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Abstract

The pseudoachromatic index of a graph is the maximum number of col-
ors that can be assigned to its edges, such that each pair of different colors
is incident to a common vertex. If for each vertex its incident edges have
different color, then this maximum is known as achromatic index. Both
indices have been widely studied. A geometric graph is a graph drawn in
the plane such that its vertices are points in general position, and its edges
are straight-line segments. In this paper we extend the notion of pseu-
doachromatic and achromatic indices for geometric graphs, and present
results for complete geometric graphs. In particular, we show that for n
points in convex position the achromatic index and the pseudoachromatic

index of the complete geometric graph are bn2+n
4

c.

1 Introduction

A vertex coloring of a simple graph G with k colors, is a surjective function
that assigns to each vertex of G a color from the set {1, 2, . . . , k}. A coloring
of a graph is proper if any two adjacent vertices have different color, and it is
complete if every pair of colors appears on at least one pair of adjacent vertices.
The chromatic number χ(G) of G is the smallest number k for which there
exists a proper coloring of G using k colors. It is not hard to see that any
proper coloring of G with χ(G) colors is a complete coloring. The achromatic
number α(G) of G is the largest number k for which there exists a proper and
complete coloring of G using k colors [18]. The pseudoachromatic number ψ(G)
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of G is the largest number k for which there exists a complete coloring of G
using k colors [17].

The chromatic index χ1(G), achromatic index α1(G) and pseudoachromatic
index ψ1(G) of G, are defined respectively as the chromatic number, achromatic
number and pseudoachromatic number of the line graph L(G) of G. Notation-
ally, χ1(G) = χ(L(G)), α1(G) = α(L(G)) and ψ1(G) = ψ(L(G)).

A central topic in Graph Theory is to study the behavior of any parameter
in complete graphs. For instance, the authors of [6] determined the exact values
of α1 for some complete graphs. Some of the authos of this paper determined
the exact value of α1 and ψ1 for some complete graphs, see [3, 4]. As a natural
extension of this work, in this paper we introduce the notion of pseudoachro-
matic and achromatic indices to geometric graphs, and present upper and lower
bounds for the case of complete geometric graphs.

A geometric graph is a graph drawn in the plane such that its vertices are
points in general position, and its edges are straight-line segments. A geo-
metric graph is complete if its edge set contains every segment connecting a
pair of vertices. The problem of determining the chromatic, achromatic, and
pseudoachromatic indices for complete geometric graphs has a different nature
than the same problem in graphs. To gain some intuition about this difference,
consider the two geometric graphs shown in Figure 1. Each of these graphs is
complete and has four vertices. For geometric graphs, one can define the inci-
dences between edges in various ways. For instance, we can say that two edges
are adjacent if they have a common endpoint or they cross each other. Under
this setting, the chromatic number of the graph shown in Figure 1(a) is 4, while
the chromatic number of the graph shown in Figure 1(b) is 3. In contrast, as is
well known, χ1(K4) = 3 (by Kn we denote the complete graph on n vertices).

In the next section we formally define chromatic, achromatic and pseu-
doachromatic indices for geometric graphs, provide some basic relations between
them, and revise previous related results. In Section 3 we consider complete
geometric graphs defined by point sets in convex position in the plane, and
determine the exact value of the achromatic and pseudoachromatic indices. Fi-
nally, in Section 4, we consider complete geometric graphs defined by point sets
in general position in the plane, and present lower and upper bounds for the
geometric pseudoachromatic index.

2 Preliminaries

Throughout this paper we assume that all sets of points in the plane are in
general position, that is, no three points are on a common line. Let G = (V,E)
be a simple graph. A geometric embedding of G is an injective map that sends
V to a set S of points in the plane, and E to a set of (possibly crossing) straight-
line segments whose endpoints belong to S. A geometric graph G is the image
of a particular geometric embedding of G. For brevity we refer to the points in
S as vertices of G, and to the straight-line segments connecting two points in
S as edges of G. Note that any set of points in the plane induces a complete
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(a) χ1(K4) = 4.
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(b) χ1(K4) = 3

Figure 1: There are only two combinatorially different geometric graphs of K4.
Two edges are adjacent if they intersect. The geometric chromatic index χg of
K4 is 4.

geometric graph.
For geometric graphs, it is possible to define edge adjacencies in different

ways. We say that two edges intersect if they have a common endpoint or they
cross each other (i.e. they have an interior point in common). Two edges are
disjoint if they do not intersect. Depending on the type of adjacency that we
consider, four different families of geometric graphs can be defined: those in
which the edges intersect, and their complement; or those in which the edges
cross, and their complement.

