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Abstract. In this paper we study the topology of transversals to a family of convex sets
as a subset of a Grassmanian manifold. This topology seems to be ruled by a combinatorial
structure which we call a separoid. With these combinatorial objects and the topological
notion of virtual transversal we prove a Borsuk–Ulam-type theorem which has as a corollary
a generalization of Hadwiger’s theorem.

1. Introduction

SupposeF is a family of convex sets in Euclideann-spaceRn. Then Helly’s classical
theorem asserts that if eachn+ 1 members ofF have a common point, there is a point
common to all members ofF . It is natural to expect generalizations of this theorem
replacing the concept of a common point (0-transversal) by the concept of ak-plane
that intersects all the convex sets (k-transversal). The first attempts in this direction are
due to Vincensini [19] and Klee [16], but, most significantly, to Hadwiger [13]. The
next important contributions are due to Goodman and Pollack [11] who generalized
Hadwiger’s theorem from line transversals inR2 to hyperplane transversals inRn. There
have been many more important contributions to the area of geometric transversal theory.
For more on its history and literature see [6]–[8] and [12]. With this paper we emphasize
that transversals, as a subset of a Grassmanian manifold, should be studied topologically
(see also [3]), and that the topology of the space of transversals, as often appears in classic
topology, seems to be ruled by simple combinatorial objects which we call Separoids.
See also [4].

More precisely, if a family of convex sets in the plane has the property that every
three of them have a transversal line, then the complete family does not necessarily
have a transversal line. Adding the extra condition of a linear order such that every
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three sets are met by a line consistently with it, then Hadwiger proved that the complete
family has a transversal line [13]. This result for higher dimensions is not true (see
Fig. 1(b)). The generalizations of Hadwiger’s theorem relevant here are due to Goodman
and Pollack [11], to Pollack and Wenger [17] and to Anderson and Wenger [1]. All of
them have as a hypothesis the existence ofk-transversals to subfamilies consistent with
a given combinatorial structure and as a conclusion the existence of a single transversal
hyperplane.

Our generalization includes two new ideas. The first is to define a general combina-
torial separation structure of the family of convex sets, on which a simple hypothesis is
to be made. The second is to give as a conclusion what we call a virtualk-transversal,
which is the existence of (homologically) as many transversal hyperplanes as if there
was ak-transversal. This notion follows the spirit of Horn’s theorem in [14].

In Section 2 we introduce and briefly study the notion of a separoid, which gener-
alizes the previously used concepts of order type [10] and oriented matroid [2]. These
combinatorial objects give information about the topology of the space of transversals.
Namely, we prove a Borsuk–Ulam-type theorem for separoids which has as a corollary
a new generalization of Hadwiger’s theorem.

2. The Categories of Separoids

Definition 2.1. A separoid Sis a set together with a binary relation on its subsets,
denoted| and called theseparation relation, that satisfies the following properties for
α, β ⊂ S:

(i) α | β ⇒ β | α,
(ii) α | β ⇒ α ∩ β = ∅,

(iii) α | β andα′ ⊂ α ⇒ α′ | β.

Whenα | β we call it aseparationof S, or say that “α is separated fromβ.” If S further
satisfies that∅ | S, then it is calledacyclic.

Example 1. Let a0, . . . ,ar be points in some Euclidean (or affine) space. They define
an acyclic separoidS(a0, . . . ,ar ) whose underlying set is{a0, . . . ,ar }, and two subsets
α andβ are separated if there exists a hyperplane that leavesα on one side andβ on the
other. That is,

α | β ⇔ 〈α〉 ∩ 〈β〉 = ∅,
where〈 〉 denotes the convex hull. These separoids are calledpoint separoids.

Example 2. Let F = {A0, . . . , Ar } be a family of convex sets in some Euclidean
space. It defines a separoidS(F) with F as the underlying set and, again, with strict
separation of subfamilies by hyperplanes as the separation relation. If the convex sets are
compact, or bounded, thenS(F) is acyclic. We prove below that any acyclic separoid is
isomorphic to one of these.

