . In general, it is not the case that the separoid of S ⊗ T
is isomorphic to its combinatorial counterpart S × T however, in some special
cases, if the convex sets are “big enough”, S ⊗ T is a realization of S × T .

2.2. Representation Theorem. Every separoid S can be represented with a
family of convex sets in IRm, where m is the number of separations in S.

Proof. Given a separoid S and a separation in it A | B, a characteristic morphism
χA|B :S → B exists

χA|B(x) =

{+, if x ∈ A
−, if x ∈ B
0, otherwise,

where B denotes the separoid defined in the set {−, 0,+}with unique separation
− | +. It is not hard to prove that S can be embedded into the product of as
many copies of B as separations S has

χ:S −→
∏

A|B∈S

B.

The existence of such a morphism is given by the previous lemma. In order to
see that χ can be made injective, consider two different elements x 6= y ∈ S.

In the one hand, if there exists a separation A | B, where x ∈ A, we have
then that x | B. Therefore, χx|B(x) 6= χx|B(y) and therefore χ(x) 6= χ(y).

On the other hand, if there are no separations with the elements x and y,
both are mapped to the element 0 = (0, . . . , 0) ∈ ΠB. We can then take as
many copies of this element 0 to map each element x with such a property.
Equivalently, we can identify all of them as a single element; after the realization
below, we can then consider as many copies of the ambient space —which will
represents the element 0— to realize the original separoid. Observe that such
a construction does not change the number of separations of the separoid.

Finally, to see that χ−1 is also a morphism observe that, if A | B, there is a
projection π:

∏
B −→ B such that χA|B = πχ and therefore χ(A) | χ(B).

The end of the proof is to show how to realize
∏m
i=1 B as a family of convex

sets; the restriction to χ(S) will then realize S.
For, in the real line, let B be mapped as follows:

− 7→ IR−,
0 7→ IR,
+ 7→ IR+.

Clearly this realizes the separoid B. The product of m copies of it can be
realized in IRm by the geometric product of these convex sets: since the convex
sets in the geometric product are “big enough”, all separations can be made with
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Fig 2. B × B

hyperplanes which are parallel to some of the linear hyperplanes spanned by
some m− 1 canonic vectors. o

K It can be proved that, in the acyclic case, to compactify the realiza-
tion of Bm, it is enough to take the intervals [−1,−ε], [−1, 1] and [ε, 1],
with 0 < ε ≤ 1

2m−1 (see Figure 2).

The geometric dimension of a separoid can now be defined as the minimum
dimension of the Euclidian space where the given separoid S can be realized
as a separoid of convex sets; we denote it by gd(S). There are not known
algorithms to calculate this invariant and it is conjectured that it is, at least, an
NP-hard problem. It is important to give better upper bounds of gd(S) than that
implicitly given in the theorem; in particular, we know that, in the acyclic case, it
grows at most linearly with respect to the order:

2.3. Geometric Representation Theorem. Every acyclic separoid of order n
can be represented by a family of convex polytopes in the (n − 1)-dimensional
affine space, and therefore

gd(S) ≤ |S| − 1.

Proof. Let (S, †) be an acyclic separoid (i.e., A † B =⇒ |A||B| > 0). To each
element i ∈ S = {1, . . . , n} and each (minimal Radon) partition A † B ∈ MRP
such that i ∈ A, we assign a point of IRn

ρiA†B := ei +
1
2

[
1
|B|

∑
b∈B

eb −
1
|A|

∑
a∈A

ea

]
, (1)

(where {ej} denotes the canonical basis) and realize each element i ∈ S as the
convex hull of all such points

i 7→ Ki := 〈ρiA†B : i ∈ A and A †B ∈MRP 〉.

Observe that these convex sets are in the (n− 1)-dimensional affine subspace
spanned by the basis, becouse (1) is, in fact, an affine combination.

To see that this family of convex polytopes realizes the separoid observe
that, in the one hand, for each partition A †B, the vertex set of the two simplices
〈ea : a ∈ A〉 and 〈eb : b ∈ B〉 “moves” —half of the way each— to realize such a
partition intersecting one another precisely in their baricenter. That is, let A †B
be fixed; in order to prove that

〈Ka : a ∈ A〉 ∩ 〈Kb : b ∈ B〉 6= φ,

it is enough to prove that 〈ρaA†B : a ∈ A〉∩〈ρbB†A : b ∈ B〉 6= φ because ρaA†B ∈ Ka
and therefore 〈ρaA†B : a ∈ A〉 ⊂ 〈Ka : a ∈ A〉 (analogously with B).

Now, if we let ρ : IRn → IRn be the translation

ρ(x) = x +
1
2

[
1
|B|

∑
b∈B

eb −
1
|A|

∑
a∈A

ea

]
,
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we have that ρaA†B = ρ(ea) and the baricenter of 〈ρaA†B : a ∈ A〉 is

1
|A|

∑
a∈A

ρaA†B =
1
|A|

∑
a∈A

ρ(ea) = ρ

(
1
|A|

∑
a∈A

ea

)
=

1
2

[
1
|B|

∑
b∈B

eb +
1
|A|

∑
a∈A

ea

]
Analogously, using that ρbB†A = −ρ(−eb), we have that

1
|B|

∑
b∈B

ρbB†A =
1
2

[
1
|B|

∑
b∈B

eb +
1
|A|

∑
a∈A

ea

]
and therefore

〈ρaA†B : a ∈ A〉 ∩ 〈ρbB†A : b ∈ B〉 6= φ.

On the other hand, given a separation α | β, define the affine extension of
the equations

ψα|β(ej) =

{−1 j ∈ α
1 j ∈ β
0 otherwise

for j = 1, . . . , n.

Now, it is enough to prove that for every i ∈ α (resp. β), we have that
ψα|β(ρiA†B) < 0 (resp. > 0) for all A † B such that i ∈ A. For this, observe that,
if i ∈ α ∩A (and A †B) then, since ψα|β(ej) = 0 for all j ∈ (A ∪B) \ (α ∪ β),

ψα|β
(
ρiA†B

)
= ψα|β

(
ei+

1
2

[
1
|B|

(∑
B∩α

eb+
∑
B∩β

eb
)
− 1
|A|

(∑
A∩α

ea+
∑
A∩β

ea
)])

=

= −1 +
(|B ∩ β| − |B ∩ α|)

2|B|
+

(|A ∩ α| − |A ∩ β|)
2|A|

≤ −1 +
1
2

+
1
2

= 0.

Equality holds if and only ifB∩β = B andA∩α = A leading to a contradiction.o

We end this section showing how to prove that the combinatorial dimension
bounds the geometric dimension.

2.4. Lemma (dimension). For any separoid S, its combinatorial dimension is
not greater than its geometric dimension, i.e., d(S) ≤ gd(S).

Proof. Let S be d-dimensional with geometric dimension g = gd(S), and sup-
pose that g < d. Let S be a family of convex sets in IRg that realizes S. Since
S is d-dimensional, it contains a d-dimensional simploid σ ⊆ S of order d + 1.
Choose a point for each convex set of σ. This set of points consists of g + 2 or
more points in IRg and, by the classic Radon’s theorem, there exists a partition
of them in two subsets whose convex hulls intersect. Therefore they are not
separated. This contradicts the fact that σ was a simploid. o
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3. General Results

In this section we settle some general results on separoids that will be needed
somewhere else. We start with a new “convex version” of the well known
Carathéodory’s theorem (cf. Danzer et al. 1963 and see also Eckhoff 1993):

3.1. Lemma (Carathéodory). Let X =
⋃
i∈I Ki ⊆ IRd, be the union of some

convex sets Ki. If x ∈ 〈X〉 is a point in the convex hull of X, then there exists a
subset J ⊆ I with |J | ≤ d + 1 and, for every j ∈ J , a point xj ∈ Kj such that x
is a convex combination of the points xj .

Proof. By Carathéodory’s theorem, we need at most d+1 points ofX to express
x as a convex combination of them. It is easy to see that, if two (or more) of
these are on the same convex set Kj , they can be replaced by a single point
xj ∈ Kj which is a convex combination of them. Therefore we need at most one
point in each convex. o

With this lemma at hand, it is easy to see how to “realize” each minimal
Radon partition of a separoid.

3.2. Theorem. Let S be a separoid of convex sets. Given a minimal Radon
partitionA†B, there exists a point on each convex set of the support, ai ∈ Ki ∈ A
and bj ∈ Kj ∈ B, such that

〈ai : Ki ∈ A〉 ∩ 〈bj : Kj ∈ B〉 6= φ.

Proof. If x ∈ 〈A〉 ∩ 〈B〉 6= φ, by Carathéodory’s lemma, we need at most d + 1
elements of A, Ki ∈ A, and at most one point in each of them ai ∈ Ki to express
x as a convex combination of them. By the minimality of the partition, it is clear
that we need at least one point in each convex of A. The same argument works
for B and we are done. o

We will also use a “continuous version” of Radon’s original proof.

3.3. Lemma (continuous Radon). Let zi(t) = (1 − t)xi + tyi with t ∈ [0, 1],
be d+ 2 segments in IRd. If their respective extreme points, {xi} and {yi}, are
different point separoids in general position, there exists a t ∈ (0, 1) such that
the separoid {zi(t)} is not in general position.

Proof. It is easy to see that, for every t ∈ [0, 1] there exists a solution for the
following equations∑

λi(t)zi(t) = 0,
∑

λi(t) = 0,
∑

|λi(t)| = 2,

and moreover the λi(t) can be chosen to be continuous. Since the points xi =
zi(0) are in general position, such a solution for t = 0 is unique and every λi(0)
is non-zero. Such a solution leads to a unique Radon partition, the positives vs.
the negatives ∑

λi(0)>0

λi(0)xi = −
∑

λi(0)<0

λi(0)xi,
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∑
λi(0)>0

λi(0) = −
∑

λi(0)<0

λi(0) = 1

or, in separoid notation

{xi : λi(0) > 0} † {xi : λi(0) < 0}.

The same argument works for t = 1, but by hypothesis it yields a “different”
partition

{yi : λi(1) > 0} † {yi : λi(1) < 0}.

Here, different means that there is a j such that λj(0) and λj(1) have different
signs (while others have the same), then there exists a t ∈ (0, 1) such that
λj(t) = 0. For that t, {zi(t)} is not in general position. o

We close this section with a beautiful theorem of separoids that will be used
to characterize point separoids in general position.

3.4. Theorem. If a separoid is in general position and its geometric dimension
is equal to its dimension, then it is a Radon separoid.

Proof. Let S be a d-dimensional separoid in general position. If its geometric
dimension is equal to its dimension, it can be realized as a family S of convex
sets in IRd. Not to be a Radon separoid would imply that there exists a subfamily
S ′ ⊆ S with two “essentially different" ways of choosing points on each convex
set of it. This is, suppose that S is not a Radon separoid. Then there are
subsets of A,B,C,D ⊆ S such that A † B, C †D ∈ MRP , A ∪ B ⊆ C ∪D and
{A,B} 6= {C,D}. Since S is in general position, the support S ′ := A ∪ B has
at least d + 2 elements. Since C † D is minimal, applying Theorem 1 and the
classic Radon’s theorem, its support has at most d+ 2 elements. Then, without
loss of generality, we may suppose that |S| = |A ∪B| = d+ 2.

Using again Theorem 1, two configuration of points can be defined, two
points on each convex set, in such a way that they realize the two Radon parti-
tions. Considering the line segment that join each couple —inside each convex
set— and applying the continuous Radon lemma, we conclude that S is not in
general position E o
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Fig 3. Qn, n = 2, 3, 4

Fig 4. The Radon complex
of the four points separoids
on three elements

4. The Radon Complex

We will associate to each separoid a “cubic” complex which “lives” in the bound-
ary complex of the n-cube. We will consider the Radon components of a sep-
aroid. They can be identified with some vertices of the n-cube and the Radon
complex of the separoid will be defined as the induced complex of these vertices.

LetQn denote the n-cube (see Figure 3). Its vertices V (Qn) will be identified
with the family of subsets 2E of the n-set E. Its faces are intervals of the natural
contention partial order defined in 2E , i.e., each face is of the form

[A,B] := {X ⊆ E : A ⊆ X ⊆ B}.

In fact, this definition leads to an n-ball, but in the sequel the n-cube will be
thought of as an (n− 1)-sphere so the face [φ,E] is dropped out.

We call generalized cotopes the Radon partitions of the form A † A, where
A = S \ A denotes the complement. Given a separoid S, for each generalized
cotope A † A, take the vertex A ∈ V (Qn); the complex induced by all such
vertices is what we call the Radon complex of the separoid and we denote it by
R = R(S). Here, by induced we mean that a face of Qn is in the complex if
and only if all of its vertices are. Some small Radon complexes are shown in
Figure 4.

It follows from the definition that

4.1. Lemma (faces). If A † B is a Radon partition of S then [A,B] is a face of
R(S).

Proof. Let A †B be a Radon partition of a separoid S = (X, |). It is clear that for
all C ⊆ B we have that (A ∪ C) †B, therefore every vertex of [A,B] is a Radon
partition’s component of the given separoid S. o

The converse of this lemma is not true in general, this is, there exists a
separoid S such that [A,B] is a face of R(S) and A †B is not a Radon partition.
Therefore the generalized cotopes do not determine the separoid. In fact, there
are many separoids which yield the same Radon complex (cf. Figure 1 and 4
and observe that, while there are eight acyclic separoids on 3 elements, there
are only four possible Radon complex in Q3).

However, in some important cases the separoid can be reconstructed from
its Radon complex. In particular oriented matroids, and therefore point sepa-
roids, are completely encoded by the Radon complex.

The faces of R with maximal dimension (that are not contained in a bigger
face) are called facets . We say that two facets X,Y ∈ R ⊂ Qn are incident if
their intersection is not empty, and adjacent if it is as big as possible, i.e., they
are the only two covers of their intersection in the face lattice of R. The graph
with the set of facets as vertices and adjacent facets as edges is called the
circuit graph of the separoid. Its vertices are called circuits and if every circuit
comes from a minimal Radon partition, the separoid is said to be full , this is,
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Fig 5. The three k-duals of
the 3-cube (k = 1, 2, 3)

full separoids are those for which the converse of the previous lemma holds. It
will be shown that: Oriented matroids and point separoids, are full separoids.

We will say that a separation A | B is maximum if the union of its parts
A∪B = S is the separoid itself. We say that a separation A | B conforms to the
separation C | D if A ⊆ C and B ⊆ D.

4.2. Lemma (full separoids). Let S be a separoid. If every separation conforms
to a maximum separation then S is a full separoid.

Proof. Let [A,B] be a face of R(S) and denote by C = B \ A the difference of
those subsets. Clearly every vertex of such a face are of the form A ∪ C ′, for
some C ′ ⊆ C. Then, since they are vertices of the complex, for all C ′ ⊆ C we
have that A ∪ C ′ † A ∪ C ′, this is, the set {A ∪ C ′ : C ′ ⊆ C} is a subset of the
components of S.

Now, in order to search for a contradiction, suppose that A | B. The hy-
pothesis says that this separation conforms to a maximum one. Denote by Ca,
respectively Cb, those elements of C which are on the same side of A, respec-
tively B, so C = Ca ∪ Cb. From this definition follows that A ∪ Ca | B ∪ Cb. But
as previously settled, A ∪ Ca †A ∪ Ca E o

K It remains an open question to find necessary and sufficient con-
ditions, in terms of Radon partitions, to characterize full separoids.

If a separoid S is in general position, all the facets of its Radon complex have
the same dimension, say k, so its circuit graph is a subgraph of the k-dual of
the n-cube denoted by Qkn and defined as follows (k > 0): the vertices of Qkn are
the k-subcubes of Qn and two of them are adjacent if their respective subcubes
intersect in a (k − 1)-subcube. From now on, we denote the faces of Qn by the
standard signed vectors, this is, each face [A,B] is denoted by X ∈ {−, 0,+}E
where

Xi =

{+ if i ∈ A,
0 if i ∈ B \A,
− otherwise.

We call antipodal automorphism the function which sends each vector X to
its opposite−X. Observe that if every circuit of a separoid has the same support
size (say n− k), the 1-skeleton of the dual poset of the Radon complex of such
a separoid is a subgraph of Qkn and it is closed by the antipodal automorphism.
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5. Transversal Theory

In this section we will study, from the separoids point of view, the space of all
hyperplanes transversal to a family of convex sets S = {K1, . . . ,Kn} in the
Euclidian space IEd+1.