Let G be a geometric graph defined from any of the four adjacency criteria
described above. A coloring of the edges of G is proper if every pair of adjacent
edges have different color. A coloring is complete if each pair of colors appears
on at least one pair of adjacent edges.

The chromatic index χ1(G) of G is the smallest number k for which there
exists a proper coloring of the edges of G using k colors. Figure 1 shows the
chromatic index of two geometric graphs of K4, where two edges are adjacent
if they intersect. The achromatic index α1(G) of G is the largest number k
for which there exists a complete and proper coloring of the edges of G using
k colors. The pseudoachromatic index ψ1(G) of G is the largest number k for
which there exists a complete coloring of the edges of G using k colors.

We extend these definitions to graphs in the following way. Let G be a graph.
The geometric chromatic index χg(G) of G is the largest value k for which a
geometric graph H of G exists, such that χ1(H) = k; see Figure 1. Likewise, the
geometric achromatic index αg(G) and the geometric pseudoachromatic index
ψg(G) of G, are defined as the smallest value k for which a geometric graph H
of G exists such that α1(H) = k and ψ1(H) = k, respectively.

The chromatic index of some geometric graphs has been studied before. Let
S be a point set in convex position, and let Kn be the complete geometric graph
defined by S. Consider the graph Dn whose vertices are the edges of Kn, two
of which are adjacent if the corresponding edges are disjoint. The problem
of determining the chromatic number of these types of graphs was defined in
[2], where the authors gave some upper and lower bounds for χ(Dn). Later
the bounds were improved in [10] and [13]; finally in [20] it was proved that
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χ(Dn) = n−
⌊√

2n+ 1
4 − 1

2

⌋
. Now consider the case when the point set S is in

general position, and let l be a positive integer. The graph I(S), is the graph
whose vertices are the subsets of S with l elements, two of which are adjacent if
the convex hulls of the respective subsets intersect. This graph was defined in
[2], where the authors study its chromatic number for the case when l = 2. If we
denote by Kn the complete geometric graph with vertex set S and say that two
edges are adjacent if they intersect, then for the case l = 2, χ(I(S)) = χ1(Kn).
In [2] the authors prove that χ1(Kn) = n and that n ≤ χg(Kn) ≤ cn3/2 for some
constant c > 0 (by Kn we denote the complete graph on n vertices). The other
adjacency criteria have also been considered. Basic bounds for the chromatic
number in these cases can be found in [15]. To the best of our knowledge, these
are the only results available in the literature concerning coloring of geometric
graphs.

In this paper, we consider the adjacency criterion in which two edges are
adjacent if they intersect. We prove the following.

Theorem 2.1. i) For each n 6= 4, and the vertices of Kn in convex position

α1(Kn) = ψ1(Kn) = bn2+n
4 c,

ii) For each n > 18,

0.0710n2 −Θ(n) ≤ ψg(Kn) ≤ 0.1781n2 + Θ(n).

Before we proceed, we present some basic relations between the different
chromatic indices that we have defined above. For graphs we obtain:

χ1(G) ≤ χg(G) (2.1)

χ1(G) ≤ α1(G) ≤ ψ1(G) ≤ ψg(G) (2.2)

αg(G) ≤ ψg(G). (2.3)

For geometric graphs we obtain:

χ1(G) ≤ α1(G) ≤ ψ1(G). (2.4)

Consider the cycle Cn of length n ≥ 3. In this case χ1(Cn) is equal to 2 if
n is even, and it is equal to 3 if n is odd. On the other hand, it is not hard
to see that χg(Cn) = n − 1 if n is even and χg(Cn) = n if n is odd. However,
α(Cn) = α1(Cn) = αg(Cn) = max{k : kbk2 c ≤ n} − s(n), where s(n) is the
number of positive integer solutions to n = x2 +x+1. Also, ψ(Cn) = ψ1(Cn) =
ψg(Cn) = max{k : kbk2 c ≤ n}. These results can be found in [9, 19, 23].

