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Abstract

A convex polytope is the convex hull of a finite set of points. We introduce the Radon

complex of a polytope—a subcomplex of an appropriate hypercube which encodes all Radon

partitions of the polytope’s vertex set. By proving that such a complex, when the vertices of the

polytope are in general position, is homeomorphic to a sphere, we find an explicit formula to

count the number of d-dimensional polytope types with d þ 3 vertices in general position.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the sequel, a (convex) polytope P ¼ /PS will be the convex hull of a finite set

PCEd for which each point is a vertex, i.e., each point pAP can be separated by a

hyperplane from the rest of the set. Moreover, we will assume that P spans Ed

affinely. Its order and dimension are n ¼ jPj and d; respectively. Also, we will identify
the polytope P and the set P of its vertices.
It is possible to assign to each polytope P a poset—its face lattice—and a complex

R ¼ RðPÞ embedded in the n-dimensional cube—its Radon complex—which
encodes the Radon partitions of its vertices. We will say that two polytopes have
the same combinatorial type iff their face lattices, and therefore their Radon
complexes, are isomorphic. We use the ‘‘Radon complexes’ types’’ to count
combinatorial types of polytopes.
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In [8] Grünbaum proved that the number of combinatorial types of d-dimensional

convex polytopes with d þ 2 points is I1
4

d2m—we will exhibit a new proof of this

fact—and the number of combinatorial types of d-dimensional convex polytopes of
d þ 3 vertices is determined by Lloyd in [9].
In this paper we focus our attention on the case of d-dimensional convex

polytopes whose d þ 3 vertices are in general position (i.e. no r þ 1 vertices of the
polytope are contained in an r-dimensional subspace, for rod). It is proved that

Theorem 1. There are exactly nð2nÞ � Jn
2n combinatorial types of (convex) polytopes

of order n in dimension n � 3 whose vertices are in general position, where nð2nÞ denotes

the number of antipodal bicolored necklaces of length 2n:

Here, by an antipodal bicolored necklace we mean a dihedral arrangement of two
colors (say 0 and 1) in which every element receives the opposite color of its farthest
one (i.e., if an element receives color 0, its antipode receives color 1, and vice versa).
Explicit formulae to calculate nð2nÞ are given.

2. Preliminaries

2.1. Separoids

A separoid is a symmetric relation wCð2S

2
Þ defined on the family of subsets of a set

S with two simple properties (cf. [1,3,11,14]): for every A;BDS

3 AwB ) A-B ¼ f;

33 AwB and CDS\A ) AwðB,CÞ:

If a pair of disjoint subsets A;BDS are not related, we say that they are
separated—hence the name of the structure. The separoid is identified with the set S:
Given a point configuration P; its separoid S ¼ SðPÞ (also known as a linear or

stretchable oriented matroid [2] or as an order type [6]) is given by the relation: if
A;BDP then

AwB3A-B ¼ f and /AS-/BSaf

(where /AS :¼ f
P

laa :
P

la ¼ 1 and laX0g denotes the convex hull of A). The
classic Radon’s theorem (see e.g. [4,5]) guarantees that the relation is non-empty if
there are enough points with respect to the dimension, viz. if n ¼ jPjXd þ 2:
Therefore we call a related pair AwB a Radon partition and each of the parts (A and
B) a Radon component. However, we sometimes omit the adjective ‘‘Radon’’ and use
simply the terms partition and component, respectively. Clearly, it is enough to know
the minimal Radon partitions to reconstruct all of them (where by minimal we mean
with respect to the order AwB$CwD3ADC and BDD). When a pair of disjoint
subsets A;BDP are not a Radon partition, we say that ‘‘A is separated from B’’ and
denote the fact by AjB: As before, it is enough to know maximal separations to
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reconstruct all the structure. To emphasizes the combinatorial structure of P; we
sometimes say that P is a point separoid.