Let S be a separoid of convex set in IEd+1. An affine subspace H ↪→ IEd+1

of dimension d is called a hyperplane transversal if the intersection with each
convex set ofS is non-empty. We are interested in the set of all such hyperplanes.
This can be considered as a subset of the open manifold Gd := Gd(IEd+1) which
consists of all affine hyperplanes of IEd+1. It is ease to see that IP d = Gd(IRd+1),
the Grassmannian of linear d-subspaces of IRd+1, is an homotopical retraction
of Gd —just identify each pencil of parallels with its linear representative— and
therefore they are homotopically equivalent Gd ≈ IP d.

Let us denote by

T (S) := {H ∈ IP d : ∃v ∈ IRd+1∀K ∈ S,K ∩ (H+ v) 6= φ}

the space of hyperplanes transversal to S.

5.1. Proposition. Let S be a separoid of convex sets in IEd+1. Then

T (S) 6= φ =⇒ d(S) < d+ 1.

Proof. If d(S) = d + 1, S contains a simploid σ of order d + 2 and there is
not a hyperplane transversal to it. The existence of such a hyperplane would
contradict, via the Radon’s theorem, that σ is a simploid. o

We say that T = T (S) is an essential subspace of Gd if it is not homotopically
equivalent to a point inside IP d, i.e., T cannot be continuously contracted to a
point in its ambient space IP d.

5.2. Theorem. Let S be a separoid of convex sets in IEd+1. If gd(S) < d, then
T = T (S) is an essential subspace of Gd.

Proof. Let S be a separoid of convex sets in IEd+1, suppose that gd(S) = d− k
and let F be a realization of S in IRd−k. Choose a point in each convex of F to
construct the point separoid P and define the obvious morphism ϕ:P −→ S.

Now, let us denote by T ⊥ := {v ∈ SS
d : v⊥ ∈ T } the closed set of all unit

vectors for which there exists a hyperplane transversal to S orthogonal to it, and
let T ⊥ = SS

d \ T ⊥ be its relative complement.
For every u ∈ T ⊥ we may choose continuously a hyperplane Hu ∈ Gd

orthogonal to u such thatHu = H−u and it separates two non-empty subsets of
the given separoid S. Denote by H+

u the closed semispace determined by Hu
that has u as normal. A straight forward argument proves that the function

p(u) :=
∑

K⊂H+

u

d(K,Hu)

is never zero and depends continuously of u ∈ SS
d.
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Let the function f : T ⊥ → IRd−k be defined as

f(u) :=
∑

K⊂H+

u

d(K,Hu)
p(u)

ϕ−1(K).

In order to find a contradiction, suppose that T is not essential in Gd. Then,
T ⊥ is contained in a subset of SSd homotopic to the 0-sphere and, by the Alexan-
der’s duality, T ⊥ contains a (d − 1)-pseudosphere. Therefore, due to Borsuk-
Ulam’s theorem, there most be a point u0 ∈ T ⊥ such that

f(−u0) = f(u0).

Let A := {K ∈ S : K ⊂ H+
u0
} andB := {K ∈ S : K ⊂ H+

−u0
} be the subsets

of S separated by the hyperplane Hu0 . Since ϕ is a separoids morphism, then

ϕ−1(A) | ϕ−1(B).

On the other hand, observe that f(u0) is a convex combination of points of
ϕ−1(A) and also f(−u0) is a convex combination of points of ϕ−1(B). Therefore,

f(u0) = f(−u0) ∈ 〈ϕ−1(A)〉 ∩ 〈ϕ−1(B)〉 6= φ,

which is a contradiction E o

K An ease consequence is the following Corollary (Helly). Let S be
a separoid of convex sets. If every two members of S have a com-
mon point, then T (S) has the same homotopy type as if there were a
common point to all of them.
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Hasta que no me concedas esto con plena
convicción, querido lector, no sigas leyendo.

—ALBERT EINSTEIN Sobre la teoŕıa especial
y la teoŕıa general de la relatividad (1917)



2
Configurations
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Fig 6. The regular pentagon
and its Radon complex

Fig 7. Five points in the plane
in general position

In this chapter we will concentrate in a very specific class of separoids. We will
study those separoids which arise from an affine configuration of points. Let us
start with a guide example. We will think on it all across the chapter so it is a
good idea that the reader takes all the time (s)he needs to analyze it.

Consider the vertices of a regular pentagon and identify them with the num-
bers P = {0, 1, 2, 3, 4} in some of its two cyclic orders. Due to Radon’s theorem,
there should by two disjoint subsets A,B ⊂ P whose convex hulls intersect, or
in separoids notation, A †B. In fact, there are ten such pairs:

02 † 13 13 † 24 24 † 03 03 † 14 14 † 02
024 † 13 013 † 24 124 † 03 023 † 14 134 † 02

Observe how 02 † 13 =⇒ 024 † 13 and 02 † 134. More over, observe that for
each minimal Radon partition A † B there exists a unique d ∈ A ∪ B such that
(A \ d) † (B \ d ∪ c), where c = A ∪B.

If we draw an edge between a pair of Radon partitions whenever one implies
the other, the resulting graph is a cycle of order 10. In fact this graph is isomorphic
to the Radon complex of the separoid.

It is very easy to see that all regular pentagons in the plane are affinely
equivalent. This is, given two regular pentagons, there is an affine transformation
of the space that sends one onto the other —just translate the center of one into
the other, scale it to reach the same size and rotate if necessary so the five
points coincide— therefore we can identify them to say that they represent the
same configuration of points. However not every two pentagons represents the
same configuration —even their separoids are isomorphic— because an affine
transformation of the plane is determined by the image of a triangle.

Let us give a step back —in fact two steps back— to analyze FA
1
3 in full detail.

If we have three points in the line in general position, its separoid is of the form
a † bc and —since we are dealing with affine transformations— with out loose of
generality we may suppose that b and c are represented by 0 and 1, respectively.
The relative position of a between b and c is parametrized with a number in the
interval (0, 1) so, we may think in the space of configurations of three points in
the line in general position as the union of three open intervals. Now, if we miss
the general position the separoid gets the form a † b or, equivalently, a † c. This
configuration is “rigid” —it can not be continuously transformed without changing
the separoid— and there are three of them. Observe that this configurations are
the limit of the previous described intervals. Therefore, the space FA

1
3 of all

configurations (modulo affine transformations) of three points in the line is a
cycle of order 3 and it is homeomorphic to IP 1 ∼= SS

1.
The reader most be aware to distinguish between these two examples: the

former cycle (of length 10) was associated to a particular configuration, the
regular pentagon; the latter cycle (of length 3) was associated to the “space” of
all configurations of 3 points in the line.
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0. Uniform Point Separoids

Point separoids are those separoids which can be realized by a configuration of
points in some Euclidian space. They are extremely difficult to characterize from
a purely combinatorial point of view. In fact, it is known that the stretchability
problem —a polar version in dimension 2— is NP-hard (cf. Shor 1991). However,
from the geometric point of view intrinsic to separoids, we can characterize those
point separoids in general position.

0.1. Theorem. Let S be a separoid in general position. S is a point separoid if
and only if its dimension and its geometric dimension are equal.

Proof. The necessity is clear. For the sufficiency, consider S as a separoid of
convex sets in IRd, where d = d(S). Choose a point in each convex set, denote
by P the point separoid that they define, and let

ϕ:P −→ S

be the obvious morphism (see Example 9). We will show that, in fact, this is an
isomorphism of separoids.

In the one hand, by construction, we have that for every A,B ⊂ S,

A | B =⇒ ϕ−1(A) | ϕ−1(B).

On the other hand, let A † B ∈ MRP be a minimal Radon partition of
S. Since S is a separoid in general position, the cardinality of the support is
#(A ∪ B) ≥ d + 2. Then the preimage of this union consists of d + 2 or more
points in IRd and by the classic Radon’s theorem there exists a Radon partition
D † E of ϕ−1(A ∪ B) in P. Since ϕ is a morphism, ϕ(D) † ϕ(E) is a Radon
partition of A ∪ B. Finally, due to Theorem 1.3.4, S is a Radon separoid and,
without loss of generality ϕ(D) = A and ϕ(E) = B. Therefore ϕ−1(A) †ϕ−1(B).
Since MRP generates all Radon partitions, it follows that for every A,B ⊂ S,

A †B =⇒ ϕ−1(A) † ϕ−1(B).

Thus, ϕ is an isomorphism of separoids and S is a point separoid. o

This result is sharp. The hypothesis of general position cannot be dropped
without adding a new ingredient. The separoid B used in the proof of the Rep-
resentation Theorem is a 1-dimensional separoid in general position, it can be
realized in the line but it is not a point separoid. However, the small examples
of non-stretchable pseudolines arrengments suggest the following (cf. Theo-
rem 3.1.2)

0.2. Conjecture. An oriented matroid is coordinatizable if and only if its dimen-
sion (its rank minus one) is equal to its geometric dimension.
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1. The Grassmannian

In the study of point separoids is quite difficult to avoid their algebraic properties.
There are plenty of them. In particular, the Grassman-Plüker relations and the
Grassmann variety it self appears naturally in this context.

We had review some examples of configurations of points, finite subsets of
the affine spaceP = {p1, . . . ,pn} ⊂ FA

d —we will always suppose that the points
spans affinely their ambient space. Given a configuration P, a linear function
ϕ: IRn → IRd can be defined as the linear extension of the equations

ϕ(ei) = pi, i = 1, . . . , n,

where {ei} denotes the canonical basis of IRn. Given two such functions ϕ,ϕ′,
it will be said that they represent the same configuration if there exists an affine
transformation ψ: IRd → IRd such that

ψϕ(ei) = ϕ′(ei), i = 1, . . . , n,

i.e., two configurations are the same if one is the (ordered) image of the other
by an affine transformation of the ambient space.

We will call space of configurations, and denote it by FA
d
n, to the set of all

configurations with n points in dimension d (modulo FA(d), the affine group).
This set will be provided of structure and will be described in some detail.

The first example is the case n = d + 1 and the space of configurations
consists of a single point that represents the simploid σd. The object starts to be
more interesting when n ≥ d+ 2. It is the case where Radon’s theorem applies.
It guarantees that there exists a partition A † A of P and we can consider the
set of components C = {A ⊂ P : A † A} that is a subset of the vertices of
the n-cube —the family of subsets of P— that induces a polytopal complex
R(P) = Qn[C] = {[A,B] ∈ Qn : A †B in P} known as the Radon complex of P.
We will prove later in this chapter that the Radon complex of a point separoid is
homotopically equivalent to the (n− d− 2)-sphere.

The space which consists of the k-subspheres of the n-sphere in known
as the Grassmann variety (or, for short, grassmannian ) and it will be carefully
defined bellow but, by the moment —as a motivation— let us say that this space
is homeomorphic to the space of configurations.

In the classic literature, grassmannians are defined as the set of all sub-
spaces, with a fixed dimension, of a vector space. Here we will refer exclusively
to subspaces of IRn and the the grassmannian of k-subspaces (k-planes) of IRn

will be denoted by Gk = Gk(IRn).
This set can be provided with a natural topology. Every k-plane is the kernel

of some linear function ϕ: IRn → IRn−k and two such functions have the same
kernel if and only if there exists a linear transformation ψ ∈ GL(n−k) that makes
the following diagram commutative

K
� i // IRn

ϕ
����

ϕ′

$$ $$IIIIIIIII

IRn−k // ψ // IRn−k
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Fig 8. The hyperplane Π

Then, the grassmannian inherits the topology of the spaceL(IRn, IRn−k) modulo
the linear transformations of IRn−k, i.e.,

Gk ↪→ L(IRn, IRn−k)/GL(n− k).

Observe that: in particular projective spaces IPn−1, defined as lines —or
hyperplanes— of IRn, are a special case of grassmannians G1 = IPn−1; and
that, as there is a natural duality between lines and hyperplanes —orthogonal
complementation— there is a duality between grassmannians Gk ∼= Gn−k.

But we want to work with the affine group FA(d), not the linear one, so a
step further is required. The next step is to prove that the grassmannian can be
embedded also in the space of linear functions modulo the affine transformations,
but with a bit of difference in the dimensions,

Gd ↪→ L(IRn+1, IRd)/FA(d).

This will be a consequence of Theorem 1 below. We will denote by Π = 1⊥ the
hyperplane of IRn orthogonal to the vector 1 = (1, 1, . . . , 1) with all its coordinates
equal to one, or equivalently

Π =
{

x ∈ IRn :
∑

xi = 0
}
,

where xi denotes the i-th coordinate of x.

1.1. Theorem. Two functions ϕ,ϕ′ ∈ L(IRn, IRd)/FA(d) represents the same
configuration if and only if their respective kernels intersects the hyperplane Π
in the same subspace.

K ∩Π � i // IRn

ϕ
����

ϕ′

!! !!DD
DD

DD
DD

FA
d // ψ //

FA
d

Proof. Let pi = ϕ(ei) and p′i = ϕ′(ei) be two configurations of n points in FA
d

and let K and K ′ denote their respective kernels. It will be proved that

K ′ ∩Π = K ∩Π

if and only if there exists an affine transformation ψ:FAd → FA
d that sends one

onto the other:

p′i = ψpi.

This will induce a bijection between the space of configurations and the
(n− d− 1)-subspaces of the linear space Π of dimension n− 1.

Necessity. It is clear that is enough to prove that K ′ ∩ Π ⊂ K ∩ Π, this is, it is
enough to prove that∑

λi = 0 and
∑

λip′i = 0 =⇒
∑

λipi = 0.
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In fact, if ψx = Mx + v denotes the affine isomorphism, then

0 =
∑

λip′i =
∑

λi(Mpi + v) = M
(∑

λipi
)

+
(∑

λi

)
v = M

(∑
λipi

)
.

Since M is invertible, then
∑
λipi = 0.

Sufficiency. In seek of simplicity, we will suppose that the first d+1 points of the
configuration pi spans affinely the space —the general case is totally analogous
but working with subindexed set of indexes— therefore there exists an affine
function ψ:FAd → FA

d defined as the affine extension of the equations

p′i = ψpi, i = 1, . . . , d+ 1.

It will be proved that the rest of the points satisfies the same equation.
For this, let pj be any other point. Since the points {p1, . . . ,pd+1} spans the

space, there exist numbers {λ1, . . . , λd+1} such that
∑
λi = 1 and pj =

∑
λipi.

By hypothesis we have that∑
λi − 1 = 0 and

∑
λipi − pj = 0 =⇒

∑
λip′i − p′j = 0,

and therefore

p′j =
∑

λip′i =
∑

λiψpi = ψ
∑

λipi = ψpj .

This concludes the proof. o

With this result at hand, we obtain the desired topology for FA
d
n.

1.2. Corollary. The points on the Grassmann variety Gd(IRn−1) are in one-to-
one correspondence with the configurations of n vectors in IRd modulo the action
of the affine group,

FA
d
n
∼= Gd(IRn−1).

Proof. The subspace Π can be identified with IRn−1 and every (n − d − 1)-
subspace of it can be extended to the kernel of a linear function ϕ ∈ L(IRn, IRd).
Theorem 1 guarantees that the correspondence of each configuration with its
kernel is well defined and is a bijection of the points of Gn−d−1(IRn−1) with the
points of the space of configurations. Finally, the duality of grassmannians gives
us a bijection of those with Gd(IRn−1). o

K We will take now a closer and more concrete look to the Grassmann
variety by describing an explicit embedding into projective space, called
the Plüker embedding of Gd(IRn). This dissertation will take us a little bit
out of the scope of this work, but it will aloud us to ask some questions
which are in this moment in research. In particular, we would like to
study the space of configurations of affine subspaces. It is a natural
generalization of the previous when we think on points as 0-dimensional
affine subspaces. If we denote by `FA

d
n the space of all configurations of

n subspaces, each of dimension `, into the d-dimensional affine space,
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then the previous studied space FA
d
n can be denoted by 0FA

d
n, and, as

we will see, in the general case we may have an embedding of the form

`FA
d
n ↪→

(
0FA

`+1
d+2

)n
∼

∼=
(
G`+1(IRd+1)

)n
∼

,

where ∼ is denoting an equivalent relation which will be manufactured
later... and when I am saying later, I mean later because at the moment
it is not known how to build it even its existence is pretty obvious.