It is known that if G is a planar graph then there always exists a geometric
embedding j, where no two edges of j(G) intersect, except possibly in a common
endpoint [14]. Therefore, ψ1(G) = ψ1(j(G)) = ψg(G) and α1(G) = α1(j(G)) ≥
αg(G). However, χ1(G) = χ1(j(G)) ≤ χg(G) (for instance, as we mentioned
before, χ1(C4) = 2 and χg(C4) = 3).
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3 Points in convex position

In this section we prove Claim i) of Theorem 2.1: For each n 6= 4, and the

vertices of Kn in convex position, α1(Kn) = ψ1(Kn) = bn2+n
4 c. In Subsection 3.1

we present an upper bound for ψ1(G) for any geometric graph G. Then in
Subsection 3.2 we exclusively work with geometric graphs induced by point sets
in convex position, and by giving a proper and complete coloring of any graph
in this family, derive a tight lower bound for α1(Kn).

3.1 Upper bound: ψ1(G) ≤ bn2+n
4
c

The following theorem was shown in [12].

Theorem 3.1. Any geometric graph with n vertices and n+ 1 edges, contains
two disjoint edges.

Using this theorem we obtain the following result, where the order of a graph
denotes the number of its vertices.

Corollary 3.2. Let G be a geometric graph of order n. There are at most n
chromatic classes of size one in any complete coloring of G.

This corollary immediately implies an upper bound on ψ1(G).

Theorem 3.3. Let G be a geometric graph of order n. The pseudoachromatic

index ψ1(G) of G is at most bn2+n
4 c.

Proof. We proceed by contradiction. Assume there exists a geometric graph G

for which a complete coloring using bn2+n
4 c+1 colors exists. This coloring must

have at most
(
n
2

)
−
(
bn2+n

4 c+ 1
)

chromatic classes of cardinality larger than

one. Thus, there are at least bn2+n
4 c+1−

((
n
2

)
− bn2+n

4 c − 1
)

chromatic classes

of size one, that is:

1−
((

n+ 1

2

)
− 2

⌊(
n+1
2

)

2

⌋)
+ n+ 1 =

{
n+ 1 if

(
n+1
2

)
is odd,

n+ 2 if
(
n+1
2

)
is even.

(3.1)

This contradicts Corollary 3.2 and therefore the theorem follows.

3.2 Tight lower bound: α1(G) ≥ bn2+n
4
c

In this subsection we prove that the bound presented in Theorem 3.3 is tight.
By Inequality 2.4 we know that α1(G) ≤ ψ1(G). Now we prove that there exists

an infinite family of geometric graphs G, for which α1(G) = ψ1(G) = bn2+n
4 c. To

derive the lower bound, we exhibit a proper and complete coloring for complete
geometric graphs induced by a set of points in convex position. We call this
type of graph a complete convex geometric graph. The crossing pattern of the
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Figure 2: Example for n = 13. Edges of the halving pair (ei,j , ej+1,k) are
shown solid, dashed edges represent the possible halving edges, of which ei,k is
a halving edge (the witness) in the shown example. The convex hull of a pair
(ei,j , ej+1,k) is always a quadrilateral.

edge set of a complete convex geometric graph depends only on the number of
vertices, and not on their particular position. Without loss of generality, we
therefore assume that the point set of the graph corresponds to the vertices of a
regular polygon. In the remainder of this section we exclusively work with this
type of graphs.

To simplify the proof of the main statement of this section, in the following
we will define different sets of edges and prove some important properties of
these sets.

Let G be a complete convex geometric graph of order n, and let {1, . . . , n}
be the vertices of the graph listed in clockwise order. For the remainder of this
subsection it is important to bear in mind that all sums are taken modulo n;
for the sake of simplicity we will avoid writing this explicitly. We denote by ei,j
the edge between the vertices i and j. We call an edge ei,j a halving edge if in
both of the two open semi-planes defined by the line containing ei,j , there are at
least bn−22 c points of G. Using this concept we obtain the following definition.

Definition 3.4. Let i, j, k ∈ {1, . . . , n}, such that ei,j and ej+1,k do not inter-
sect. We call a pair of edges (ei,j , ej+1,k) a halving pair of edges (halving pair,
for short) if at least one of ei,j+1, ei,k, or ej,k is a halving edge. This halving
edge is called the witness of the halving pair.

See Figure 2 for an example of a halving pair (ei,j , ej+1,k), with ei,k as
witness. Note that a halving pair may have more than one witness.

We say that an edge e intersects a pair of edges (f, g) if e intersects at least
one of f or g. We say that two pairs of edges intersect if there is an edge in the
first pair which intersects the second pair.