Observe that the separoid axioms are quite general because the setsAi need not be
convex or even connected, however the separoid coincides with that of their convex hulls.
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Example 3. Given an oriented matroid, it naturally defines a separoid over the same
base set by declaring that the negative part of each covector is separated from its positive
part. The topes are then the maximal separations, so that the separoid has all the infor-
mation of the oriented matroid. Hence separoids generalize oriented matroids. Observe
that the oriented matroid is acyclic if and only if its separoid is acyclic.

Example 4. There are other natural separoids arising in various branches of mathe-
matics. For example, for a topological space a separation relation arises by the existence
of disjoint open neighborhoods.

Definition 2.2. Let SandT be separoids, and letf : S→ T be a function:

• f is amorphismif α | β in T ⇒ f −1(α) | f −1(β) in S,
• f is acomorphismif α | β in S⇒ f (α) | f (β) in T .

It is easy to see that separoids together with morphisms (or comorphisms) form a
category. Both categories are important. We use the morphism category in this section,
but in Section 4 comorphisms play an essential role. Furthermore, both types of functions
arise in natural situations, as the following examples suggest.

Remark 1. Strong maps of oriented matroids yield morphisms of their separoids.

Remark 2. LetF = {A0, . . . , Ar } be a family of convex sets inRn, and letg: Rn→
Rm be a linear (or affine) map. IfF ′ = {g(A0), . . . , g(Ar )}, then the canonical bijection
S(F)→ S(F ′) is a morphism.

Remark 3. Let F be as above, and letF ′ = {B0, . . . , Br } be such thatBi ⊂ Ai ,
i = 0, . . . , r . Then the obvious correspondenceS(F)→ S(F ′) is a comorphism.

Observe that iff : S→ T is a bijection, then it is a separoid morphism if and only
if f −1 is a comorphism. Anisomorphismis a bijection which is both a morphism and a
comorphism. Anembeddingis an injection which is a morphism and a comorphism; it
is then an isomorphism with the separoidinducedby its image (with the natural notion
of “induced by”).

Theorem 2.1(Realization). Let S be a finite acyclic separoid.Then there exists a family
of convex setsF in some Euclidean space such that S is isomorphic to S(F).

Proof.1 The basic idea is to embedS canonically in a separoid of bounded convex
sets. For this, let1 denote the acyclic separoid over the set{−,0,+} with the unique
nontrivial separation{−} | {+} (where trivial separations are those of the empty set).

1 We thank E. Schepin for his collaboration in this proof.
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Then, for every separationα | β in an acyclic separoidS, we have a characteristic
morphism

χα|β : S→ 1,

χα|β(x) =


− if x ∈ α,
+ if x ∈ β,
0 otherwise.

Now, in the category of separoids and morphisms, the categorical product is defined as
follows. LetSandT be separoids; their productS×T has base setS×T and separations

α | β ⇐⇒ πS(α) | πS(β) or πT (α) | πT (β),

whereπS andπT are the projections. It is easy to see that for an acyclic separoidS,

χ : S→∏
α|β 1,

χ :=∏α|β χα|β

is an embedding, where the product is taken over all separations ofS. We can therefore
conclude that any finite separoid is embedded in a finite product of copies of1. Thus,
we are left to prove that1n :=∏n

1 is isomorphic to a separoid of convex sets.
To see this letB = {[−1,0), [−1,1], (0,1]}. It is a family of convex sets inR, where

the separations are given by points, thus1 ∼= S(B). Given two families of convex sets
F andG, defineF × G = {A× B | A ∈ F, B ∈ G}, a family of convex sets in the
product of the ambient spaces. It is also easy to prove that

1n ∼= S(Bn) := S

(
n∏
B
)

and we are done.
The theorem can be refined to the realization by families of compact convex sets by

takingBε = {[−1,−ε], [−1,1], [ε,1]} with 0 < ε ≤ 1; and proving that1n ∼= S(Bn
ε )

if and only if 0< ε ≤ 1/(2n− 1).
This concludes the proof of the theorem. The reader may recognize in it a classic idea

of Alexsandroff.