Let
∧
k IR

n denote the k-fold Grassmann (or exterior) product of the vector
space IRn. The elements of

∧
k IR

n are called antisymmetric tensors. We may
think on it as the

(
n
k

)
-dimensional space (over IR) which has the canonical basis

{ei1 ∧ . . . ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}.

The product of k vectors v1, . . . , vk ∈ IRn is given by

v1 ∧ . . . ∧ vk =
∑

1≤i1<···<ik≤n

∣∣∣∣∣∣∣
v1i1 · · · vki1

...
...

v1ik · · · vkik

∣∣∣∣∣∣∣ ei1 ∧ . . . ∧ eik .

and the basic property of this product is that, v1, . . . , vk are linearly independent
if and only if v1 ∧ . . . ∧ vk 6= 0. Also, if two k-subspaces H,H′ ↪→ IRn are
equipped with basis b1, . . . ,bk and b′1, . . . ,b

′
k respectively, we have thatH = H′

if and only if there exists a non-zero scalar c ∈ IR∗ such that

b1 ∧ . . . ∧ bk = c · b′1 ∧ . . . ∧ b′k.

Therefore we have the following embedding

Gk(IRn) ↪→ IP (n
k)−1.

Let us see a concrete example of how this can be used to study configu-
rations of affine subspaces. Consider a line ` ↪→ FA

3 spanned affinely by the
points a and b, and think on FA

3 ↪→ IR4 as the hyperplane {x ∈ IR4 : x · e4 = 1}
of the vectors which have the fourth coordinate equal to 1. So, we can denote
by a = (a1, a2, a3, 1) and by b = (b1, b2, b3, 1) the affine basis of `. Observe that

a ∧ b =


a1b2 − a2b1
a1b3 − a3b1
a2b3 − a3b2
a1 − b1
a2 − b2
a3 − b3

 =
(

a× b
a− b

)
∈ IR6.

Since every change of basis makes this assignments differ by a non-zero scalar,
we can safely define a function ϕ: {` : ` ↪→ FA

3} → IP 5 from the space of lines in
the affine space to the projective 5-space by

ϕ(`) =
[

a× b
a− b

]
.
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Now, consider a family of lines L = {`1, . . . , `k} ∈ 1FA
3
k. We will say that

L is dependent if the set {ϕ(`) : ` ∈ L} is linearly dependent in IP 5, i.e. if
ϕ(`1) ∧ . . . ∧ ϕ(`k) = 0.

1.3. Proposition. Three lines in FA
3 are dependent if they are concurrent and

coplanar.

Proof. Let `1, `2 and `3 be three lines in the affine space with p =
⋂
`i a

common point and let them be coplanar. Let a ∈ `1 and b ∈ `2 be points which
completes a basis of their respective lines, i.e., both of them are different from
p. Since the three lines are coplanar, the line spanned by a and b intersects `3
in a point, say c, which is different from p and therefore, completes a basis of it.
More over, this point is an affine combination of the form

c = λa + µb, where λ+ µ = 1.

From here it is easy to see that

ϕ(`1) ∧ ϕ(`2) ∧ ϕ(`3) =
[

p × a
p − a

]
∧
[

p × b
p − b

]
∧
[

p × c
p − c

]
= 0.

Just recall that the Grassmann product is associative, antisymmetric and that it
satisfies x ∧ x = 0 for all vectors x ∈ IRn of the space. o

K The necessity is also true. More over, it can be proved that four
skew lines in FA

3 are dependent if and only if they form part of the ruler
of a quadratic form.

We end this section with the dissertation started at the previous “coffee cup”
sign above. Let `Sdn denote the set of all families of n affine `-subspaces in IRd.
As we saw, each such a subspace has associated a point in G`+1(IRd+1), and
each point there has associated a point configuration, i.e., an element of FA

`+1
d+2.

Since we have n of such subspaces, we can assign n configurations of points
to the family at hand. Therefore we have an embedding

`S
d
n ↪→

(
FA
`+1
d+2

)n
.

Now, if we make a group act in IRd, say the affine one, we naturally have an
equivalent relation `FA

d
n = `S

d
n/FA(d) and this most induce some relation on the

previous product of grassmannians

`FA
d
n ↪→

(
FA
`+1
d+2

)n
/ ∼

...but we do not know yet how it works. It would be nice to find out!
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2. The Radon Complex of a Point Separoid

In this section we will give a geometric proof of the fact: the Radon complex
of a point separoid is homotopically equivalent to a sphere. In order to achieve
this result, we will need to review some concepts of Combinatorial Convexity.
We will be dealing with the polytopal complexes that bounds the n-cube and its
dual, the n-octahedron. Both are the convex hull of a finite set of points in IEd

and therefore, each has associated a finite poset, its face lattice. As we will see,
these lattices can encode in full a point separoid but, first of all, let us prove that
point separoids are full, this is

2.1. Lemma (fullness of points). LetP be a point separoid. An interval [A,B] ∈
Qn is a face of R(P), the Radon complex of the separoid, if and only if A †B is
a Radon partition of the separoid.

Proof. The sufficiency is the face lemma 1.4.1. For the necessity, let [A,B] be a
face of R(P) and denote by C = B \A the difference of those subsets. Clearly
every vertex of such a face are of the form A∪C ′, for some C ′ ⊆ C. Then, since
they are vertices of the complex, for all C ′ ⊆ C we have that A∪C ′ †A ∪ C ′, this
is, the set {A ∪ C ′ : C ′ ⊆ C} is a subset of the components of P.

Now, in order to search for a contradiction, suppose that A | B. This is
equivalent to the existence of a hyperplane H ↪→ FA

d that separates the convex
hulls of A and B. It is easy to see that, ones this hyperplane exists, it can be
chosen in such a way that it does not contains any of the points. Denote by Ca,
respectively Cb, those points of C which are on the same side of A, respectively
B, so C = Ca ∪ Cb. From this definition follows that H separates A ∪ Ca from
B ∪ Cb. But as previously settled, A ∪ Ca †A ∪ Ca E o

Observe that an analogous argument proves that if every separation can be
extended to a maximum separation then the separoid is full (cf. Lemma 1.4.2).

In the following, we will suppose some familiarity with concepts as abstract
and geometric simplicial complex, geometric realization |K| of an abstract complex
K, homeomorphism denoted by ∼=, boundary ∂K, and relative interior K◦. But do
not worry to much with this... any time I say “polytope” you may think in the n-
octahedron (also known as the n-crosspolytope), the convex hull of the canonic
basis of IRn and its negatives; and every time I say “polytopal complex” you may
think in a subset of its boundary.

K An introduction to this concepts, can be found in Ewald’s “Combina-
torial Convexity and Algebraic Geometry” (1996), Munkres’ “Elements
of Algebraic Topology” (1984), or to the classic Spanier’s “Algebraic
Topology” (1966).

Given two simplices, σ and τ , there is a ball defined by the union of all
segments whose extreme points are, one in each simplex; it is called the join
and denoted by σ ∗ τ . Observe that the join is again a simplex if and only if the
union of both vertex sets is affinely independent.
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2.2. Lemma (join). Let τ0, τ1 < σ be two faces of a simplex, and ` an affine
subspace. If ` intersects the interior of both simplices, it intersects the interior of
their join, i.e.

` ∩ τ◦i 6= φ =⇒ ` ∩ (τ0 ∗ τ1)◦ 6= φ.

Proof. Let a ∈ τ◦0 ∩ ` and b ∈ τ◦1 ∩ ` be points in the intersections of ` with
the interiors of the two faces. Then, the segment 〈a,b〉 is contained in ` and its
interior in (τ0 ∗ τ1)◦. o

Now, given a polytopal complex K, its baricentric subdivision K′ can easily
obtained from its face lattice as follows: its vertices (K′)(0) are the elements of
the poset (the faces of K); and its k-faces (K′)(k) are the chains of length k in
the poset, this is 〈b0, . . . , bk〉 ∈ (K′)(k) ⇐⇒ b0 < · · · < bk ∈ K.
K It is ease to see that the baricentric subdivision of dual polytopes

is the same.

The realization of the baricentric subdivision is known to be homeomorphic
to the space it self. More over, if the baricenter of a face is aloud to move in the
interior of the face it represent, with out going out of such a interior, the space and
its combinatorial properties do not change. In particular, if an affine subspace `
intersects the polytopal complex, the following realization of the subdivision can
be defined

|K′|(0) :=
{

bσ : bσ =
{
b(σ◦ ∩ `) if σ◦ ∩ ` 6= φ
b(σ) otherwise

}
,

〈bσ0 , . . . ,bσk
〉 ∈ |K′|(k) ⇐⇒ σ0 < · · · < σk ∈ K,

where each σ is a face of K and

b(σ) =
1

#σ(0)

∑
v∈σ(0)

v

denotes the usual baricenter.
In the proof of Theorem 2.2.4 we will be dealing with two different ways to

intersect an affine subspace ` with a polytopal complex: the usual one which
considers only those faces of the complex intersected in the interior; and what
we call fat intersection which considers all faces “touched” by the subspace.
Both intersections are to be considered as subcomplexes of the baricentric sub-
division. We will prove that the usual intersection is a retract of the fat one. For
this, let us denote by K[V ] the subcomplex of K induced by a subset V ⊆ K(0)

of its vertices. This is, the subcomplex induced by V consists of V it self, and of
every face of K such that all its vertices are in V .

With all these at hand, denote by

K u ` := K′[bσ : σ ∩ ` 6= φ]
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Fig 9. The fat intersection

and by

K
◦
u ` := K′[bσ : σ◦ ∩ ` 6= φ]

the fat and the usual intersections, respectively. Clearly the realization of the

usual intersection is the intersection of the realization, i.e., |K
◦
u `| = |K| ∩ `. In

fact it is the first baricentric subdivision of the “geometric intersection”, K
◦
u ` =

(K ∩ `)′.

2.3. Theorem. Let K be a polytopal complex, and ` an affine subspace that

intersects it in the interior. Then |K
◦
u `| is a strong retract of |K u `|.

Proof. Let f :K u `→ K
◦
u ` be defined as f(bσ) = bτ , where

τ = max{τ < σ : τ◦ ∩ ` 6= φ}.

First of all, observe that the join lemma guarantees that f is well defined
and, to see that it is a simplicial map, observe that σ0 < σ1 implies

{τ < σ0 : τ◦ ∩ ` 6= φ} ⊂ {τ < σ1 : τ◦ ∩ ` 6= φ}

and therefore f(σ0) < f(σ1).

Clearly f is the identity map on K
◦
u `.

Now, for each t ∈ [0, 1], let ft: |K u `| → |K
◦
u `| be defined as follows: first,

if bσ ∈ (K u `)(0) is a vertex,

ft(bσ) = (1− t)bσ + tf(bσ).

Observe that, since bσ and f(bσ) are points of |σ|, then ft(bσ) is also a point
of |σ|. Finally, extend linearly the function to the rest of the domain, this is, if
x ∈ |K u `| is any other point, then x ∈ |〈bσ0 , . . . ,bσk

〉| ⊂ |σk| and x can be
denoted as a convex combination x =

∑
λibσi

. Therefore ft can be defined by

ft(x) =
∑

λift(bσi
).

So, ft: |K u `| ↘ |K
◦
u `| is a strong retract. o

We are almost ready for the main theorem of this section. The next step is to
give two descriptions of the n-octahedron; a geometric one and a combinatorial
one. They will be used to define a duality of it with the n-cube.

Let us provide IRn with an unusual metric —known as Manhattan norm—
that assigns to each vector the sum of the absolute value of its coordinates
‖x‖ :=

∑
|xi|. In this space, the unitary sphere turns out to be the n-octahedron

|On| := {x ∈ IRn : ‖x‖ = 1} ∼= SS
n−1.

It is the boundary of the convex set of a finite set of points, the canonical basis
and its negatives

|On| = ∂〈±e1, . . . ,±en〉,
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Fig 10. The 3-octahedron

therefore it is a polytopal complex. More over, it is a simplicial complex.
The n-octahedron has also the following combinatorial description: each

face σ can be identified with an n-vector (z1, . . . , zn) ∈ {−1, 0, 1}n that indicates
which vertices —which canonicals, or its negatives— are incident to it, in such
a way that each face can be realized with the simplex

|σ| = 〈ziei : zi 6= 0〉.

It is well known that this complex is dual of the n-cube and therefore there
is a function between their faces that realizes such a duality. We will denote it
by

δ:On → Qn,

δ (〈ziei : zi 6= 0〉) := [{i : zi = 1}, {i : zi 6= −1}] .

K Theorem 4 plays an important role on the next chapter. It was
the basic guide of our intuition to develop the graph theoretical charac-
terization of uniform oriented matroids in terms of their circuits. Both,
the technics in the proof and the statement it self, serves as pictures
to “see” points separoids —and more generally, oriented matroids. In
fact, this theorem generalizes that of Radon and it was basically his
technic who lead us to the proof. Although the statement was conjec-
tured since the first days of the theory, more that a chandelier ago, we
had not found a “purely combinatorial” proof of it. Always the geometry
and topology had play an important role... well it was supposed to be
like that, the final statement talks about homotopy of spheres so it is
not rare that the topology has to play some role in the proof.

We will see also how the proof of Theorem 4 suggests a charac-
terization of all point separoids. This will be used to give explicitly the
stratification of FA

d
n for n ≤ d+ 3 and for d = 1.

2.4. Theorem. Let P be a d-dimensional point separoid of order n. Then, the
(n−d−2)-sphere is an homotopical retraction of its Radon complexR = R(P),

R ↘ SS
n−d−2.

More over, if the separoid is in general position, then such homotopy is in fact
an homeomorphism,

R ∼= SS
n−d−2.

Proof. Let P = (p1, . . . ,pn) ∈ (FAd)n be a configuration of points, S = S(P) its
separoid and R = R(S) its Radon complex. We will identify the configuration
with the intersection of the kernel K = ϕ−1(0) of its linear function ϕ: IRn → IRd

(where ϕ(ei) = pi), and the hyperplane

Π = 1⊥ =
{

x ∈ IRn :
∑

xi = 0
}
.
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Fig 11. Theorem 2.4

This (n−d−1)-subspace of Π will be denoted by ` = K ∩Π. Theorem 1.1 guar-
antees that this assignment is well defined and, modulo affine transformations,
is one-to-one.

Give to IRn the structure of a (Manhattan) normed space and denote by

|O| =
{

x ∈ IRn :
∑

|xi| = 2
}

the sphere of radius 2 centered at the origin (observe that here we are working
with a radius 2 sphere —because a technicality that will be clear later— but
the previous dissertation on the n-octahedron can be applied to it completely).
Recall the definition of the fat intersection

O u ` = O′[σ ∈ O : σ ∩ ` 6= φ]

and define the complex of its dual faces

< := {δ(σ) ∈ Qn : σ ∈ O and σ ∩ ` 6= φ},

where δ:O → Qn is the previously defined duality function.
Clearly <′ = O u `. Observe also that, since ` is a subspace of dimension

n−d−1, then O∩ ` is a sphere of dimension n−d−2. Now, due to Theorem 3,
O ∩ ` is a strong retract of O u ` and therefore < has the homotopy type of the
(n− d− 2)-sphere

< ↘ SS
n−d−2.

Claim. < is equal to R
• Since point separoids are full separoids —A † B is a Radon partition if and
only if [A,B] is a face ofR (Lemma 1)— it is enough to prove that [A,B] is a face
of < if and only if 〈A〉∩〈B〉 6= φ. For this, let σ ∈ O be a face of the n-octahedron
and (zi) ∈ {−1, 0, 1}n its corresponding signed vector. Then σ has associated
the 3-partition of P given by A = {pi ∈ P : zi = 1}, B = {pi ∈ P : zi = −1} and
C = A ∪B = {pi ∈ P : zi = 0} and, by the definition of δ:On → Qn, we have
that δ(σ) = [A,A ∪ C]. Therefore, it is enough to prove that

σ ∩ ` 6= φ ⇐⇒ 〈A〉 ∩ 〈B〉 6= φ.

For, let x ∈ σ ∩ `, then∑
xipi = 0,

∑
xi = 0 and

∑
|xi| = 2.