Now, consider the family of subsets 2S of a given n-set S: The natural order D
imposes on this family the structure of an n-cube. More precisely, the faces of the n-
cube are given by intervals of the form

½A;B� :¼ fCDS : ADCDBg:

We are going to think of this hypercube as an ðn � 1Þ-sphere (so the facet ½f;S� is
dropped out) and denote it by Qn:
The Radon complex RðSÞ of a separoid S is simply the subcomplex of Qn induced

by all the components of its separoid. That is, an interval ½A;B� will be in the
(Radon) complex iff all of its vertices CA½A;B� are components of S: In other words,
a vertex CAQn is in the complex iff there exists a disjoint subset DCS such that CwD

(and therefore CwC; where C ¼ S\C denotes the complement), and a face of Qn is in
the complex iff all of its vertices are in the complex. (See Fig. 1; in it, the points are
represented by ‘‘little’’ convex sets. Observe that the separoid structure is preserved.)

Lemma 1. Let PCEd be a point separoid. Then

AwB3½A;B�CRðPÞ:

Moreover, AwB is a minimal Radon partition if and only if ½A;B� is a facet of RðPÞ:

Proof. For the necessity, let AwB be a Radon partition of a separoid P: It is clear

that for all CDB we have that ðA,CÞwB; therefore every vertex of ½A;B� is a
component of the given separoid P:

For the sufficiency, let ½A;B� be a face of RðPÞ and denote by C :¼ B\A the
difference of those subsets. Clearly every vertex of such a face is of the form A,C0;
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for some C0DC: Then, since they are vertices of the complex, for all C0DC we have

that A,C0wA,C0; that is, the set fA,C0 : C0DCg is a subset of the components of
P:
Now, suppose that AjB: It is easy to see that in a configuration of points, every

separation can be extended to a maximum one. Denote by Ca; respectively Cb; those
elements of C which are on the same side of A; respectively B; so C ¼ Ca,Cb: That

is, A,CajB,Cb but, as previously settled, A,CawA,Ca which is a contra-
diction. &

We mention one more lemma which will allow us to prove Theorem 2. However its
proof is technical and adds nothing to the present context, so the reader is referred to
[13] for the details. In it, K-c denotes the intersection of a polytopal complex K

with an affine subspace c in the usual sense—thought of as a subcomplex of K0; the
first barycentric subdivision of K—and K1c denotes the fat intersection—the
subcomplex (of the barycentric subdivision) induced by all closed faces of K that
‘‘touch’’ c (not necessarily in their interior). See Fig. 2.

Lemma 2. Let K be a polytopal complex, and c an affine subspace that intersects it in

the interior. Then there exists a strong homotopical retraction r : jK1cjrjK-cj:

The following generalizes Radon’s theorem.

Theorem 2. Let PCEd be a point separoid of order nXd þ 2: If R ¼ RðPÞ denotes its

Radon complex, then R is homotopic to the ðn � d � 2Þ-sphere. Moreover, if P is in

general position, then R is homeomorphic to such a sphere.
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Proof. Let P ¼ ðp1; y; pnÞAðRdÞn be a configuration of points, S ¼ SðPÞ its
separoid and R ¼ RðSÞ its Radon complex. We will identify the configuration with

the intersection of the kernel K ¼ j�1ð0Þ of its linear function j :Rn-Rd (where
jðeiÞ ¼ pi), and the hyperplane

P ¼ xARn :
X

xi ¼ 0
n o

:

This ðn � d � 1Þ-subspace of P will be denoted by c ¼ K-P: A straightforward
argument shows that this assignment is well defined and, modulo affine
transformations, is one-to-one.
Give to Rn the structure of a (Manhattan) normed space and denote by

jOj ¼ xARn :
X

jxij ¼ 2
n o

;

the sphere of radius 2 centered at the origin. Recall the definition of the fat
intersection

O1c :¼ O0½sAO : s-caf�

and define the complex of its dual faces

R :¼ fdðsÞAQn : sAO and s-cafg;

where d : O-Qn is the obvious duality function from the n-crosspolytope O onto the
n-cube (see Fig. 3).