From now on we assume that separoids are finite and acyclic. The realization theorem
allows us to define the geometric dimension of separoids (see also [5]).

Definition 2.3. Given a separoidS, itsgeometric dimension, dimg(S), is the leastk for
which there exists a familyF of convex sets inRk such thatS∼= S(F).

A straightforward generalization of Kirchberger’s theorem [15] (see (2.4) of [6])
to families of convex sets gives the following characterization of separations by small
subfamilies.
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Theorem 2.2(Kirchberger). Let S be a separoid withdimg(S) ≤ k. Thenα | β if and
only if for every S′ ⊂ S with#S′ ≤ k+ 2, we have that(S′ ∩ α) | (S′ ∩ β).

This yields a criterion for a function to be a comorphism which is used in the last
section.

Corollary 2.1. Let S and T be separoids and let f: S→ T be a function. If dimg(T) ≤
k, then f is a comorphism if and only if for every S′ ⊂ S with#S′ ≤ k+ 2, we have that
f |S′ is a comorphism.

Proof. One direction is obvious. Now, supposeα | β in S; we must prove thatf (α) |
f (β) in T . For this we use the criterion of Theorem 2.2. LetT ′ ⊂ T be such that
#T ′ ≤ k+2. We can easily constructS′ ⊂ Ssuch that #S′ ≤ k+2, f (S′∩α) = T ′∩ f (α)
and f (S′ ∩ β) = T ′ ∩ f (β). Since f |S′ is a comorphism andS′ ∩ α | S′ ∩ β in S, then
T ′ ∩ f (α) | T ′ ∩ f (β) in T .

3. Virtual Transversals

If three plane convex sets intersect pairwise, they do not necessarily have a common
point, nevertheless they do have a common transversal line. However, there is not only
one such transversal line. In fact, there are as many, from the homological point of view,
as there are lines through a point—that is, we can have a line moving in the plane, always
transversal to the convex sets, and coming back to itself with the opposite orientation,
see Fig. 1(a). In this sense, we may think that we have a “virtual” point transversal to
our convex sets. As a particular case of Corollary 4.2 (k = 0), this will be proved for
any family of more than three convex sets.

As stated in the Introduction, Hadwiger [13] proved that if every three sets of a family
of plane convex sets are met by a line consistently with some given order, then the
complete family has a transversal line. This result is not true for convex sets in Euclidean
three space. For a simple example consider the four convex sets shown in Fig. 1(b). It is
easy to see that there is no transversal line to these convex sets, but every three of them
are met by a line consistently with the ordering. However, there are many transversal
planes to the four convex sets (because convex set 1 “sees” Fig. 1(a)). In fact, there are as
many transversal planes, from the homological point of view, as there are planes through

Fig. 1
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a line, and in this sense we may think that there is a “virtual” transversal line to them.
This motivates our next definitions.

All our homology and cohomology groups are withZ2 coefficients. ByGn we de-
note the space of hyperplanes inRn+1. It is retractable to the classic Grassmannian of
codimension 1 subspaces, and therefore homotopy equivalent toPn.

Definition 3.1. For a familyF of convex sets, we denote byT (F) the subspace ofGn

consisting of all hyperplanes transversal toF .

Definition 3.2. LetF = {A0, . . . , Ar } be a family of convex sets inRn+1. We say that
F has avirtual k-transversalif the homomorphism induced by the inclusion

Hn−k(T (F))→ Hn−k(Gn)

is nonzero.