The first equation is due to x ∈ K, the second because x ∈ Π (all these since
x ∈ ` = K ∩ Π) and the third one because x ∈ O. More over, since x ∈ σ, we
are aloud to write

1
2

x =
∑

λi(ziei)

as a convex combination (
∑
λi = 1 and λi ≥ 0) of the canonic basis vectors or

its corresponding negatives. Combining these (xi = 2ziλi) we have that∑
p

i
∈A

λipi =
∑

p
i
∈B

λipi
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and ∑
p

i
∈A

λi =
∑

p
i
∈B

λi = 1.

This last happens if and only if 〈A〉 ∩ 〈B〉 6= φ. Since all previous steps can
be followed the other way around, we have concluded the proof of the claim, and
therefore R ↘ SS

n−d−2. •
For the case of general position, observe that R has a face [A,B] of dimen-

sion greater than n−d−2 if and only if #(B\A) > n−d−2 and this is equivalent
to the existence of a partition A †B where #(A∪B) < d+2. If the separoid S is
in general position this last is impossible (Lemma 1.0.2). Since all facets have
dimension n− d− 2 we have that

|O u `| = |O ∩ `|.

Therefore R is homeomorphic to the (n− d− 2)-sphere R ∼= SS
n−d−2. o

Observe that the last argument of the proof implies that the points are in
general position if and only if ` is “in general position” with respect to O. Also,
if we think on full separoids as filters in the face lattice of the n-octahedron,
following the same technic as above we can prove that

2.5. Corollary (point separoids). A full separoid S ⊂ On is a point separoid if
and only if there exists a hyperplane H ↪→ IRn such that S ↘ H ∩Π ∩ On.

Other application of this theorem, besides Theorem 0.1 is

2.6. Corollary (uniform sphereicity). Let S be a general position separoid of
n convex sets in IRd. Then

d(S) = d =⇒ R(S) ∼= SS
n−d−2.
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3. Concluding; the stratification of FA
d
n

We had been working in three different categories: point configurations, thought
of as linear functions or matrices; separoids, thought of as the combinatorial
structure they are; subcomplexes of the n-cube, defined this as the family of
subsets of a given finite set.

Given a separoid S, a “cubic” complex R(S) ↪→ Qn, its Radon complex,
can be defined identifying its vertices V (R) with the components of the separoid
C(S) = {A ⊂ S : A † A} and looking for the induced subcomplex of the n-cube
R(S) = Qn[C]. In general it is not possible to reconstruct the separoid from its
Radon complex but, if the separoid is a point separoid, this complex encodes
the full separoid and it is always an sphere.

On the other hand, given a configuration of points P ∈ FA
d
n it can be thought

of as a matrix and identified with the intersection of its kernel, the hyperplane
Π = 1⊥ and the n-octahedron On. Such an intersection defines the dual of
the Radon complex of the separoid associated to the configuration. A natural
question is when does a cubic complex is the Radon complex of a point separoid?
It seem natural to ask for some sphericity but, as we will see on the next chapter,
it is not enough. In general, this question is still open but in the following we will
analyze the cases where n ≤ d+ 3. In the way, we will find useful to study also
the case d = 1.

We now want to bring together all these to see how the n-cube imposes a
stratification to the grassmannian, via the Radon complex of point configurations.

Since the reader was supposed to work with FA
2
4, FA1

4 and FA
2
5, and we already

described FA
1
3 at the beginning of this chapter, we jump to study FA

3
5. It is an

example of (5 = 3 + 2)
The case n = d+ 2.

d+2 points in general position induce a unique (Radon) partition that can be
interpreted as a 0-subsphere of the (d+ 2)-cube —a pair of antipode vertices—
and the other way around; given a subset and its complement it is easy to
construct a configuration with such subsets as its unique partition. This induce
a one-to-one relation between pairs of antipode vertices of the n-cube (different
from the empty set and the total one) and the d-dimensional point separoids of
order n = d+ 2 in general position.

When the general position is lost, The Radon complex is “fatten” and gets
faces of bigger dimension; edges, squares, cubes, etc. Each of these faces has
associated an interval [A,A ∪ C] in the family of subsets and this represents a
partition of the form A †B ∪C, where A †B is the minimal Radon partition of the
configuration. The dimension of the “fat” is given by the cardinal of C.

To get a picture of the fenomena, think on five points in IE3 in general position
and all of them being vertices of their convex hull. They lead a unique partition
of the form abc † de and its Radon complex consists of two antipodal vertices.
Now move continuously one of the points, say d, and push it to the closest face
of the tetrahedra defined by the other four, this is, the triangle defined by abc.
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While it is on the exterior of such a tetrahedra, the separoid do not change (even
the configuration does).

Ones it reaches the (relative) interior of the triangle abc, the new separoid
is defined by the minimal partition abc † d and its Radon complex consists of two
antipodal edges. If you move the point in the interior of the triangle, while the
configuration changes, the separoid does not change. If you move it to the other
side, the interior of the tetrahedra, the separoid became in general position and
the unique partition abce † d leads again to two antipodal vertices in its Radon
complex. But, if you move, inside the triangle, to reach an edge of it, say ab,
the separoid changes and defines a new minimal partition ab † d. Its Radon
complex turns now to be a pair of antipodal squares. Analogously, if this point
reaches an other point, say a, its Radon complex became a pair of antipodal
cubes. Observe that there is no way to put two antipodal 4-cubes inside Q5 with
out including the empty set and inducing, by the union of the vertices, the full
5-cube.

We have the following easily generalizable description of this fenomena:
with out lose of generality, we may suppose that the first (d + 1) of the points
are the vertices of a tetrahedra (a d-simplex); the (hyper)planes defined by each
three (d) of them leads a partition of the space in open sets (and points). Then the
fifth (d+ 2-th) point can be localized by the position it occupies in the “polytope”
this partition defines —each open set can be named with a signed vector that
corresponds to the signs of the baricentric coordinates in terms of the ordered
basis determined by the the first four (d + 1) points— and each of this regions
define a Radon partition A † B ∪ C —the positives vs. the negatives in the
previous mentioned signed vector. If the fifth point lies in the plane generated
by the first three (d), the baricentric coordinates of it contains a zero in the fourth
term (the cardinality of C is 1); if it lies in a line, contains two zeros (#C = 2);
and so on. We have then the following types of partitions: in general position
—represented in the grassmannian by facets of dimension 3 (d)— a † bcde and
ab † cde; degeneracy of first grade —faces of dimension 2 (d − 1)— a † bcd and
ab † cd; of second grade —edges— a † bc; and finally when two points are equal
a † b. This is, the space of configurations FA

3
5 consists of two types of facets (5

tetrahedra and 10 prisms), two types of faces (20 triangles and 15 squares), one
type of edges (30 of them) and one type of vertices (10 of them).

K The 2-skeleton of FA3
5 contains a regular polyhedra that plays the roll

of one of the platonic solids but in the projective space. If you consider
only the fifteen squares of it, you get a polyhedra with schläfli symbol
{4, 6} (it is made of squares, six in each vertex) and it can be embedded
in IP 3 in such a way that all of its automorphisms (the group S5) are
realized with isometric projectivities. As you may already proved, FA

2
4

is the hemicuboctahedron whose symmetry group is S4. . .

K For another presentation of the {4, 6} see Strausz 1996 and Bracho
& Strausz 2001.
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3.1. Theorem. The space of configurations of n points in dimension n − 2,
modulo the action of the affine group, is

FA
n−2
n = On ∩ 1⊥/{−x, x} =

(
Qn \ {φ, φ}

)∗
/{A,A}.

Proof. Since two configurations are equivalent (modulo the action of the affine
group) if and only if the intersection of their kernels withOn∩1⊥ is the same and
because such intersection is a 0-dimensional sphere, the configurations are in
a one-to-one relation with the pairs of antipodal points of On ∩ 1⊥. The duality
with the n-cube has already been defined. o

We will also give a combinatorial description for FA
d
d+3 but, in the study of

the case n = d+ 3, it will be important to have a good knowledge of
The case d = 1.

The facets of FA
1
n are in a one-to-one correspondence with the linear or-

ders of n elements (modulo reversing all the elements in the order), and two
of them are adjacent if and only if they differ in a permutation of two consec-
utive members. It is ease to see that the facets are always simplices —with
out loose of generality, the ending points of the configuration, say a and z, are
represented by 0 and 1 so the configuration is parametrized by a sequence of
numbers 0 < b < c < · · · < x < y < 1. On the other hand, the vertices of
FA

1
n, since are rigid configurations, are pairs of accumulated points. This is, the

vertices of the simplices are of the form

a | bcd . . . yz,
ab | cd . . . yz,
abc | d . . . yz,

. . .
abcd . . . y | z.

where the represented linear order is abcd . . . yz. We know also that this space
FA

1
n
∼= IPn−1 most be homeomorphic to the projective space of dimension n− 1.
Let us see this in a more concrete example, four point in the line: in the

projective plane, take four points in general position —you can start, e.g., with
[1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1]— which will represent the four configuration
with a unique (maximal) separation of the form a | bcd. Now, draw the six
lines that they define by pairs. In the intersection of these lines appear three
new points. They represent those configurations with a unique separation of the
form ab | cd. There are two kind of edges; six which makes adjacent two vertices
of the first kind —characterized by a Radon partition of the form bc † ad— and
twelve that joins vertices of different kinds —characterized by a Radon partition
of the form b † acd. Observe that there are not edges between two vertices of
the second kind. Finally, there are 12 triangular facets which consist each, of
two vertices of the first kind and one of the second. All this dissertation can be
resumed in the following
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3.2. Theorem. The space of configurations of n points in the line, modulo the
action of the affine group, is

FA
1
n =

(
Q?n \ {φ, φ}

)
/{A,A},

where Q?n denotes the first baricentric subdivision of the n-simplex.

Proof. The combinatorial structure of open sets defined by the
(
n
n−2

)
hyper-

planes spanned by n points in general position in the (n − 2)-projective space
is isomorphic to the star subdivision of the n-hemicube minus two antipodal
vertices; the poset relation is given by A < B ⇐⇒ A ⊂ ∂B. o

The case n = d+ 3.
As a consequence of Theorem 2.4, we have that each configuration of n = d+3
points in general position in dimension d gives place to the embeddingC2n ↪→ Qn
of a cycle into the cube, its Radon complex. The fullness of point separoids
(Lemma 2.1) implies that two such separoids are equal if and only if their Radon
complexes are. Now, by Theorem 3.2.3, each antipodal cycle C2n ↪→ Qn can
be associated to an oriented matroid of codimension 1, and therefore a point
separoid. Finally, observe that the condition of acyclicity is equivalent to say that
the Radon complex of the separoid does not contains the empty set (neither the
total). We have then that

3.3. Theorem. The facets of the space of configurations of n points in dimension
n− 3, modulo the action of the affine group, are(

FA
n−3
n

)(2n−6)
=
{
C2n ↪→ Qn \ {φ, φ} : A ∈ C(0)

2n =⇒ A ∈ C(0)
2n

}
,

and two facets represented by the cycles C and C ′ are adjacent if and only if

|V (C) ∆ V (C ′)| = 2.

K Analyzing in detail FAdd+3 for the cases d = 0, 1, 2, 3, in particular we
can prove that

• In Q3 \ {φ, φ} there is only one cycle of order 6.
• In Q4 \ {φ, φ} there is, essentially, only one kind of antipodal

cycles of order 8, and there are as many as linear orders with four
elements.

• InQ5\{φ, φ} there are three kind of antipodal cycles of order 10.
They correspond to the configurations depicted in Figure 7.
This leads to complete the combinatorial description of this space of con-

figurations. But one question remains open: how can we reconstruct the con-
figuration from its Radon complex?

For this special case, we have a construction that we know it functions in all
small cases (n = 3, 4, 5, 6) but we do not have yet a prove for the general case...
however we are convinced that this will be the case.

To describe the construction, let us go back to the first example of this
chapter: the regular pentagon. Observe that, given the cycle C10 ↪→ Q5 and a
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vertex A ∈ C
(0)
10 of it, each path from A to its antipode defines a linear order of

the base set X = {0, 1, 2, 3, 4}. In the example, if we start with the set A = 02,
one of the two paths to its antipode is 02, 024, 24, 124, 14, 134. This path defines
naturally the lineal order 40123, the elements that change in each step of it. If
we forget for a moment some element, say 4, the remaining information is: a
minimal Radon partition 02 † 13 and a linear order 0123.

Recall the triangulation FA
1
4. In this, there are four special vertices (those that

represents the configurations of the form a | bcd) and each facet represents a
linear order. If you add a fifth point in the baricenter of the region that represents
the order 0123 and we apply a projective transformation such that the four special
vertices realizes the partition 02 † 13 in the affine plane Π + ei, parallel to Π thru
the canonic basis, we obtain the desired configuration.

Figure 12. The realization of the pentagon
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4. One last application

We close this chapter with an application of the Radon complex of point sepa-
roids. We say that a separoid S is polytopal if every member of it is separated
from its complement x ∈ S =⇒ x | x. If a point separoid is polytopal, all its
points are vertices of its convex hull, and therefore it is a polytope —hence the
name.

One of the main problems in Combinatorial Convexity is to classify convex
polytopes and there had been developed lots of tools to reach this. We will
see how the Radon complex of polytopal point separoids help us to count the
different types of polytopes in the ease case n = d+ 2.

K The following result is usually settled using Gale diagrams which I
will avoid, but it can be found, e.g., in the second chapter’s last section
of Ewald 1996.

4.1. Theorem (Grümbaum 67). There are precisely
⌊

1
4d

2
⌋

combinatorial types
of d-polytopes with d+ 2 vertices.

Proof. Let P ∈ FA
d
d+2 be a polytopal point separoid. By Theorem 2.4, its Radon

complex R = R(P) is homotopically equivalent to the 0-sphere and therefore is
the union of two intervals [A,B] and [A,B]. Since it is polytopal, neither of these
intervals contains a singleton (neither a subset of cardinality d + 1). With this
extra condition we have that

R ↪→ Qd+2 \
{
φ,

(
P
1

)
,

(
P

d+ 1

)
,P
}
,

whereP = φ is identified with the base set and
(P
k

)
= {A ⊂ P : |A| = k} denotes

the family of k-subsets of it. If [A,B] ∼= Q0, there are
⌈
d−1
2

⌉
essentially different

ways to embed R; if [A,B] ∼= Q1, there are
⌈
d−2
2

⌉
; if [A,B] ∼= Q2, there are⌈

d−3
2

⌉
; . . . ; if [A,B] ∼= Qd−1, there is one (=

⌈
1
2

⌉
) way to embed R. Therefore

we have the sum ⌊
d2

4

⌋
=
⌈
d− 1

2

⌉
+
⌈
d− 2

2

⌉
+ · · ·+

⌈
1
2

⌉
,

and we are done. o

If you are not too ambitious, it can be a pleasure to realize
that you have rediscovered something previously known,

because at least you know that you were on the right track.

—I.M. GEL’FAND (¿1980’s?)
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Oriented matroid theory was introduced in the 1960’s when J. Folkman and
J. Lawrence proved that every oriented matroid can be thought of as a family of
oriented pseudospheres. In particular, they proved that the natural partial order
associated to an oriented matroid is the face lattice of a sphere —this last result
is known as the Basic Sphericity Theorem. This result has many applications
and we will use, as our intuition source, a slightly different version of it: The
Radon complex of an oriented matroid is a sphere. It will be shown that this is a
direct consequence of Edelman’s theorem (1984) and Alexander’s duality.

One of the main bricks of the theory is the classic Radon’s theorem (1921).
Oriented matroids encode minimal Radon partitions in terms of circuits , a set of
signed vectors C ⊂ {−, 0,+}E with some properties; in particular, they define a
separoid which encodes all the information. As we saw, the family of all signed
vectors has associated a natural poset which turns out to be the face lattice of
the n-cube. The Radon complex of an oriented matroid is a “cubic” complex
(an ideal in the face lattice of the n-cube) whose vertices are identified with
those subsets non-separated of its complement. Since oriented matroids leads
to full separoids, this complex captures the structure of the oriented matroid.
In Theorem 2.2 we will prove that the dual poset of such a complex, can be
characterized via a natural combinatorial metric associated to the 1-skeleton
of it.