Lemma 3.5. Let G be a complete convex geometric graph of order n. i) Each
two halving edges intersect. ii) Any halving edge intersects any halving pair of
edges. iii) Any two halving pairs intersect.

Proof. To prove Claim i) assume that there are two halving edges which do not
intersect. These edges divide the set of vertices of G into two disjoint sets of
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size at least bn−22 c and one set of size at least 4 (the vertices of the two halving
edges). Then, the total number of vertices is:

2

⌊
n− 2

2

⌋
+ 4 =

{
n+ 1 if n is odd

n+ 2 if n is even
(3.2)

This is a contradiction, which proves Claim i).
To prove Claims ii) and iii) observe that the convex hull of each halving pair

(ei,j , ej+1,k) defines a quadrilateral (i, j, j+1, k), see Figure 2. The halving edge
witnessing the halving pair is contained in the corresponding convex hull: it is
either the edge ei,k, or one of the diagonals of the quadrilateral.

It is easy to see, that if either ei,k or one of the diagonals is intersected by
an edge f , then f also intersects at least one edge of the pair (ei,j , ej+1,k).

Using this observation we prove the remaining two cases by contradiction:
Assume there exists a halving edge and a halving pair which do not intersect,
or two halving pairs which do not intersect. Then their corresponding halving
edges (witnesses) do not intersect either, because they are contained in the
quadrilaterals. This contradicts Claim i), and thus proves Claim ii) and iii).

Definition 3.6. Let G be a complete convex geometric graph of even order n.
We call an edge ei,j an almost-halving edge if ei,j+1 is a halving edge.

Please observe that this definition and the following lemma are only stated
(and valid) for even n; therefore if ei,j is an almost-halving edge, ei−1,j is a
halving edge.

Lemma 3.7. Let G be a complete convex geometric graph of even order n. Let
f be an almost-halving edge, e a halving edge, and E a halving pair. i) f and e
intersect, ii) f and E intersect.

Proof. We prove Claim i) by contradiction. If e and f do not intersect, then
they divide the set of vertices of G into three sets: one of size at least n−2

2 , one
of size at least n−2

2 −1, and one of size at least 4. In total the number of vertices
is (at least):

2

(
n− 2

2

)
− 1 + 4 = n+ 1 (3.3)

This is a contradiction, which proves Claim i). To prove Claim ii) we use
Claim i): the halving edge witnessing E must intersect f . On the other hand
such a halving edge is inside the convex hull of E, see Figure 2. From these two
observations it follows that E and f intersect.

We need two more concepts from the literature. A thrackle [21] is a graph
drawn in the plane so that its edges are represented by Jordan arcs and any two
distinct arcs either meet at exactly one common vertex or they cross (at exactly
one point interior to both arcs). A straight-line thrackle is a thrackle in which all
edges are straight-line segments. We say that a straight-line thrackle is maximal
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Figure 3: Proof of Theorem 3.8 for n = 5: α1(K5) = 7. Edges e1,3, e3,5, e4,1, e5,2
(solid) are colored with colors 1 to 4, respectively. Edges e1,2, e3,4 are colored
with color 5; and edges e2,3, e4,5 are colored with color 6. Finally, edges e2,4, e1,5
are colored with color 7. Each pair of chromatic classes intersect, and each pair
of edges with the same color are disjoint.

if it is not a proper subgraph of any other thrackle. Theorem 3.1 implies that
the size of any straight-line thrackle is at most its number of vertices. In the
following we always refer to a straight-line thrackle as thrackle, since we are
only working with geometric embeddings of graphs.

Given a set J ⊆ {1, . . . , bn2 c}, a circulant graph Cn(J) of G is defined as the
graph with vertex set equal to V (G)1 and E(Cn(J)) = {ei,j ∈ E(G) : j − i ≡ k
mod n, or j − i ≡ −k mod n, k ∈ J}. It is not hard to observe that the
complete graph Kn is the circulant graph Cn(J) when J = {1, ...,

⌊
n
2

⌋
} (see,

for example, [5, 16]). The natural partition of the edges of Kn induced by J

is E(Kn) =
⋃bn

2 c
i=1 E(Cn(i)). We will consider this partition in the proof of

Theorem 3.8. (Note that a partition is collectively exhaustive and mutually
exclusive by definition). In this paper we use this concept for geometric graphs,
in the natural way; see Figure 4 (left) for an example of a circulant geometric
graph Cn(J) with J = {

⌊
n
2

⌋
− 1} and n = 13.

j+i+1+i′
j+i

j

j+i+1

Figure 4: Examples for n = 13. Left: A circulant graph Cn
({⌊

n
2

⌋
− 1
})

. Right:
A pair of edges (solid) with same color from E(Cn({i, i′})), with i = 2 and some
fixed j. The witness of the halving pair is shown dashed.