In particular, ifL is ak-transversal toF , thenF has a virtualk-transversal, because
if L̂ is the set of all hyperplanes throughL, thenHn−k(L̂)→ Hn−k(Gn) is not zero (in
fact,Hn−k(Gn) is generated by the fundamental class ofL̂ ⊂ Gn), and sincêL ⊂ T (F),
thenHn−k(T (F))→ Hn−k(Gn) is nonzero.

Our next theorem states that for a family ofk+2 convex sets, the notions of virtualk-
transversal andk-transversal coincide. The proof is simple thanks to a classic technique
in fiber bundles.

Theorem 3.1. LetF = {A0, . . . , Ak+1} be a family of convex sets inRn+1, with k ≤ n.
ThenF has a virtual k-transversal if and only if it has a k-transversal.

Proof. We have just proved one implication. For the other, considerT̂ (F) = {(H,a0,

. . . ,ak+1) | H ∈ T (F),ai ∈ H ∩ Ai } with the two natural projections giving the
diagram

T̂ (F)
π1 π2

T (F) A0× · · · × Ak+1

Observe thatπ1 is a homotopy equivalence because the fiberπ−1
1 (H) =∏k+1

i=0(H∩Ai )

is contractible for everyH ∈ T (F). On the other hand, suppose there is nok-transversal
to F . Then each collection of points(a0, . . . ,ak+1) with ai ∈ Ai determines a unique
(k+1)-planeL inRn+1. Thenπ−1

2 (a0, . . . ,ak+1) consists of the hyperplanes that contain
L, which is homeomorphic toPn−k−1. Furthermore, it is easy to see thatπ2 is a fiber bundle
with fiber Pn−k−1. Since its base is contractible, thenT̂ (F), and henceT (F), has the
homotopy type ofPn−k−1. Finally, this implies that the homeomorphismHn−k(T (F))→
Hn−k(Gn) is zero, and thereforeF does not have a virtualk-transversal.
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4. Borsuk–Ulam for Separoids

The purpose of this section is to establish the following Borsuk–Ulam-type theorem
for separoids which has as a corollary a generalization of Hadwiger’s theorem for
transversals. Its proof follows the ideas of Pollack and Wenger in [17]. Furthermore,
this theorem is related with the results of Goodman and Pollack in [11] and Ander-
son and Wenger in [1]. All these previous results have as a conclusion the existence
of one transversal hyperplane, but our results follow the spirit of Horn’s theorem [14]
in which the conclusion states the existence of a virtualk-transversal, that is, of ho-
mologically as many transversal hyperplanes as the hyperplanes that contain a fixed
k-plane.

Theorem 4.1. LetF = {A0, . . . , Ar } be a family of convex sets inRn+1. If there exists
a separoid comorphism

ϕ: S(F)→ T,

wheredimg(T) ≤ k ≤ n, thenF has a virtual k-transversal.

Proof. By Remark 3, we may assume thatT is a separoid of points inRk. Suppose that
F does not have a virtualk-transversal, that is, that the homomorphism induced by the
inclusion

Hn−k(T (F))→ Hn−k(Gn) (1)

is zero.
Let U = {v ∈ Sn | there is noH ∈ T (F) such thatH ⊥ v}. Note thatU = −U .

Let U ′ ⊂ Pn be the projection ofU ⊂ Sn in Pn. Observe that the canonical retraction
that takesGn to Pn, takesT (F) to Pn −U ′, so that (1) implies that the homomorphism
induced by the inclusion

Hn−k(Pn −U ′)→ Hn−k(Pn)

is zero. By Alexander Duality, this implies that, in cohomology, the homomorphism
induced by the inclusion

Hk(Pn)→ Hk(U ′) (2)

is nonzero.
If v ∈ U , then the hyperplanes perpendicular tov that yield a nontrivial separation of

F form an open interval; letHv be the one at the middle. Clearly,Hv = H−v. Let H+v
andH−v be the two open half-spaces determined byHv, so thatH+v = H−−v.