We follow here ideas explored by K. Fukuda and K. Handa (1993) but in
the more general context of separoids : Symmetric ideals (or filters) defined by
an antichain in the face lattice of the n-cube (or the n-crosspolytope). Fukuda &
Handa characterized every tope graph T = T (M) of an oriented matroid of rank 3
—dimension 2— showing that they are those antipodal planar graphs which can
be embedded in the n-cube preserving their graph distance. The planarity of T
induces a dual graph G = T ∗ which can be proved to be the cocircuit graph of the
oriented matroid. No characterization is known of the cocircuit (or tope) graph in
the general case, but Theorem 2.6 gives necessary and sufficient conditions for
uniform oriented matroids with arbitrary rank. We basically settle that a graph G
is the cocircuit graph of a uniform oriented matroid of order n and rank r if and
only if it is of order 2

(
n
r+1

)
, it is antipodal and it can be embedded “metrically” in

the (n− r − 1)-dual of the n-cube.
In the way to reach this, we will apply all the theory developed in the previous

chapters. In particular we settle that oriented matroids can be represented by
families of convex sets and characterize those uniform matroids which can be
realized as point separoids.
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0. The Cryptomorphism

In this chapter oriented matroids, and separoids, will be handled as families of
signed vectors. Thus some notation and definitions have to be introduced.

Let E be any set with n elements and denote by OE = {−, 0,+}E the set of
(signed) vectors with n entries in {−, 0,+}. Given a signed vectorX = (Xe)e∈E ,
the set X± := {e ∈ E : Xe 6= 0} is called the support of X. The zero set of X is
the complement of its support, X0 := E \X± = {e ∈ E : Xe = 0}. Its positive
and negative sets are X+ := {e ∈ E : Xe = +} and X− := {e ∈ E : Xe = −},
respectively. The opposite −X is defined by (−X)e = −(Xe).

In the family of signed vectors OE a partial order can be defined as

X ≤ Y ⇐⇒ X+ ⊆ Y + and X− ⊆ Y −.

If X ≤ Y , it will be said that X conforms to Y .

K This poset is the face lattice of the n-crosspolytope On and dual of
the n-cube Qn —hence the notation.

With all this at hand, a separoid S = (E, |) can be encoded with signed
vectors as follows: S ⊆ OE is a separoid if

(S1) X ∈ S =⇒ −X ∈ S, (symmetry)
(S3) X ∈ S and X ′ ≤ X =⇒ X ′ ∈ S. (it is an ideal)

The separations can be reconstructed with the obvious definition:

X ∈ S ⇐⇒ X+ | X−.

Recall that it suffices to know maximal separations to reconstruct the whole
separoid —they encode the whole information of it.

To define separoid morphisms in this context, the setOE can be interpreted
as the family of functions of the form α:E → {−, 0,+} where, given one such a
function α = X ∈ OE , its applications are denoted by α(e) = Xe. Also, if F is
any other m-set —together with its family OF— and ϕ:E → F is any function,
the cofunction ϕ∗:OF → OE can be defined in the usual way: if β ∈ OF then
ϕ∗β ∈ OE is defined as

(ϕ∗β)(e) = β(ϕ(e)).

Now, given two separoids S ⊆ OE and F ⊆ OF , a separoid morphism,
denoted by S −→ F , is a function ϕ:E → F such that

β ∈ F =⇒ ϕ∗β ∈ S.

Analogously to the former definition of a separoid, the Radon partitions of
a separoid S = (E, †) can be encoded with signed vectors: S ⊆ OE are the
Radon partitions of a separoid if

(R1) X ∈ S =⇒ −X ∈ S, (symmetry)
(R3) X ∈ S and X ≤ X ′ =⇒ X ′ ∈ S. (it is a filter)
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Once again, recall that the minimal Radon partitions encode the whole informa-
tion of the separoid.

An oriented matroid M = (E, C) of order n = |E| is a set of signed vectors,
C ⊆ OE , with the following properties:

(C1) 0 6∈ C
(C2) X ∈ C =⇒ −X ∈ C
(C3) X,Y ∈ C and X± ⊆ Y ± =⇒ X = ±Y
(C4) X,Y ∈ C and Xe = −Ye 6= 0 =⇒ there exists Z ∈ C

such that Z+ ⊆ X+ ∪ Y +, Z− ⊆ X− ∪ Y − and Ze = 0

The elements of C are known as the circuits of the matroid.
Given an oriented matroid M the set of its circuits C can be identified, in a

one to one fashion, with the MRP set of a separoid on the same base set E. We
have the following obvious cryptomorphism.

0.1. Theorem. The minimal Radon partitions MRP of a separoid S are the
circuits of an oriented matroid if and only if

(M1) φ † φ 6∈MRP,
(M3) S is a Radon separoid,
(M4) A †B,A′ †B′ ∈MRP and x ∈ A ∩B′ =⇒

∃A′′ †B′′ ∈MRP : A′′ ⊆ A′ ∪A \ x and B′′ ⊆ B ∪B′ \ x.

Given the circuits of an oriented matroid, its vectors, V = V(M), can be
reconstructed by an operation known as composition, defined as

(X ◦ Y )e =
{
Xe if Xe 6= 0,
Ye otherwise,

via the following: V ⊇ C is the minimal superset of C closed by composition, i.e.,
X,Y ∈ V =⇒ X ◦ Y ∈ V. Observe that V ⊂ S, i.e., since vectors close circuits
by composition and separoids by conformal relation, in general there are more
Radon partitions in the separoid than vectors in the oriented matroid. Therefore,
generalized cotopes (maximal Radon partitions) effectively generalize cotopes,
maximal vectors.

Recall the example of Section 0.1; the configuration P contains only two
circuits 1 † 34 = (+, 0,−,−) and its opposite. From the oriented matroid point
of view these two circuits are all the vectors, but for the separoid there are four
more Radon partitions 1 † 234, 12 † 34 and its opposites.

The topes T (M) ⊆ OE of the oriented matroid are the maximal separations
and its covectors L(M) ⊆ OE are those separations which composed with topes
give topes, i.e.,

X ∈ L ⇐⇒ ∀T ∈ T : X ◦ T ∈ T .

Observe once again that not every separation is a covector, this is, there are
more separations than covectors in an oriented matroid.
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It can be proved that the covectors of an oriented matroidM are the vectors
of another one known as the dual oriented matroidM∗. More over, (M∗)∗ = M.

K There are different axiomatizations of oriented matroids; in terms
of topes, vectors, covectors, circuits and cocircuits. They are rigorously
treated in Chapter 3 of Björner et al. (1993).

1. Representations of oriented matroids

“Oriented matroids can be thought of as a combinatorial abstraction of point con-
figurations over the reals” –so reads the opening remark of Björner et al.’s basic
reference book. However, they are more general than that, and one of the basic
problems in the area is to give meaningful characterizations of those oriented
matroids that do arise from point configurations, they are called linear or real-
izable. They can also be thought of, by polarity, as a combinatorial abstraction
of configurations of oriented hyperplanes, or of oriented (codimension 1) sub-
sphere arrangements on a sphere. From this point of view, it is remarkable that
all oriented matroids can be realized if the spheres are let to “wiggle” a bit, that is,
if they are not asked to be geometrically flat but only that they keep the topological
behavior of spheres, they are then called “pseudospheres arrangements”.

Fig 13. An oriented matroid.

Thinking again in terms of points, there should be an analogue of the extra
freedom that comes from “wiggling” hyperplanes...

The Representation Theorems (1.2.2 y 1.2.3), besides Theorem 0.1, implies
that

1.1. Theorem. Every oriented matroid of order n can be represented with a
family of convex sets in some Euclidian space. More over, if the separoid is
acyclic, such a representation can be done in the (n − 1)-dimensional affine
space.

...this result plays the dual role of the Topological Representation Theorem
due to Folkman & Lawrence. This is, when hyperplanes “wiggle” to became
pseudohyperplanes, their dual points “fatten” to became convex bodies. But
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then the natural combinatorial abstraction becomes more general —becomes a
separoid.

An oriented matroid is said to be uniform if its separoid is in general position.
Its rank is the dimension of the separoid plus one. Theorem 2.0.1 implies that

1.2. Theorem. A uniform oriented matroid is linear if and only if its geometric
dimension equals its rank minus one.

Now, since Edelman’s complex (cf. Example 4) is a sphere and it is the
complement of the Radon complex, due to Alexander’s duality we have that

1.3. Theorem. The Radon complex of an oriented matroid is homotopically
equivalent to a sphere.

This result was our intuition guide to the following section, but first we have
to introduce some definitions.

2. The circuit graph of an oriented matroid

Given two signed vectors X and Y , the separator of X and Y , is the set

S(X,Y ) = {e ∈ E : Xe = −Ye 6= 0}.

Two signed vectors X, Y with the same support size (|X±| = |Y ±| < n) will
be said to be adjacent if there exist i, j ∈ E such that Xk = Yk for all k 6∈ {i, j},
Xi = 0 6= Yi and Yj = 0 6= Xj .

This notion of adjacency defines a graph Gn with vertex set the family of all
signed vectors. It leads naturally to the definition of moving a zero from one place
to another (non-zero place) which is a step of a walk in the graph. Therefore
the distance in Gn from one vector to other is the minimum number of moves
of zeros needed to reach the destination vector. This motivates the following
definition: the traversen of two signed vectors X, Y is

T (X,Y ) = {e ∈ E : Xe = 0 6= Ye or Ye = 0 6= Xe}.

2.1. Remark. X and Y are adjacent in Gn if and only if

S(X,Y ) = φ and |T (X,Y )| = 2.

This notion will be interpreted in three different settings: as adjacency on
the circuit graph of an oriented matroid; as adjacency in the k-dual graph of the
n-cube; and as adjacency of k-subcubes of the n-cube.

Every oriented matroid M = (E, C) has associated a graph G = G(M)
whose vertices are the circuits of the matroid and two of them X,Y ∈ C are
adjacent if X ◦ Y = Y ◦X and for every Z ≤ X ◦ Y , it follows that Z ∈ {X,Y }.
This graph is what we call the circuit graph of the oriented matroid —in the
literature this graph is studied via the dual oriented matroid so it is better known
as cocircuit graph.
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K Previous attempts to understand the cocircuit graph of an oriented
matroid can be found in: Fukuda & Handa 1993; Babson, Finschi &
Fukuda 1999; and Finschi & Fukuda 2000.

It is well known that the cocircuit graph of an oriented matroid is the 1-
skeleton of the cell decomposition induced by the pseudospheres that realize
the oriented matroid via the Topological Representation Theorem therefore, if
the matroid is uniform, two (co)circuits X,Y are adjacent if and only if

|S(X,Y )| = 0 and |T (X,Y )| = 2.

From this follows

2.2. Theorem. Let M be an oriented matroid, S its associated separoids and
R its Radon complex. If M is uniform then G(M) is the 1-skeleton of R∗, the
dual of its Radon complex. o

This is the first step to reach the characterization of the cocircuit graphs of
oriented matroids. We will analyze different ways of walking with this notion of
adjacency, and develop a series of metrical restrictions on such paths. Recall
the definition of Qkn, the k-dual of the n-cube (Section 1.4).

2.3. Lemma (metric). The graph distance in Qkn (k > 0) is, for X 6= Y

dQk
n
(X,Y ) =

{
|S(X,Y )|+ 1 if X± = Y ±,
|S(X,Y )|+ 1

2 |T (X,Y )| otherwise.

Proof. Let X,Y ∈ V (Qkn). First of all, we exhibit a XY -path with the desired
length —this will show that the distance in Qkn is at most that of the statement.
There are four cases:

Case 1 (S(X,Y ) = φ and T (X,Y ) = φ). This condition is equivalent to X = Y .

Case 2 (S(X,Y ) = φ and T (X,Y ) 6= φ). Let T0(X,Y ) = {i ∈ E : Xi = 0 6= Yi}
and analogously T0(Y,X) = {i ∈ E : Yi = 0 6= Xi}.

Clearly T (X,Y ) = T0(X,Y )∪ T0(Y,X) and, since X and Y have the same
support size, |T0(X,Y )| = |T0(Y,X)|. Let us give an arbitrary (but fixed) lin-
ear order in both previously defined sets: T0(X,Y ) = (τ1, . . . , τ|T0(X,Y )|) and
T0(Y,X) = (π1, . . . , π|T0(Y,X)|). Now, let {Z1, Z2, . . . , Z

1
2 |T (X,Y )|} be defined as

follows:

(Zm)i =
{
Yi if i ∈ {τ1, . . . , τm, π1, . . . , πm},
Xi otherwise.

Observe that

S(X,Z1) = S(Z1, Z2) = · · · = S(Z
1
2 |T (X,Y )|−1, Y ) = φ,

|T (X,Z1)| = |T (Z1, Z2)| = · · · = |T (Z
1
2 |T (X,Y )|−1, Y )| = 2,

and Z
1
2 |T (X,Y )| = Y . Therefore, by the remark, (X,Z1, Z2, . . . , Z

1
2 |T (X,Y )| = Y )

is a XY -path and its length is 1
2 |T (X,Y )|.
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Case 3 (S(X,Y ) 6= φ and T (X,Y ) 6= φ). Let us give an arbitrary (but fixed)
linear order in the separator: S(X,Y ) = (σ1, . . . , σ|S(X,Y )|), and let

{Z1, Z2, . . . , Z |S(X,Y )|}

be defined as follows:

(Zm)i =

{
Yi if i ∈ {τ1, σ1, . . . , σm−1},
0 if i = σm,
Xi otherwise.

Observe that,

S(X,Z1) = S(Z1, Z2) = · · · = S(Z |S(X,Y )|−1, Z |S(X,Y )|) = φ,

|T (X,Z1)| = |T (Z1, Z2)| = · · · = |T (Z |S(X,Y )|−1, Z |S(X,Y )|)| = 2.

Moreover, S(Z|S(X,Y )|, Y ) = φ and

|T (Z|S(X,Y )|, Y )| = |T (X,Y ) \ {τ1} ∪ {σS(X,Y )}| = |T (X,Y )|.

Now, construct a Z |S(X,Y )|Y -path as in the previous case. This completes the
XY -path of the desired length.

Case 4 (S(X,Y ) 6= φ and T (X,Y ) = φ). Let i0 ∈ X0 = Y 0 be arbitrary (but
fixed) and let Z1 defined as follows

(Z1)i =

{ 0 if i = σ1,
+ if i = i0,
Xi otherwise.

Observe that S(Z1, Y ) = S(X,Y ) \ {σ1} and T (Z1, Y ) = {σ1, i0}, therefore the
previous cases applies.

To end the proof, we have to show that the distance in Qkn is at least that of
the statement. We do it by induction.

Let d:V (Qkn)× V (Qkn) → IN be the following function

d(X,Y ) =
{
|S(X,Y )|+ 1 if X± = Y ±,
|S(X,Y )|+ 1

2 |T (X,Y )| otherwise.

By the remark it follows that d(X,Y ) = 1 if and only if dQk
n
(X,Y ) = 1. Let

suppose that for every X,Y and for every m < m0, we have that d(X,Y ) = m if
and only if dQk

n
(X,Y ) = m. Let (X,Z1, . . . , Zm0 = Y ) be a geodesic XY -path

(of minimum length). We want to prove that d(X,Y ) ≤ m0 so, suppose that
d(X,Y ) > m0.

Since the path is geodesic, it follows that

dQk
n
(X,Y ) = dQk

n
(X,Z1) + dQk

n
(Z1, Y )

which by hypothesis implies that m0 = 1 + d(Z1, Y ) and so d(X,Y ) > 1 +
d(Z1, Y ). If we denote as

δXY =
{

1 if X± = Y ±,
0 otherwise,



50 Chapter 3: Oriented Matroids

we can write d(X,Y ) = |S(X,Y )|+ 1
2 |T (X,Y )|+ δXY including in one equation

both cases of its definition. Recall that X± = Y ± if and only if T (X,Y ) = φ.
With this notation at hand we have that

|S(X,Y )|+ 1
2
|T (X,Y )|+ δXY > 1 + |S(Z1, Y )|+ 1

2
|T (Z1, Y )|+ δZ1Y .

Since X is adjacent to Z1, there exist i, j ∈ E such that for all ` 6∈ {i, j}
we have that X` = (Z1)`, Xi = 0 6= (Z1)i and Xj 6= 0 = (Z1)j . Then S(X,Y )
and S(Z1, Y ) , and respectively T (X,Y ) and T (Z1, Y ), differs only in the ith
and jth coordinates. This motivates the following notation: Given F ⊆ E, let
SF (X,Y ) = F ∩ S(X,Y ) and TF (X,Y ) = F ∩ T (X,Y ). Therefore we have that

|Sij(X,Y )|+ 1
2
|Tij(X,Y )|+ δXY > 1 + |Sij(Z1, Y )|+ 1

2
|Tij(Z1, Y )|+ δZ1Y .