Now we provide a lower bound on the achromatic index. We treat the case

1This definition is different from that usually given, in which the vertex set of the graph
is Zn. However, as it is not hard to see that this definition is equivalent to the usual one, and
to keep our arguments as simple as possible, we opt for this choice.
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n = 4 first, because K4 is the only complete convex geometric graph for which
α1 and ψ1 are different. We prove that α1(K4) = 4 and ψ1(K4) = 5. By
Theorem 3.3 we have that ψ1(K4) ≤ 5, and by Figure 5 (left) we can conclude
that ψ1(K4) = 5. Now, by Figure 5 (right) we have α1(K4) ≥ 4. Suppose that
α1(K4) = 5, then in the coloring of K4 with 5 colors, there must be four color
classes of size one, and one color class of size two. The class of size two must
be composed of two opposite edges of K4. This implies that the remaining two
opposite edges belong to classes of size one. But this is a contradiction because
the coloring must be complete. Therefore, it follows that α1(K4) = 4.

1

2

3

4

1

2

3

4

Figure 5: Left: ψ1(K4) = 5. One color class of size two {e3,4, e4,1}; and four
color classes of size one {e1,2},{e2,3},{e1,3},{e2,4}. Right: α1(K4) = 4. Two
color classes of size two: {e1,2, e3,4}, {e2,3, e4,1}; and two color classes of size
one {e1,3}, {e4,2}.

The following theorem provides a lower bound on the achromatic index for
the remaining cases.

Theorem 3.8. Let G be a complete convex geometric graph of order n 6= 4.
The achromatic index of G satisfies the following bound:

α1(G) ≥ bn2+n
4 c.

Proof. The theorem follows easily for n ≤ 3; we prove the case n = 5 in Figure 3.
For n > 5, consider the following partition of the set of edges of G:

E(G) = E(Cn({bn2 c}))
⋃

E(Cn({bn2 c− 1}))
⋃

i∈I
E(Cn({i, bn2 c− 1− i})) (3.4)

where I = {1, . . . , b b
n
2 c−1
2 c}.

Observe that the first term is a circulant graph of halving edges and thus,
by Lemma 3.5, its set of edges defines a thrackle. This thrackle is maximal
(containing n edges) if n is odd but it is not maximal (containing only n

2 edges)
if n is even.

Note further, that for fixed i the third term is either the union of two cir-
culant graphs of size n, or one circulant graph of size n (only in the case when
i = bn2 c − 1− i).

If n is odd, then the edge set of G is partitioned into n−1
2 circulant graphs,

each of them of size n. If n is even, then the edge set of G is partitioned into
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n
2 − 1 circulant graphs, each of them of size n, plus one circulant graph of size
n
2 . Using partition 3.4, we give a coloring on the edges of G, and prove that this
coloring is proper and complete.

We start by coloring all circulant graphs in the third term of the partition,

except for i = b b
n
2 c−1
2 c.

In the following we set i′ = bn2 c−1−i and therefore refer to Cn({i, bn2 c−1−i})
as Cn({i, i′}). For every i ∈ I \

{
b b

n
2 c−1
2 c

}
we assign colors to Cn({i, i′}) using

the following function.

fi : E(Cn({i, i′})) −→ {(i− 1)n+ 1, . . . , (i− 1)n+ n} such that:

ej,j+i 7→ (i− 1)n+ j, and

ej+i+1,j+i+1+i′ 7→ (i− 1)n+ j.

for j ∈ {1, . . . , n}. See Figure 4 (right) for an example with i = 2.
The first rule colors the edges of Cn({i}), while the second rule colors the

edges of Cn({i′}). For fixed i and j both rules assign the same color. Therefore,
the chromatic classes are pairs of edges, one edge (ej,j+i) from Cn({i}) and one
edge (ej+i+1,j+i+1+i′) from Cn({i′}). Observe that all these pairs are halving
pairs (ej,j+i, ej+i+1,j+i+1+i′) of G, because the edge ej,j+i+1+i′ = ej,j+bn2 c is
halving.