Observe that

p(v) =
r∑

i=0

d(Ai , H+v ),

whered(Ai , H+v ) denotes the infimum of the distances of points inAi and points in
H+v , is never zero and that it depends continuously onv ∈ U . Therefore, we have a
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continuous map

f : U → Rk,

f (v) =
r∑

i=0

d(Ai , H+v )
p(v)

ϕ(Ai ).

Recall thatU = −U is an open set ofSn and that (2) is nonzero. By the Borsuk–Ulam
theorem [18], there existsv0 ∈ U for which f (v0) = f (−v0).

Let α = {A ∈ F | A ⊂ H+v0
} andβ = {A ∈ F | A ⊂ H+−v0

}. By definition,α
is separated fromβ and hence, sinceϕ is a comorphism,ϕ(α) is separated fromϕ(β).
On the other hand, note thatf (v0) is a convex combination of the pointsϕ(β) and
also f (−v0) is a convex combination of the pointsϕ(α). Hence, f (v0) = f (−v0) ∈
〈ϕ(α)〉 ∩ 〈ϕ(β)〉 6= ∅, which is a contradiction.

Corollary 4.1. LetF be a family of convex sets inRn+1, and let T be a separoid with
dimg(T) ≤ k. Suppose there exists a function f: F → T such that for every subfamily
F ′ ⊂ F with #F ′ = k+ 2, the restriction f: S(F ′)→ T is a comorphism, thenF has
a virtual k-transversal.

Proof. Follows immediately from Corollary 2.1 and Theorem 4.1.

Definition 4.1. Let F = {A0, . . . , Ar } be a family of convex sets inRn+1, and let
B = {b0, . . . ,br } be a family of points inRk, k ≤ n. A k-plane L transversal to
F ′ = {Ai0, Ai1, . . . , Aik+1} is consistentwith B if there are pointsai j ∈ Ai j ∩ L such that
the correspondence(ai j → bi j ) is an isomorphism from the separoidS(ai0, . . . ,aik+1) to
the separoidS(bi0, . . . ,bik+1).

Corollary 4.2 (Hadwiger-Type Theorem).LetF = {A0, . . . , Ar } be a family of con-
vex sets inRn+1, and let B= {b0, . . . ,br } be a family of points inRk, k ≤ n. If for every
subfamilyF ′ ⊂ F with #F ′ = k + 2 there exists a k-transversal toF ′ consistent with
B, thenF has a virtual k-transversal.

Proof. For every subfamilyF ′ ⊂ F with #F ′ = k+2 there exists ak-planeL transver-
sal toF ′ = {Ai0, Ai1, . . . , Aik+1}with the property that there are pointsai j ∈ Ai j ∩L such
that the correspondence(ai j → bi j ) is an isomorphism from the separoidS(ai0, . . . ,aik+1)

to the separoidS(bi0, . . . ,bik+1). Thus, by Corollary 2.1,S(ai0, . . . ,aik+1)→ S(B) is a
comorphism. However, by Remark 3,S(F ′)→ S(ai0, . . . ,aik+1) is also a comorphism.
So, this corollary is implied by the preceding one, since the composition of comorphisms
is a comorphism.

Corollary 4.2 is related but does not generalize the results of Anderson and Wenger in
[1] and of Goodman and Pollack in [11]. The hypothesis in these theorems is that there
exists ak-transversal to each subfamily of sizek + 2 consistent with a given oriented
matroid. The hypothesis in Corollary 4.2 assumes that there exists ak-transversal to
each subfamily of sizek + 2 consistent with a given realizable oriented matroid, that
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is, an oriented matroid which can be represented by a set of points inRk. Realizability
is required in order to create the separoid comorphism needed to apply Theorem 4.1.
Observe however that our conclusion is stronger. We conjecture that under the hypothesis
in [1] and [11] it is also possible to conclude the existence of a virtualk-transversal.
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