We consider two cases:

Case 1 (Tij(X,Y ) = φ). Since Xi = 0 6= (Z1)i and Xj 6= 0 = (Z1)j , then Yi = 0
and Yj 6= 0 therefore {i, j} ⊂ Tij(Z1, Y ) and i 6∈ Sij(X,Y ). But

2 ≥ |Sij(X,Y )|+1
2
|Tij(X,Y )|+δXY > 1+|Sij(Z1, Y )|+1

2
|Tij(Z1, Y )|+δZ1Y ≥ 2

an obvious contradiction E

Case 2 (Tij(X,Y ) 6= φ). Clearly, in this case, δXY = 0. Then

|Sij(X,Y )|+ 1
2
|Tij(X,Y )| > 1 + |Sij(Z1, Y )|+ 1

2
|Tij(Z1, Y )|.

Since Xi = 0 then i 6∈ Sij(X,Y ), and then j ∈ Sij(X,Y ). Therefore j ∈
Tij(Z1, Y ) which implies that

1 +
1
2
≥ |Sij(X,Y )|+ 1

2
|Tij(X,Y )| > 1 + |Sij(Z1, Y )|+ 1

2
|Tij(Z1, Y )| ≥ 1 +

1
2

a new contradiction E This concludes the proof. o

By a graph embedding G ↪→ H is meant an injective function i:V (G) → V (H)
of its vertices that sends edges to edges. Moreover, in such a case, we will
identify the vertices of the domain with those of its image. In fact we will refer to
the vertices of the domain with the name of their respective image. In particular,
if a graph is embedded in Qkn, the vertices of the graph will be denoted by those
signed vectors of their images. As usual, an embedding is said to be isometric if
the graph distance of the domain is preserved by its image.

2.4. Lemma (weak elimination). LetG ↪→ Qkn be an isometric embedding such
that X± = Y ± if and only if X = ±Y . Given X,Y ∈ V (G) two non-antipodal
vertices (X 6= ±Y ) and an element in its separator e ∈ S(X,Y ), there exists a
vertex Z ∈ V (G) such that e ∈ Z0, Z+ ⊆ X+ ∪ Y + and Z− ⊆ X− ∪ Y −.

Proof. Since changing the separator S(X,Y ) in a XY -path from one sign to the
other requires to move a sign to zero and, after that, to the other sign, then for
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every element in the separator there exists a vertex Z in the path with a zero in
that position. It remains to prove that this vertex works.

Let (X,Z1, Z2, . . . Zm = Y ) be a geodesic path in G. It follows that

dQk
n
(X,Y ) = 1 + dQk

n
(Z1, Y )

which by Lemma 3 implies that

|S(X,Y )|+ 1
2
|T (X,Y )|+ δXY = 1 + |S(Z1, Y )|+ 1

2
|T (Z1, Y )|+ δZ1Y .

By an analogous argument to that in proof of Lemma 3, it is easy to see that

|Sij(X,Y )|+ 1
2
|Tij(X,Y )|+ δXY = 1 + |Sij(Z1, Y )|+ 1

2
|Tij(Z1, Y )|+ δZ1Y ,

where Xi = 0 6= (Z1)i and Xj 6= 0 = (Z1)j . Since X 6= ±Y then δXY = 0 and,
because Xi = 0 we have that i 6∈ Sij(X,Y ) and therefore

1 +
1
2
≥ |Sij(X,Y )|+ 1

2
|Tij(X,Y )| = 1 + |Sij(Z1, Y )|+ 1

2
|Tij(Z1, Y )|+ δZ1Y

which implies that |Sij(Z1, Y )| = δZ1Y = 0.
In particular this implies that two antipodal vectors belongs to a geodesic

path if and only if they are the extreme points of it.
Observe the following contradiction; if (Z1)i 6= Yi then Yi = 0 = Xi, i ∈

Tij(Z1, Y ) and so

1 ≥ |Sij(X,Y )|+ 1
2
|Tij(X,Y )| = 1 +

1
2
|Tij(Z1, Y )| ≥ 1 +

1
2
E

Therefore (Z1)i = Yi.
Since for every ` 6∈ {i, j}, X` = (Z1)` and (Z1)j = 0, we have that

(Z1)+ ⊆ X+ ∪ Y + and (Z1)− ⊆ X− ∪ Y −.

Finally, since Z1 6= −Y then the previous argument works all over along the
path, i.e.

(Zm+1)+ ⊆ (Zm)+ ∪ Y + ⊆ X+ ∪ Y +

and

(Zm+1)− ⊆ (Zm)− ∪ Y − ⊆ X− ∪ Y −,

therefore we have that every Z in the path has the desired property. o

2.5. Theorem 17. Let G be a graph. If there exists an antipodal embedding
G ↪→ Qkn and

X 6= ±Y ∈ V (G) =⇒ dG(X,Y ) = |S(X,Y )|+ 1
2
|T (X,Y )|, (∗)
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then G is the circuit graph of an oriented matroid.

Proof. First of all observe that the metric Lemma 3 implies that the extra condition
(∗) is true if and only if the embedding is isometric and there are not two non-
antipodal vertices with the same support.

Let G ↪→ Qkn be an antipodal embedding with the property (∗). We want
to construct an oriented matroid such that its circuit graph is G. Let S be the
following separoid over the base set E = {1, . . . , n}: for every X ∈ V (G),
which corresponds to the face [A,B] < Qn, define a minimal Radon partition as
A † B. We have to prove that the set of all such partitions are the circuits of a
uniform oriented matroid. The axiom (C1) is trivial. Since G is closed by the
antipodal automorphism, the relation is symmetric and axiom (C2) follows. (C3)
is equivalent to say that S is a Radon separoid, a direct consequence of (∗).
In order to prove (C4) we apply the weak elimination Lemma 4 to see that in a
geodesic path from a vertex X to a vertex Y 6= ±X there should exists another
vertex Z with the desired property. o

However the condition of isometry is too strong to be necessary as Figure 13
shows. In it, the vertices X and Y are non-antipodal (in fact we are depicting
only the projective half of the oriented matroid) and |S(X,Y )|+ 1

2 |T (X,Y )| = 2
but dG(X,Y ) = 3.

So, let us introduce the weaker (and therefore more general) concept of
metric embedding; an embedding G ↪→ H is said to be metric if for every pair of
vertices X,Y ∈ V (G) there exists an XY -path P such that

Z ∈ V (P ) =⇒ dH(Z, Y ) ≤ dH(X,Y ).

Such a path P will be called a metric path. Observe that, if an embedding
G ↪→ Qkn is not metric then for every XY -path P there exists a vertex Z ∈ V (P )
such that

|S(Z, Y )| > |S(X,Y )| or |T (Z, Y )| > |T (X,Y )|.

The existence of a metric embedding is necessary.

2.6. Theorem. Let G be the circuit graph of an uniform oriented matroid then
the natural embedding G ↪→ Qkn is a metric embedding.

Proof. We analyze two cases: first, suppose that X,Y ∈ V (G) have empty
separator and they do not have common zeros, i.e., S(X,Y ) = φ = X0 ∩ Y 0.
Then their composition τ = X ◦ Y ∈ T is a tope of the oriented matroid.

In the topological representation this tope is the ball that results of intersect-
ing a number of closed semispaces —hence the name— and we may suppose,
with a little abuse of notation, that

τ =
⋂
H+
i = + + · · ·+,

where H+
i = {V ∈ V(M) : Vi ∈ {0,+}}. Since the boundary of such a ball ∂τ

is connected and it contains both X and Y , there exists a geodesic XY -path
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P ⊂ ∂τ in it. As we walk into this path from X to Y , neither the separator nor
the traversen increase. This is, for every Z ∈ V (P ) we have that

S(Z, Y ) = φ and |T (Z, Y )| ≤ |T (X,Y )| = 2k.

Therefore P is a metric path. More over, it is an i-metric path (see the definition
below).

In the case where the separator or the set of common zeros of X and Y are
non-empty, we use an inductive argument in the matroid

M′ = M\ S(X,Y )/(X0 ∩ Y 0)

to find there a metric path P ′. It is easy to see that if P ⊂ G is the subdivision
of P ′ that comes from “putting back the separator and the common zeros” of X
and Y then P is a metric path. o

However, this metric condition is to weak to be sufficient. In order to prove
the sufficiency we should be able to prove a generalization of the weak elimina-
tion Lemma 4 but this kind of embedding allow us to construct metric paths of
the form

X = 0 + xxxxx
Z = − 0 xxxxx

...
Y = + − yyyyy

.

In such a path, when giving the step from X to Z, neither the separator nor
the traversen increase but we are “walking with the wrong direction”. This is,
Z− 6⊂ X− ∪ Y −.

Therefore, in order to find a necessary and sufficient condition, we have to
strength ones more our concept of metric. We say that an embedding G ↪→ Qkn
is i-metric if for every pair of vertices X,Y ∈ V (G) there exists an XY -path
P = (X,Z1, . . . , Zm = Y ) in G in which every step takes “the right direction”.
This is, for every pair of adjacent vertices, if (Z`)i = (Z`+1)j = 0 6= (Z`)j —if we
are moving a zero from i to j— then (Z`+1)i ∈ {Xi, Yi} and therefore, for every
Z ∈ P

S(Z, Y ) ⊆ S(X,Y ) and |T (Z, Y )| ≤ |T (X,Y )|.

Such a path is called an i-metric path. This concept allow us to generalize
Lemma 4.

2.7. Lemma ( i-metric paths). Let G ↪→ Qkn be an embedding. If P ⊂ G is an
i-metric path fromX to Y then for every e ∈ S(X,Y ) there exists Z ∈ V (P ) such
that e ∈ Z0, Z− ⊆ X− ∪ Y − and Z+ ⊆ X+ ∪ Y +.

Proof. Since changing an element of the separator the separator S(X,Y ), while
walking in an XY -path, from one sign to the other requires to move the sign to
zero and, after that, to the other sign, then for every element in the separator
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there exists a vertex Z in the path with a zero in that position. Such a vertex
satisfies the extra sign conditions because we are in an i-metric path. o

2.8. Theorem. A graph G is the circuit graph of a d-dimensional uniform oriented
matroid of order n > d + 2 if and only if it is of order 2

(
n
d+2

)
and there exist an

antipodal embedding G ↪→ Qn−d−2
n with the following properties: ifX 6= ±Y ∈ G,

(G1) dQn−d−2
n

(X,Y ) = |S(X,Y )|+ 1
2 |T (X,Y )|, (uniqueness)

(G2) There exists an i-metric XY -path. (weak elimination)

Proof. The necessity is proved by an analogous argument to that in the proof
of Theorem 6. Just observe that the path P ⊂ ∂τ is also an i-metric path.
The sufficiency is analogous to that of proof of Theorem 5 but using the previous
lemma in the i-metric path instead of weak elimination lemma in a geodesic one.
Finally, the condition of uniformity is equivalent to the condition on the order. o

This theorem leads to a new axiomatization of uniform oriented matroids.
On the other hand, the hypothesis of uniformity cannot be dropped without a
new ingredient because the circuit graph of a non-uniform oriented matroid may
not be embedable in Qkn. We believe that there should be a notion of distance
in the first baricentric subdivision of the n-cube that leads to a similar theorem
but for the general (non-uniform) case.

Finally, putting together Theorem 1.3 and Theorem 8, we have the following

2.9. Corollary. The Radon complex of a uniform oriented matroid of order n
and dimension d, is homeomorphic to the (n− d− 2)-sphere.
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Jon Folkman began working on oriented matroids by 1967, in an attempt to
prove the lower bound conjecture for polytopes by generalizing it. Tragically, he died

before publishing his theory. His notes resided with Victor Klee and Ray Fulkerson.
Later, when Klee discovered that his doctoral student, Jim Lawrence, was already
thinking along similar lines, and had made substantial progress, Klee gave him the

notes. Lawrence completed the theory in his doctoral thesis (1975), and later
published the results in a joint paper with Folkman (Folkman & Lawrence 1978).

—ANDERS BJÖRNER, MICHEL LAS VERGNAS, BERND STURMFELS,
NEIL WHITE & GÜNTER M. ZIEGLER Oriented Matroids (1993)
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Given a category, if two objects are identified S ∼ T when there exist morphisms

S

ϕ
))
T

ψ

hh

a partially ordered class is obtained when we define S ≤ T ⇐⇒ S −→ T . Its
elements are called color classes . The category is called dense if for every S < T
there exists a P such that S < P < T . We are going to introduce a dense
category on the class of separoids.

Since the constant function is a separoid morphism, the category of mor-
phisms collapses into a single color class. In the light of this, we introduce a kind
of morphisms that, in the case of injective functions —the most used until now—
coincide with the original concept, but it is a bit more restrictive; we call them
homomorphisms because they resemble homomorphisms of relational systems.
We prove that the homomorphism category of separoids is universal , i.e., any
partially ordered class —hence the existence of morphisms in any category—
can be represented by the existence of separoids homomorphisms.

K The reader is encouraged to take a look to Hell & Nešetřil 1990,
Nešetřil 2000 and Nešetřil & Tardif 2000 to read more about this “struc-
tural” approach to the study of some categories.

0. Basic notions

Let us start with a review of some basic definitions. We do this in order to gener-
alize some concepts to infinite separoids —this is necessary to the universality
theorem.

A separoid is a relation † ⊆ 2S × 2S defined on the family of subsets of a set
S with three simple properties: for every A,B ⊆ S

◦ A †B =⇒ B †A
◦◦ A †B =⇒ A ∩B = φ
◦ ◦ ◦ A †B and C ⊆ S \A =⇒ A †B ∪ C

The separoid is identified with the set S. An element A † B is called a Radon
partition and the union of its parts A ∪ B is called the support of the partition.
The order of the separoid is the cardinal |S| and the size is half of the Radon
partitions 1

2 | † |. The separoid is acyclic if A † B =⇒ |A||B| > 0. A separation
A | B is a pair of disjoin sets that are not a Radon partition.

It is very easy to see that a separoid S of order n ∈ IN can be defined as
an antipodal filter (cf. Chapter 3)

S ⊆ On = ({−, 0,+}n,≺)

in the face lattice of the n-crosspolytope (or by duality, as an antipodal ideal
of the n-cube S ⊆ Qn). Observe that it is enough to know minimal Radon
partitions to reconstruct all Radon partitions, therefore we can concentrate on
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the study of them. In particular, when defining an operation, it is enough to define
some (minimal Radon) partitions and close the separoid to became a filter. To
emphasize this, with a little abuse of notation, we will denote A †B ∈ S to mean
that “A †B is a minimal Radon partition of the separoid S.” In other words, S will
denote a set of generators of the antipodal filter (S,≺).

Given two finite separoids S and T , a separoid homomorphism ϕ:S −→ T
is a function that sends minimal Radon partitions into minimal Radon partitions,
i.e., for every A,B ⊆ S

A †B ∈ S =⇒ ϕ(A) † ϕ(B) ∈ T .

Clearly these functions defines a category on the class of finite separoids.
In fact it is a concrete category. This is also a subcategory of separoids with
morphisms in the sense of Chapter 1, this is, the preimage of separations are
separations: for every C,D ⊆ T

C | D =⇒ ϕ−1(C) | ϕ−1(D).

In order to generalize homomorphisms of separoids to infinite sets, we have
to give a meaning to minimal Radon partitions. However, in contrast with the
finite case, there exist non-trivial infinite separoids with out any minimal Radon
partition. To see this, consider the following separoid: † ⊂ 2IN × 2IN , where
1†A ⇐⇒ 1 6∈ A and |IN \A| ∈ IN , i.e., the singleton of 1 forms a Radon partition
with every set A which does not contains it and is the complement of a finite set.
Clearly this defines a separoid but, in this separoid there is not such a thing as
minimal Radon partitions and therefore the previous definition does not make
sense in this context. This motivates the following definition. In it, we think on
separoids † ⊂ OS as subsets of the generalized crosspolytope OS = {f :S → O}
(where O = {−, 0,+}) ordered naturally by f � g ⇐⇒ f−1(−) ⊆ g−1(−) and
f−1(+) ⊆ g−1(+), with the obvious properties (cf. Section 3.0)

◦ f ∈ † =⇒ −f ∈ †
◦ ◦ ◦ f ∈ † and f ≺ g =⇒ g ∈ †

(we denote A †B ⇐⇒ ∃f ∈ † : f−1(−) = A and f−1(+) = B).
Given two separoids † ⊂ OS and ‡ ⊂ OT , a function ϕ:S −→ T will be

called an homomorphism if the following two conditions holds:

• f ∈ OT \ ‡ =⇒ ϕ∗(f) ∈ OS \ †,
• f, g ∈ ‡, f ≺ g and ϕ∗(g) ∈ † =⇒ ∃h ∈ † : h ≺ ϕ∗(g),

where ϕ∗:OT → OS denotes the usual cofunction ϕ∗(g) = g ◦ ϕ. Informally,
this can be read as follows: ϕ is an homomorphism if it is a morphism and, the
preimage of non-minimal Radon partitions are not minimal. Observe that, in the
previous definition, it may be that h 6= ϕ∗(f) 6∈ †.