Clearly R0 ¼ O1c: Observe also that, since c is a subspace of dimension n � d � 1;
then O-c is a sphere of dimension n � d � 2: Now, due to the previous lemma, O-c
is a strong retract of O1c and therefore R has the homotopy type of the ðn � d � 2Þ-
sphere

RrSn�d�2:

Claim. R is equal to R:

Proof. Due to Lemma 1, it is enough to prove that ½A;B� is a face of R if and only if
/AS-/BSaf: For this, let sAO be a face of the n-crosspolytope and

ðziÞAf�1; 0; 1gn its corresponding signed vector (i.e., jsj ¼ /2ziei : zia0S). Then
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s has associated the 3-partition of P given by A ¼ fpiAP : zi ¼ 1g; B ¼ fpiAP :

zi ¼ �1g and C ¼ A,B ¼ fpiAP : zi ¼ 0g and, by the definition of d; we have that
dðsÞ ¼ ½A;A,C�: Therefore, it is enough to prove that

s-caf3/AS-/BSaf:

For, let xAs-c; thenX
xipi ¼ 0;

X
xi ¼ 0 and

X
jxij ¼ 2:

The first equation is due to xAK ; the second because xAP (all these since
xAc ¼ K-P) and the third one because xAO:
Moreover, since xAs; we are allowed to write

1

2
x ¼

X
liðzieiÞ

as a convex combination (
P

li ¼ 1 and liX0) of some canonical vectors or their
corresponding negatives. Combining these (xi ¼ 2zili) we have thatX

piAA

lipi ¼
X
piAB

lipi

and X
piAA

li ¼
X
piAB

li ¼ 1:

This last happens if and only if /AS-/BSaf: Since all previous steps can be
followed the other way around, we have concluded the proof of the claim, and

therefore RrSn�d�2: &

For the case of general position, observe that R has a face ½A;B� of dimension
greater than n � d � 2 if and only if jB\Aj4n � d � 2 and this is equivalent to the
existence of a partition AwB where jA,Bjod þ 2: If the separoid S is in general
position this last is impossible, and then, since all facets have dimension n � d � 2;
we have that

jO1cj ¼ jO-cj:

Therefore R is homeomorphic to the ðn � d � 2Þ-sphere RDSn�d�2 and we are
done. &

Observe that a separoid S; thought of as an antipodal ideal in the face lattice of the
n-octahedron, is a point separoid if and only if there exists a plane K such that
S ¼ K-P-On:

2.2. The case n ¼ d þ 2

Let us see now how this result allow us to count ‘‘polytope types’’ with few
vertices. A (convex) polytope P is a (finite) point separoid, where every singleton is

separated from its complement (i.e., for all iAP it follows that ij%i ), with the
combinatorial structure (the poset) of its faces. The separoid encodes the faces as
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follows (cf. [2]): each face t ¼ /TS is the convex hull of a subset of points TCP

which are separated from its complement (T j %T) and, for each minimal Radon
partition AwB; if ACT then BCT : Two polytopes are said to have (to share) the
same combinatorial type iff their face-posets are isomorphic. Clearly, two polytopes

P and P0 have the same type if and only if their separoids are isomorphic, i.e. if and

only if there exists a bijection j :P-P0 such that AwB3jðAÞwjðBÞ: Therefore, due
to Lemma 1, two polytopes have the same type if and only if, after renaming the
vertices of one of them, they have the same Radon complex.

We are going to say that two Radon complexesR;R0CQn share the same type, and

denote it by RER0; iff there is a permutation on the singletons of Qn which sends
one Radon complex onto the other. Then, two polytopes have the same type if and
only if their Radon complexes share the same type.
We can now prove a classic result in combinatorial theory of convex polytopes.

Theorem 3 (Grünbaum [8]). There are precisely 1
4

d2
� �

combinatorial types of d-

polytopes with d þ 2 vertices.

Proof. Let PAEd be a polytope of order jPj ¼ d þ 2: By Theorem 2, its Radon
complex R ¼ RðPÞ is homotopically equivalent to the 0-sphere and therefore is the

union of two intervals ½A;B� and ½ %A;B�: Since every element is separated from its
complement, neither of these intervals contains a singleton nor a subset of
cardinality d þ 1: With this extra condition we have that

R+Qdþ2\ f;
P

1

� �
;

P

d þ 1

� �
;P

	 