Two separoids are isomorphic S ≈ T if there is a bijective homomorphism
between them whose inverse function is also a homomorphism. If S ⊆ T is a
subset of a separoid † ⊆ 2T × 2T , the induced separoid T [S] is the restriction
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† ⊆ 2S×2S and an embedding S ↪→ T is an injective homomorphism that is an iso-
morphism between the domain and the induced separoid of its image. Observe
that these notions do not change if we replace morphisms by homomorphisms.

Finite separoids have an intrinsic notion of dimension which is easy to de-
termine.

The d-dimensional simploid is the separoid of order d + 1 and size 0 and it
will be denoted by σd. The dimension of a separoid S is the maximum dimension
of its induced simploids

d(S) = max
σd↪→S

d.

It is said thatS is a general position separoid if every subset with d(S)+1 elements
induces a simploid. S is called complete if for every i, j ∈ S follows that i † j. The
complete separoid of order n is denoted by Kn. We will adopt the conventions
σ−1 = K0 = φ and σ0 = K1 = {•}.

From now on, will denote by S −→ T the fact that there exists an homomor-
phism, and by S 6−→ T the other case. Also, as mention in the first paragraph,
we write

S ∼ T ⇐⇒ S
&&
Tgg .

This last defines an equivalence relation and, in its color classes , a partially or-
dered class called the homomorphisms order :

S ≤ T ⇐⇒ S −→ T.

It is easy to see now that the homomorphisms order, do not collapses.
Indeed we have the following ease-to-check facts (Proposition 2 is an example
of a duality pair . It will play the main role in Section 4 where we prove that,
indeed, it is the only duality pair in the homomorphisms order).

0.1. Proposition. |S| < n =⇒ Kn 6−→ S

0.2. Proposition. K1 −→ S ⇐⇒ S 6−→ K0

0.3. Proposition. S ≈ σd ⇐⇒ S −→ K1

0.4. Proposition. S ≈ σd ⇐⇒ ∀T 6= K0, S −→ T

Proposition 1 can be read: there are no homomorphisms in every direction,
i.e., the homomorphisms order do not collapses; Proposition 2 says that, in
the homomorphisms order, the principal filter generated by K1 is equal to the
complement of the principal ideal generated by K0; Proposition 3 settles that
the color class of the singleton is constituted by all simploids; and Proposition 4
settles that K1 is the only cover of the bottom element K0. All of them implies, in
one way or the other, that the homomorphisms order is not trivial.
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1. The homomorphisms lattice

The homomorphisms order is in fact a lattice. The category of separoids ho-
momorphisms has products × and sums + and they play the role of the meet
(infimum) and the joint (supremum), respectively.

T + P

T

<<xxxxxxxxx
P

bbFFFFFFFFF

T × P

bbFFFFFFFFF

<<xxxxxxxxx

They satisfy the categoric properties of products and coproducts:

• S −→ P × T ⇐⇒ S −→ P and S −→ T,
• P + T −→ S ⇐⇒ P −→ S and T −→ S,

and, in the finite case, they have the following internal definitions.
Given two separoids P and T , their product is a separoid defined in the

cartesian product P × T , with projections π and τ respectively, such that for
every A,B ⊆ P × T

A †B ∈ P × T ⇐⇒ π(A) † π(B) ∈ P and τ(A) † τ(B) ∈ T .

Given two separoids P and T , their sum is a separoid defined in the disjoin
union P ∪ T such that for every A,B ⊆ P ∪ T

A †B ∈ P + T ⇐⇒ A ∩ P †B ∩ P ∈ P xor A ∩ T †B ∩ T ∈ T .

There is also a notion of exponentiation but it deserves a more detailed
analysis. For this, let us introduce the notion of a pseudoseparoid ; a relation
6 | ⊆ 2S × 2S which satisfies the first and the third conditions of a separoid. That
is, we do not ask for the related subsets A 6 | B to be disjoint. As an example,
consider the relation of being “non-separated”:

A 6 | B ⇐⇒ A †B or A ∩B 6= φ.

The pairs of related subsets with non-empty intersection will be called loops . So,
a separoid is a pseudoseparoid with out loops.

Now, consider the following construction.
Given two separoids S and T , their power (or exponentation) is a pseu-

doseparoid defined in the family of functions ST = {f :T → S} such that for
every F,G ⊆ ST

F 6 | G ∈ ST ⇐⇒ ∀A †B ∈ T , F (A) †G(B) ∈ S,

where, F (A) = {f(a); f ∈ F and a ∈ A} and analogously with G(B).
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It is not hard to see that, the power ST of two separoids is a separoid only
if T 6−→ S. That is, if the power does not contain any loop then no function
f :T → S is an homomorphism.

The power satisfies the categoric property of exponentation when T 6−→ S

• T × P −→ S ⇐⇒ P −→ ST .

K The following results were first isolated in the context of relational
systems in Nešetřil & Tardif 2000. Here we will generalize them to any
category. These results will appear in Nešetřil & Strausz 2002.

We will denote by S << T the fact that S < T and there is no P such that
S < P < T , i.e.,

S << T ⇐⇒ S ≤ P ≤ T implies S ∼ P or P ∼ T.

The pair (S, T ) is called a gap. So, a dense order is an order with out gaps.
Also we denote S →=6→ T if for all P we have that (cf. Proposition 0.2)

S −→ P ⇐⇒ P 6−→ T.

The pair (S, T ) is called a duality pair . That is, (S, T ) is a duality pair if, in the
homomorphism order, the filter generated by S is equal to the complement of
the ideal generated by T .

We say that the separoid T is connected if it cannot be expressed as the
sum of other two separoids, i.e.,

T −→ T0 + T1 =⇒ T −→ T0 or T −→ T1.

1.1. Lemma (Duality pairs). T →=6→ S implies that

• T is connected, and
• T × S << T.

Proof. If T is not connected then T ≈ T0 + T1 and T 6−→ Ti. Therefore
Ti −→ S and then T −→ S which is a contradiction. Now, suppose that T×S −→
P −→ T . If T 6−→ P then P −→ S and P −→ T × S. Therefore P ∼ T or
P ∼ T × S which concludes the proof. o

1.2. Theorem (Characterization of gaps). If there is a gap P << Q, with Q
not-connected, there exists another gap S << T where T is connected. Fur-
thermore, Q ∼ T + P and S ≈ T × P .

Q ∼ T + P

T

99tttttttttt
P

eeJJJJJJJJJJ

S ≈ T × P

eeJJJJJJJJJJ

99tttttttttt
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Proof. First, let Q = T1 + · · · + Tk, where each Ti is connected. Clearly
P −→ P + Ti −→ Q and then P ∼ P + Ti or P + Ti ∼ Q. Since Q 6−→ P , there
exists a T = Ti such that T 6−→ P and therefore P + T 6−→ P and P + T ∼ Q.
Finally, let R be such that P × T −→ R −→ T . Since P −→ P + R −→ T , then
P ∼ P +R or P +R ∼ T . Therefore, if T 6−→ R, then R −→ P and R −→ T ×P
which concludes the proof. o

2. A comment on Radon’s theorem

If we restrict more our homomorphisms to consider only those ϕ which do not
allow any Radon partition (not only the minimal ones) to collapse, i.e.,

A †B =⇒ ϕ(A) † ϕ(B) =⇒ ϕ(A) ∩ ϕ(B) = φ,

we can characterize Radon’s theorem in the following

2.1. Theorem. P ⊂ IEn is a point separoid of order |P | = d(P ) + 2 if and only if

P 6−→ K1 and P −→ K2 + σ,

where σ is a simploid. Furthermore, σ = φ if and only if P is in general position.

Proof. A separoid S is a point separoid of order d(S) + 2 if and only if it is
determined by a unique minimal Radon partition A † B (cf. Theorem 2.2.4).
Let C = S \ (A ∪ B) be the complement of the support and give it an arbitrary
(but fixed) linear order C = (c0, . . . , cd). Now, let K2 = {a, b}, where a † b, and
σd = {c′0, . . . , c′d}. Clearly the function ϕ:S → K2 + σd, where

ϕ(s) =


a if s ∈ A,
b if s ∈ B,
c′i if s = ci,

is a strong homomorphism of separoids. More over, if this is the case, S is in
general position if and only if A ∪B = S. o

However, in this subcategory there is not any more a meaningful notion of
product which made out of the projections, strong homomorphisms. To see this,
consider the separoids P3 = {0, 1, 2} where 0 † 12, and K2 = {a, b} where a † b.
Let us denote byP3×K2 = {0a, 0b, 1a, 1b, 2a, 2b} the elements of the product and
by π and κ the two projections. If A †B implies that π(A) †π(B) and κ(A) †κ(B)
then the natural candidates to A and B are A = {0a}, B = {1b, 2b}. This would
imply that A †B ∪ {0b} but

π(0a) ∩ π(0b, 1b, 2b) = {0} ∩ {0, 1, 2} = {0} 6= φ,

thereforeP3×K2 ≈ σ5 ∼ K1. So, every pair of separoids meets on the singleton.
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3. On density
K The following result is due to Welzl 1982 and Perles & Nešetřil

1990. See also Nešetřil 2001.

3.1. Theorem (Density of graphs). The class of all color classes of (undirected)
graphs is dense, with the unique exception of the pairs (K0,K1) and (K1,K2).

And the idea of the proof is explained; LetG1, G2 graphs such thatG1 −→ G2

butG2 6−→ G1. For every graphH we have thatG1 −→ G1 +(H×G2) −→ G2. If
H has odd-girth and chromatic numbers big enough, the opposite arrows does
not exist and we are done. Such a graph H exists due to a theorem of Erdös
(1959). o

The following settles that the trivial gap K0 << K1 is the only gap on finite
separoids.

3.2. Theorem. Let S and T be finite separoids. If S < T 6∼ K1 and T is
connected, then there exists a separoid P such that S < S + (P × T ) < T .

Proof. Clearly, since S −→ T , for everyP we have that S −→ S+(P×T ) −→ T .
So, we want a separoids P for which the opposite arrows do not exist. In this
case a separoid P can explicitly be constructed. Let n and n′ denote the orders
of S and T respectively. Let P be the separoid of order |P | = 2n′nn

′
and Radon

partitions as follows: for every A,B ⊆ P

A †B ⇐⇒ |A| ≥ n′ ≤ |B| and A ∩B = φ.

Observe that d(P ) = 2(n′ − 1) and P is in general position.
Since T is connected and T 6−→ S, every homomorphism T −→ S+(P ×T )

most be an homomorphism T −→ P×T which, followed by the projection, would
lead an homomorphism ϕ:T −→ P . Since |T | = n′ and the supports in P have
at least 2n′ elements, then P [ϕ(T )] ≈ σd (for some d < n′) which contradicts the
fact that T 6∼ K1. Therefore, such an homomorphism ϕ does not exists.

Now, every homomorphism S+(P×T ) −→ S restricts to an homomorphism
ϕ:P × T −→ S. For every p ∈ P there is a function ϕp:T → S defined as
ϕp(t) = ϕ(p, t) (such functions does not have to be homomorphisms). Since
there are at most |ST | = nn

′
different functions, there exists a subset P ′ ⊆ P

of order |P ′| = 2n′ such that for every p, p′ ∈ P ′ we have that ϕp = ϕp′ . Let
A,B ∈

(
P ′

n′

)
such that A ∪B = P ′ and then A †B ∈ P.

Since T 6−→ S there there exists a Radon partition α † β ∈ T such that

ϕp′(α) | ϕp′(β) (or ϕp′(α) ∩ ϕp′(β) 6= φ).

But ϕp′(α) = ϕ(p′ × α) = ϕ(A × α) and ϕp′(β) = ϕ(B × β), therefore we have
also that

ϕp′(α) † ϕp′(β),

an obvious contradiction. Hence the homomorphism ϕ does not exists and we
are done. o
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3.3. Corollary. The class of all color classes of separoids is dense, with the
unique exception of the pair (K0,K1).

Proof. On the one hand, due to the duality pairs Lemma 1.1,

T →=6→ S =⇒ T × S << T,

and therefore, by Proposition 0.2, we have that K0 << K1.
On the other hand, due to the characterization of gaps Theorem 1.2, there

is a gap only if there is a connected gap. Therefore, since there are no other
connected gap (Theorem 2), there are no other gap at all and we are done. o

4. On universality

The functor Ψ:GRA ↪→ SEP that maps each (simple) graph G = (V,E) to a
separoid S = (V, †), where i † j ∈ S ⇐⇒ ij ∈ E, is an order embedding. A
straight forward argument shows that

G −→ H ⇐⇒ Ψ(G) −→ Ψ(H).

Since GRA is a set-universal partial order it follows that

4.1. Theorem. The homomorphisms order SEP is a set-universal partial order.
Explicitly: For any partially ordered set X there exists an injective mapping
ι:X ↪→ SEP such that, for all x, y ∈ X

x ≤ y ⇐⇒ ι(x) ≤ ι(y).

In this direction, we can formulate the following: is any partially ordered
class X representable by SEP? The analogous question for graphs cannot be
formalized in set theory, i.e., the principle

P(X): X cannot be represented by GRA
is an axiom independent from ZFC. However, for separoids the history is different.

4.2. Theorem. The homomorphisms order of hypergraphs can be embedded
into that of separoids. Explicitly: there exists an injective functor Φ:HG → SEP
which maps each (simple) hypergraph H to a separoid Φ(H) and

H −→ G ⇐⇒ Φ(H) −→ Φ(G).

Proof. Let Φ:HG ↪→ SEP be the function which assigns to each (simple)
hypergraph (without isolated pints) H = (V,E) the separoid S = (V ∪ E, †),
whose minimal Radon partitions are U † e ∈ S ⇐⇒ U = e ∈ E. A straight
forward argument shows that this function is injective. More over, if ϕ:V → V ′

is an homomorphism of hypergraphs (the image of edges are edges) that sends
the hypergraph H = (V,E) to the hypergraph G = (V ′, E′), it defines a function
in the edges (denoted again by ϕ:E → E′) and therefore a function in their union

ϕ:V ∪ E → V ′ ∪ E′.
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To see that this function is a separoid homomorphism Φ(H) −→ Φ(G), observe
that each minimal Radon partition U †e is mapped to the minimal Radon partition
ϕ(U) † ϕ(e).

To the turn, let ϕ:V ∪E → V ′ ∪E′ be a separoid homomorphism Φ(H) −→
Φ(G). First observe that ϕ(V ) ⊆ V ′; for, let v ∈ V a vertex and v ∈ U = e ∈ E an
edge that contains it. Since U † e then ϕ(U) † ϕ(e) and therefore ϕ(v) ∈ ϕ(U) ⊆
V ′. That is, ϕ restricts in a function from V to V ′. Now, observe that such a
restriction is an homomorphism; for, let U = e ∈ E be an edge then U † e and
therefore ϕ(U) † ϕ(e). This implies that ϕ(e) ∈ E′ and therefore ϕ defines an
homomorphism of hypergraps and we had proved that, as desired,

H −→ G ⇐⇒ Φ(H) −→ Φ(G).

o

Since HG is a class-universal partial order it follows that

4.3. Corollary. The homomorphisms order SEP is a class-universal partial or-
der. Explicitly: For any partially ordered class X there exists an injective
mapping ι:X ↪→ SEP such that, for all x, y ∈ X

x ≤ y ⇐⇒ ι(x) ≤ ι(y).

5. Hyperseparoids

In the remainder of this chapter the focus is put in a famous generalization of
Radon’s theorem:

5.1. Theorem (Tverberg 1966). Let P ⊂ IEd be a set of (k − 1)(d + 1) + 1
points. Then P can be divided into k pairwise disjoint sets P = P1 ∪ · · · ∪ Pk
whose convex hulls have a common point:⋂

〈Pi〉 6= φ.

The partition P = P1 ∪ · · · ∪ Pk will be called a Tverberg partition .

K In Eckhoff’s 1993 (sec. 9.3) it can be found more about Tverberg’s
theorem and its relatives. To the references there, I should add those
of Bárány & Onn 1997, Matoušek 1999, Kalai 2000 and Sarkaria 2000.

Clearly, Tverberg’s theorem reduces to Radon’s when k = 2, and for k = 1 it
is trivial. However, even for k = 3, it is a hard —and deep— result. The simplest
proof known to me is based in a variant of Sarkaria’s (1992) argument and uses
the colorful version of Charathéodory’s theorem due to Bárány (1982). It seems
that, contrasting Radon’s theorem which only depends on the affine structure of
IRd, Tverberg’s theorem is deeply tied to the metric (and topological) properties
of the Euclidian d-space.

A simple consequence of Tverberg’s theorem is the following
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5.2. Corollary. If S is a separoid of order (k − 1)(gd(S) + 1) + 1, then there
exists a morphism ς:S −→ Kk such that, for each minimal Radon partition i † j
in Kk, follows that ς−1(i) † ς−1(j).

Proof. Let us denote by Kk = {1, . . . , k} the elements of the complete separoid
of order k and let S be a separoid of (k− 1)(d+1)+1 convex sets in IEd, where
d = gd(S). For any choice ϕ:P −→ S, due to Theorem 1, there exists a partition
P = P1 ∪ · · · ∪ Pk such that

⋂
〈Pi〉 6= φ. Clearly the function ς:S → Kk defined

as ς(s) = i ⇐⇒ ϕ−1(s) ∈ Pi has the desired property. o

Observe that this result is far from imply Theorem 1 (cf. the two realizations
of K3 given in Figure 1 and Figure 2). A naı̈ve first look may suggest that it is
weaker to ask for the existence of a k-partition whose convex hulls are isomorphic
to Kk than to ask for such a partition whose convex hulls have a common point
—think on the vertices of a regular hexagon and perturb them a bit— and in this
direction we may be tempted to reduce Tverberg’s number, say to (k−1)(d+1).
However it is ease to see that the six points in the plane given by the vertices
of a regular pentagon and it baricenter, cannot be partitioned in three sets such
that the convex hulls of the parts are isomorphic to K3.

Another direction may be to try to prove (or disprove) the following

5.3. Conjecture. If S is a separoid of order (k − 1)(d(S) + 1) + 1, then there
exists a morphism ς:S −→ Kk such that, for each minimal Radon partition i † j
in Kk, follows that ς−1(i) † ς−1(j).

The rest of this section is a first attempt to understand the combinatorial
structure of “Tverberg’s partitions”. For this, let me first give some “esoteric”
names to all acyclic separoids of order 3 (modulo isomorphism) and show their
bijective morphisms —the names are intended to remind us their “shape”— (cf.
Figure 1):
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;;
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Diagram 1. The acyclic separoids of order 3 and their epimorphisms.

Observe that only σ2, Λ3, K2 + σ0 and K3 are point separoids.
Now, consider a separoid (S, †) of convex sets in IEd. If we give a 3-

coloration of its elements ς:S →→ {0, 1, 2} and consider the convex hulls of each
coloration class, then we are constructing a morphism onto one of these eight
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separoids of order 3. These morphisms satisfies the extra property that the
preimage of minimal Radon partitions are Radon partitions. Such morphisms
will be called cromomorphisms .

Let see how this works for the point separoids of order 4 and dimension 2.
There are four of them. It is easy to see that we have the following combina-
tions (where the number on each dashed arrow counts the number of different
cromomorphisms |ς:S −→ T |):
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Diagram 2. The 3-cromomorphisms of 4 point in the plane.

Here, χ4 and ∆4 denote the separoids of order four with unique Radon
partitions of the form 12 † 34 and 1 † 234, respectively.

Observe that these cromomorphisms does not commute with the epimor-
phisms λ and κ.

This example suggested the following Tverberg-type theorem for transver-
sals. It basically says that, for a point separoid of order d + 2, there is always
a cromomorphism onto the simploid σ2 and, there is a cromomorphism onto Λ3

or onto K2 + σ0.

5.4. Theorem. Let d > 1. If S is the separoid of d+ 2 points in IEd, then

|ς:S −→ σ2|
(
|ς:S −→ Λ3|+ |ς:S −→ K2 + σ0|

)
> 0.

Proof. Given d + 2 points X ⊂ IEd, due to Radon’s theorem, its separoid
S = (X, †) is determined by a unique minimal partition A † B. To construct a
cromomorphism onto σ2, take an element in each part a ∈ A, b ∈ B and give
any separation of the complement α | β. It is easy to see that the function

ς(x) =

 0 x ∈ {a, b},
1 x ∈ α,
2 x ∈ β,

has the desired properties. Therefore, the first factor is non-zero.
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If there is some element in the complement of A ∪ B (i.e., the separoid is
not in general position), say C = X \ (A∪B), then the function (cf. Theorem 10)

ς(x) =

{ 0 x ∈ A,
1 x ∈ B,
2 x ∈ C,

is clearly a cromomorphism onto K2 + σ0 and the second factor is non-zero. If
not, A or B has more than one element, say A. Let A0 ∪A1 be a partition of A.
It is easy to see that the function

ς(x) =

{ 0 x ∈ A0,
1 x ∈ A1,
2 x ∈ B,

is a cromomorphism onto Λ3 and therefore the second factor is non-zero and
we are done. o

Observe how the fact that the second factor is never zero implies, in the case
k = 3 and ` = 1, Stangeland’s (1978) generalization of Tverberg’s theorem:

5.5. Corollary. Let X ⊂ IEd be a set of (k − `− 1)(d− `+ 1) + `+ 1 points. If
k = 3 and ` = 1, there exists a 3-partition of the set X = X0 ∪X1 ∪X2 and a
line L such that

〈Xi〉 ∩ L 6= φ, for i = 1, 2, 3.

Proof. Any realization of Λ3 or K2 + σ0 have a line transversal. o

It seems that, while the existence of a Tverberg partition depends on the
realization, the existence of a cromomorphism onto Kk do not (see Figure 14).

Figure 14. Two configurations of seven points in the plane.
These observations motivates the following definition
A k-separoid is a relational system † ⊆ 2S × · · · × 2S (k times) defined on a

family of subsets with the following properties, for Ai ⊆ S, i = 1, . . . , k

◦ A1 † · · · †Ak =⇒ Aπ(1) † · · · †Aπ(k)

◦◦ A1 † · · · †Ak =⇒ Ai ∩Aj = φ, 1 ≤ i < j ≤ k
◦ ◦ ◦ A1 † · · · †Ak and B ⊆ S \

⋃
Ai =⇒ A1 † · · · †Ak ∪B

where π is any permutation of the indices. The elements of such a relational
system will be called Tverberg partitions . Clearly separoids are 2-separoids. As
before, we identify the k-separoid with the given set S. We say that the separoid
is acyclic if A1 † · · · †Ak =⇒

∏
|Ai| > 0.
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The following discussion can be made in a more general context —for all
k ∈ IN— but, in order to keep things simple, we will restrict to the case k = 3.

Given three pairwise disjoint subsets of a 3-separoid which are not a Tver-
berg partition, we say that they are a 3-separation and denote it by α | β | γ.

5.6. Theorem. Every acyclic 3-separoid of order n can be represented with a
family of convex polytopes and their Tverberg partitions in the (n−1)-dimensional
affine space.

Proof. Let S be a 3-separoid. For each Tverberg partitions A †B † C and each
element i ∈ A, we assign a point of IRn

ρiA†B†C = ei +
1
3

[
1
|A|

∑
ea +

1
|B|

∑
eb +

1
|C|

∑
ec

]
− 1
|A|

∑
ea,

and realize each element i ∈ S as the convex hull of all such points

i 7→ 〈ρiA†B†C : i ∈ A and A †B † C〉.

These convex polytopes “live” in the (n− 1)-dimensional affine subspace of IRn

spanned by the basis.
The construction is made to guarantee that the Tverberg partitions are pre-

served, i.e., for each partition A †B †C the vertices of the simplices 〈ea : a ∈ A〉,
〈eb : b ∈ B〉 and 〈ec : c ∈ C〉 moves to realize such a partition intersecting
precisely in their baricenter, therefore

〈ρa〉 ∩ 〈ρb〉 ∩ 〈ρc〉 6= φ.

On the other hand, to prove that also the 3-separations α | β | γ are pre-
served, we use the following well-known fact: compact convex setsK1, . . . ,Kn in
IRd have no point in common if and only if there are open semispaces `1+, . . . , `

n
+

such that Ki ⊂ `i+ for every i and
⋂
`i+ = φ. The case n = 2 is the basic

separation theorem and the general case follows by induction.
Define the affine extension ψ = ψα|β|γ : IRn → IR2 of the following equations,

for j = 1, . . . , n,

ψ(ej) =


u if j ∈ α,
v if j ∈ β,
w if j ∈ γ,
0 otherwise,

where

u =
(

1
0

)
, v =

1
2

(
−1√

3

)
and w =

1
2

(
−1
−
√

3

)
.
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It follows from the definition, and with a little abuse of the notation, that

ψ(ρi) = ψ(ei) −
2

3|A|

 |A ∩ α|
|A ∩ β|
|A ∩ γ|

 ·

 u
v
w


+

1
3|B|

 |B ∩ α|
|B ∩ β|
|B ∩ γ|

 ·

 u
v
w


+

1
3|C|

 |C ∩ α|
|C ∩ β|
|C ∩ γ|

 ·

 u
v
w

 .

Let us denote by ψα = ψ(ρi) when i ∈ α and analogously with β and γ.
If we have that ψα · u > 0 and ψβ · v > 0 and ψγ · w > 0, we are done (the

semispaces ψ−1(u⊥+), ψ−1(v⊥+) and ψ−1(w⊥
+) will do). So let us suppose, with

out loose of generality, that ψα · u = 0. Since

ψα · u = 1− 2|A ∩ α| − (|A ∩ β|+ |A ∩ γ|)
3|A|

+
|B ∩ α| − 1

2 (|B ∩ β|+ |B ∩ γ|)
3|B|

+
|C ∩ α| − 1

2 (|C ∩ β|+ |C ∩ γ|)
3|C|

≥ 0,

we have that ψα · u = 0 if and only if A ⊆ α and B ⊆ β ∪ γ and C ⊆ β ∪ γ. In
such a case, we have also that

ψβ · v = 1 +
1
3

+
1
3

[(
|B ∩ β|
|B|

+
|C ∩ β|
|C|

)
− 1

2

(
|B ∩ γ|
|B|

+
|C ∩ γ|
|C|

)]
≥ 1

and, analogously, ψγ · w ≥ 1. Then we can pick any small number 0 < ε < 1,
define the semispaces

`α+ = {x ∈ IR2 : x · u > −ε},

`β+ = {x ∈ IR2 : x · v > 1− ε},
`γ+ = {x ∈ IR2 : x · w > 1− ε},

and their preimage ψ−1(`α+), ψ−1(`β+) and ψ−1(`γ+) will do the work, concluding
the proof. o

Every 3-separoid has associated a 2-separoid in a natural way: each Tver-
berg partition A † B † C, implies the Radon partitions A † B, A † C and B † C.
This separoid is already realized with the construction of Theorem 6. However,
we miss some structure; e.g., consider the point separoid of five points in the
line in general position, and give the points the linear order (1, 2, 3, 4, 5). This
configuration has two Tverberg partitions: 14†25†3 and 15†24†3. If we apply the
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previous construction, in the final family of convex sets we will miss some Radon
partitions, for example 13 † 2. To correct this ‘anomaly’, we can go one step
further in our generalization of separoids with the following natural definition.

A hyperseparoid is a collection of families of subsets T ⊆ 22S

with the fol-
lowing three properties: for all Ai ⊆ S, i = 1, . . . , k

◦ {A1, . . . , Ak} ∈ T =⇒ Ai ∩Aj = φ
◦◦ {A1, . . . , Ak} ∈ T =⇒ {A1, . . . , Ak−1} ∈ T
◦ ◦ ◦ {A1, . . . , Ak} ∈ T and B ⊆ S \

⋃
Ai =⇒ {A1, . . . , Ak ∪B} ∈ T

The elements of T are the Tverberg partitions. The hyperseparoid is acyclic if
{φ} 6∈ T . From the second and third axioms follows that it is enough to know the
principal partitions; those partitions {A1, . . . , Ak} where k is maximal and each
Ai is minimal. The morphisms and homomorphisms can be defined analogously
as before.

Clearly, we can combine the Geometric Representation Theorem and The-
orem 6 (in its general version —for k ≥ 3) to conclude that

5.7. Corollary. Every acyclic hyperseparoid can be represented by a family of
convex polytopes, and its Tverberg partitions, in some affine space.

6. Remarks and open problems

Hyperseparoids seems to be “the right concept” to study Tverberg’s Theorem
from a purely combinatorial point of view, but this will have to be done some
where else. . .Here I will formulate some questions which may guide such a
further development.

Let us start with the most challenge (and may be difficult) one. In the spirit
of Theorems 2.0.1 and 4.2.1,

Problem 1. Find necessary and sufficient conditions for a hyperseproid to be a
point separoid.

In the light of Shor’s theorem (1991), it may be that problem 1 remains NP-
hard, however it may have a simple solution as the following argument suggest.
Consider a realization of a full Radon hyperseparoid S with convex sets as “thin”
as possible; if each convex set is a point, we are done. If there exist a convex
set K ∈ S with dimension greater that 0, it will contain at least one segment
〈a,b〉 ⊆ K. The extreme points of such a segment, have to be participating in
two different principal partitions, say a †A1 † · · · †Ak and b †B1 † · · · †Bk, which
are “far” each from the other. . . they are “separated”. So it may be sufficient to
ask for a condition of the form if a †A1 † · · · †Ak and b †B1 † · · · †Bk are principal
then Ai †Bj \Ai or Bj †Ai \Bj, in order to guarantee that S is a point separoid
(see Figure 15).
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Figure 15. A “minimal” segment whose extreme points are “separated”.

The next problem has to do with an invariant which may be called Tverberg
dimension . Given a hyperseparoid S, define dk(S) as the minimum natural num-
ber d such that every subset X ⊆ S of cardinality (k − 1)(d + 1) + 1 contains a
k-partition A1 † · · · †Ak. Clearly, d(S) = d2(S) and dk(S) ≤ gd(S) ≤ |S| − 1, but
no more can be said, at least in principle (see Figure 16).

Problem 2. Find necessary and sufficient conditions to guarantee that

d(S) = d2(S) ≤ d3(S) ≤ . . . ≤ gd(S) ≤ |S| − 1.

Figure 16. Two separoids with different values of d2(S) and d3(S).

Finally, let me present a problem whose character may look more technical.
For each separoid S, define the infinite vector Υ(S) ∈ INℵ whose coordinates
are indexed by finite separoids (modulo isomorphism) and each of these,

Υ(S)T = |ς:S −→ T |,

counts the number of homomorphisms (cromomorphisms, strong morphisms).

K This definition has to be contrasted with that of Lovász 1971 where
he proved that, with the arrows in the opposite direction, such a vector
characterizes each object of a relational system. See also Nešetřil
1999.

Problem 3. Is it true that S ≈ T (or S ∼ T ) if and only if Υ(S) = Υ(T )?

If we restrict to finite families of separoids, the answer may be negative as
the following (and last) diagram shows. In it, χ5 and ∆5 denotes the general
position point separoids with Radon partitions 12 †345 and 1 †2345, respectively.
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Diagram 3. The 3-cromomorphisms of 5 point in the space.

A mathematical statement is just a story you tell about some devices. Some of
those stories are clever, some are stupid; some of those stories are true, some other

are false. Doing mathematics is telling clever stories which are true.

—FRANCIS BORCEUX Handbook of Categorical Algebra (1994)
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1907. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gege-

bene Werte nicht annahmen, Mathematics Annals, 64, 95–105.

L. Danzer, B. Grünbaum & V. Klee
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