;

where P ¼ %f is identified with the base set and P
k

� �
¼ fACP : jAj ¼ kg denotes the

family of k-subsets of it. If ½A;B�DQ0; there are
d�1
2

 �
essentially different ways to

embed R; if ½A;B�DQ1; there are d�2
2

 �
; if ½A;B�DQ2; there are d�3

2

 �
; y; if

½A;B�DQd�1; there is one (¼ 1
2

 �
) way to embed R: Therefore we have the sum

d2

4

� �
¼ d � 1

2

� �
þ d � 2

2

� �
þ?þ 1

2

� �

and we are done. &

2.3. Necklaces

By a bicolored necklace we mean a dihedral arrangement of 0’s and 1’s. Given a
necklace N ¼ ½x1; y; xm�; two elements xi; xj (with i; jAN) will be considered the

same iff i  j ðmod mÞ: We will say that N is antipodal iff xi ¼ 1� xiþn; for all
i ¼ 1; y; m ¼ 2n: Observe that the antipodality implies that m is even.
An automorphism OAAutðNÞ (an element of the dihedral groupDm) will be called

a specularity iff there exists an oAN such that Oðxo�iÞ ¼ xoþ1þi for all i; or
Oðxo�iÞ ¼ xoþi for all i: Such an o will be called the specularity axis. The axis is
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called an edge or a vertex axis, respectively. Observe that if o is an specularity axis,
its antipode (oþ n) is so; we will consider these as one specularity axis.
The period of N is the minimum kAN such that xi ¼ xiþk; for all i: In particular,

this means that Zm
k
oAutðNÞ: If the necklace N is of period k; we construct the

necklace Nk :¼ ½x1; y; xk�: Observe that

AutðNkÞ ¼
D0DZ1 or

D1DZ2

	

depending on the existence of a specularity axis.
In the sequel we will consider ½0; 1� as an antipodal necklace with a vertex axis.

Lemma 3. Let N ¼ ½x1; y; x2n� be an antipodal bicolored necklace of period k.

Then

(a) 2n
k

is an odd integer and k is even.

(a) If N has an edge axis, then n is even; and if N has a vertex axis then n is odd.
(c) Nk is an antipodal necklace of period k with at most one specularity axis.

Moreover, o is an edge (resp. a vertex) axis of N if and only if o is an edge (resp.

vertex) axis of Nk:

Proof. Clearly k divides 2n: If 2n
k
is even, since x1 ¼ x1þrk for all r and n ¼ 2n

2k
k; then

x1 ¼ x1þn; which contradicts the antipodality. Thus 2n
k
is odd, which implies that k is

even, and (a) follows. Let o ¼ 1 be an edge axis of N: Then x1�i ¼ x2þi for all i and,
by the antipodality, 1� xnþ1�i ¼ x1�i: So for all i; 1� xnþ1�i ¼ x2þi which implies
there is no i such that n þ 1� i ¼ 2þ i and so n is even. By an analogous argument
we see that if o ¼ 1 is a vertex axis, n most be odd and (b) follows. For (c), it is not

hard to see that if Nk has period tok; then N has period at most t; which is a

contradiction. So Nk has period k and it has at most one specularity axis. Since k is

even and 2n
k
is odd then, for r ¼

2n
k
�1
2

we have that n ¼ k
2
þ rk and therefore xk

2
þi

¼

xnþi for all i: By the antipodality of N; xi ¼ 1� xiþn for all i; then xi ¼ 1� xk
2
þi
for

all i and Nk is antipodal. Finally let us suppose o is an axis of N and without losing

generality let o ¼ k
2
: It is easy to see that o is also an axis of Nk: Conversely, if o ¼ k

2

is an axis of Nk ¼ ½x1; y; xk�; by ‘‘gluing’’ as many copies of the sequence
ðx1; y; xkÞ necessary to reconstruct N; we can see that N will have o as an axis (see
Fig. 4). &

For each even integer m ¼ 2n; let KðmÞ :¼ fkAN : m
k
is an odd integer and

k is eveng (i.e. KðmÞ is the set of possible periods of an antipodal bicolored
necklace of order m); and let nrðm; kÞ be the number of antipodal bicolored
necklaces of length m; period k and r specularity axes. Recall that nðmÞ denotes
the number of antipodal bicolored necklaces and observe that nðmÞ ¼P

kAKðmÞ
P

rX0nrðm; kÞ:
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For the rest of this section, given a ‘color’ xAZ2 we will denote by %x :¼ 1� x the
other color, and given a sequence of colors s ¼ ðx1; y; xnÞAZn

2; %s will denote the

sequence ð %x1; y; %xnÞ: Observe that, given any sequence of colors s; s,%s :¼
½x1; y; xn; %x1; y; %xn� is an antipodal necklace.

Theorem 4. For each even integer m ¼ 2n;

nðmÞ ¼
X

kAKðmÞ

1

2k
2

k
2 �

X
iAKðkÞ\fkg

2in0ði; iÞ þ in1ði; iÞ

0
@

1
Aþ 2J

n
2
n�2:

Proof. Let N ¼ ½x1; y; xm� be an antipodal bicolored necklace of length m ¼ 2n

and period k; and let f ðNÞ ¼ jfsAZn
2 : s,%s ¼ Ngj: Since

f ðNÞ ¼
2k if AutðNÞ ¼ Zm

k
;

k if AutðNÞ ¼ Dm
k
;

(

then, due to Lemma 3(c), 2n ¼
P

kAKðmÞðknm
k
ðm; kÞ þ 2kn0ðm; kÞÞ: So, for each even

integer m; it follows that

n1ðm;mÞ þ n0ðm;mÞ ¼ 1

2m
2n �

X
kAK\m

ðknm
k
ðm; kÞ þ 2kn0ðm; kÞÞ

 !
þ n1ðm;mÞ

2
:
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Since for each kAKðmÞ; again by Lemma 3(c), we have that nm
k
ðm; kÞ ¼ n1ðk; kÞ

and n0ðm; kÞ ¼ n0ðk; kÞ; it follows that

nðmÞ ¼
X

kAKðmÞ

1

2k
2

k
2 �

X
iAKðkÞ\k

ðin1ði; iÞ þ 2in0ði; iÞÞ

0
@

1
Aþ 1

2

X
kAKðmÞ

nm
k
ðm; kÞ:

Finally, for each s ¼ ðx1; y; xJn
2
nÞ we can construct an antipodal bicolored

necklace (of length m) of the form

NðsÞ ¼ ½x1; y; xn
2
; xn

2
; y; x1; %x1; y; %xn

2
; %xn

2
; y; %x1�

or

NðsÞ ¼ ½x1; y; xJn
2
n; xIn

2
m; y; x1; %x1; y; xJn

2
n; xIn

2
m; y; %x1�;

depending on the parity of n; see Lemma 3(b). Since, again by Lemma 3(c) (given
two specularity axes, there is an automorphism which sends one onto the other),

NðsÞ ¼ Nðs0Þ3s0 ¼ s or s0 ¼ %s; we have that
P

kAKðmÞnm
k
ðm; kÞ ¼ 2J

n
2
n�1: The result

follows. &

From here, it follows easily that

Corollary 5. For each even integer m ¼ 2n;

nðmÞ ¼
X

kAKðmÞ

1

2k
2

k
2 �

X
iAKðkÞ\fkg

ið2nðiÞ � n1ði; iÞÞ

0
@

1
Aþ 2J

n
2
n�2

and

n1ði; iÞ ¼ 2J
i
4
n�1 �

X
jAKðiÞ\i

n1ðj; jÞ:

Recall that ½0; 1� is an antipodal necklace with a vertex axis, therefore nð2Þ ¼
n1ð2; 2Þ ¼ 1:

3. Main result

As Goodman and Pollack [6] showed a configuration PCEd can be recovered
from the combinatorics of its separoid. Moreover, if n ¼ jPj denotes the order and
d ¼ dðPÞ the dimension, this can be done in time nd log n: On the other hand, even
for dimension d ¼ 2; to decide if a relation (a separoid) comes from a configuration
of points is NP-hard (see [12]). Theorem 2, in particular, implies that
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Lemma 4. The Radon complex of a point separoid PCEd of order n ¼ d þ 3 in general

position is a cycle of length 2n:

Proof. Since point separoids satisfies the interchange axiom (i.e, if AwB is minimal
then for all ieðA,BÞ there exists a unique jAðA,BÞ such that ðA\ jÞwðB\ j,iÞ is
minimal. See [7]), then for each vertex of the complex A there are exactly two
neighbors of the form A,i or A\ j: That is, the Radon complex is a 2-regular graph.
Moreover, since it is a one-dimensional sphere (Theorem 2), then it is a cycle. The
order is a straightforward consequence of the interchange axiom. &

Observe that, since RðPÞ is in fact an antipodal cycle (which means that if

AAVðRÞ then %AAVðRÞ), then its embedding in Qn is isometric (cf. [10]).

Proof of Theorem 1. Let PCEd be a polytope of order n ¼ d þ 3: By Lemma 4, its
Radon complex R ¼ RðPÞ is an antipodal cycle of length 2n inside Qn: Assign one of
the two possible orientations to this cycle. Since two vertices A;A0 of RCQn are
adjacent if and only if they differ in exactly one element (jA W A0j ¼ 1), by walking
from A to A0 in the given orientation, we can assign to such an edge a 0 if we drop the
element A W A0 or a 1 if we added it. It is easy to see that we had constructed an
antipodal bicolored necklace whose vertices are the edges of R: Let us denote it by
N ¼ NðRÞ:
Now, given an antipodal bicolored necklace N 0; we can reconstruct the Radon

complex of a point separoid (with the desired properties) modulo the name of the

singletons. That is, we can construct an antipodal cycleR0 of length 2n inside Qn such

that N 0 ¼ NðR0Þ and R0ER: The construction is as follows; since N 0 is antipodal,
there is an edge e1 (and its antipode enþ1) such that if we cut the cycle N in these
edges, there are In

2
m 0s in one side and Jn

2
n 0s on the other. Let us assign to e1 the set

A1 ¼ f1; 2; y; Jn
2
ng: Now, walking in the direction of the half that has Jn

2
n zeros,

we assign to each edge ei; recursively, the set

Ai :¼
Ai�1,a if ei�1-ei ¼ 1;

Ai�1\b if ei�1-ei ¼ 0;

	

where a denotes the biggest element of Ai�1 and b denotes the smallest element of
Ai�1: Observe that after n steps of this procedure we arrive to the antipode of A1 (i.e.,

Anþ1 ¼ %A1) and therefore we can close the cycle by adding the antipode of such a

path to end with an antipodal cycle R0 of length 2n inside Qn: It is easy to see that R

and R0 share the same type.
Therefore, we had constructed a one-to-one correspondence between the

antipodal cycles of length 2n inside Qn ðmoduloEÞ and the antipodal bicolored
necklaces of length 2n:
Finally, since P is a polytope (every singleton is separated from its complement),

then R does not contain any singleton (or subset of size n � 1) and therefore it
contains neither the empty set nor the total one. Since there are exactly Jn

2
n
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antipodal cycles of length 2n in Qn which contain these sets, we have concluded the
proof. &

4. Remarks and open problems

Even though the formula of Theorem 4 seems to be quite difficult to calculate, in
practice it is not so. It always reduces to knowing the number of antipodal bicolored
necklaces for twice an odd prime number and for powers of 2. Moreover, in such
cases the formula reduces to

Corollary 6.

* If n ¼ 2a then there are exactly

22
a�a�2 þ 22

a�1�2 � 2a�1

polytope types of order n in dimension n � 3 whose vertices are in general

position.
* If p is an odd prime number, there are exactly

2p�1 þ p � 1

2p
þ 2

p�3
2 � p þ 1

2

polytope types of order p in dimension p � 3 whose vertices are in general

position.

A result which surprisingly follows from this last corollary, is the well-known

theorem due to Fermat which asserts that, if p is an odd prime number, 2p�1 
1ðmod pÞ:
Observe that, with the same lines as above, we can try to count polytopes

with n ¼ d þ 4 vertices by counting the antipodal planar graphs inside
Qdþ4: However, there will appear some of them which do not arise from
point configurations, but some non-realizable oriented matroids (cf. [10]).
So, in order to use the previous techniques in such a case, more ingredients are
needed: How many antipodal planar graphs are embedded in Qn in such a way that
they induce a 2-sphere? Is there a recursive formula? How many of them are
‘‘realizable’’?
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