Hence, the partial coloring so far is complete (by Lemma 3.5) and proper
(because the two edges in each color class do not intersect).

The number of colors we have used up to this point isN1 = n

(
bb

n
2 c−1
2 c − 1

)
.

So far, we have only colored a subset of edges of the third term of the
partition 3.4. This leaves the following parts uncolored:

E(Cn({bn2 c}))
⋃

E(Cn({bn2 c − 1}))
⋃

E(Cn({i, i′}))

where i = b b
n
2 c−1
2 c and i′ = bn2 c − 1− i.

These remaining circulant graphs are different if n is even or if n is odd.
Further, we need to distinguish between the two cases i = i′ and i 6= i′ (for
the remainder of the third term). This basically results in the four cases n ≡ x
mod 4, for x ∈ {0, 1, 2, 3}.

In a nutshell, to color the remaining edges, first we color the thrackle,
E(Cn({bn2 c})) (if n is even together with one half of E(Cn({bn2 c − 1}))). Then
we color (the remaining half of) the circulant graph Cn({bn2 c − 1}) together

with Cn({i, i′}) (i = b b
n
2 c−1
2 c and i′ = bn2 c − 1− i). In each step we will prove

that the (partial) coloring is proper and complete.

1. Case n > 5 is odd. To color the maximal thrackle, E(Cn({bn2 c})), we
assign colors to its edges using the function

f : E(Cn({bn2 c})) −→ {N1 + 1, . . . , N1 + n} such that:

10



ej,j+bn2 c 7→ N1 + j,

for each j ∈ {1, . . . , n}. Observe that E(Cn({bn2 c})) is a set of n halving
edges. See Figure 6 (left) for an example of such a thrackle.

j+i+1+i′′

j+i

j

j+i+1

Figure 6: Examples for n = 15. Left: A circulant graph Cn
({⌊

n
2

⌋})
of halv-

ing edges if n is odd. Right: Halving pair (solid) with color N2 + j from
E(Cn({i, i′′})), with n ≡ 3 mod 4 and some fixed j. The witness of the halving
pair is shown dashed.

The coloring so far is proper, because each new chromatic class has size
one. Further, each chromatic class so far consists of either a halving edge
or a halving pair. Hence, by Lemma 3.5, the coloring is also complete.

It is easy to see that we are using N2 = N1 + n = nb b
n
2 c−1
2 c colors so far.

The remaining uncolored edges are:

E(Cn({bn2 c − 1}))
⋃

E(Cn({i, i′}))

where i = b b
n
2 c−1
2 c and i′ = bn2 c− 1− i. We will color these two circulant

graphs together. Let i′′ = bn2 c − 1. As n is odd, Cn({i′′}) consists of
n edges. The size of E(Cn({i, i′})) depends on the two cases i = i′ and
i 6= i′.

(a) i = i′: As n is odd, n ≡ 3 mod 4. The circulant graph Cn({i, i′}) =
Cn({i}) is of size n. Thus, 2n edges remain uncolored.

We assign n colors to the 2n edges of Cn({i, i′′}) as follows:

fi : E(Cn({i, i′′})) −→ {N2 + 1, . . . , N2 + n}, such that

ej,j+i 7→ N2 + j,

ej+i+1,j+i+1+i′′ 7→ N2 + j

for j ∈ {1, . . . , n}.
Each new chromatic class consists of a pair (ej,j+i, ej+i+1,j+i+1+i′′)
of edges. See Figure 6 (right) for an example of such a pair. Because
the edge ej+i,j+i+1+i′′ = ej+i,j+i+bn2 c is a halving edge, the pair
(ej,j+i, ej+i+1,j+i+1+i′′) is a halving pair. Therefore, all edges are

11



colored and each chromatic class consists of either a halving edge or
a halving pair. By Lemma 3.5 the coloring is complete and proper
(as the edges of halving pairs are disjoint).

The total number of colors used is N3 = N2 + n = n(b b
n
2 c−1
2 c + 1),

that is N3 =
⌊
n2+n

4

⌋
colors, as n ≡ 3 mod 4 in this case.

(b) i 6= i′: As n is odd, n ≡ 1 mod 4. The circulant graph Cn({i, i′}) is
of size 2n. Thus, 3n edges remain uncolored. We assign n colors to
the 2n edges of Cn({i, i′}) and

⌊
n
2

⌋
colors to the n edges of Cn({i′′})

as follows:

fi : E(Cn({i, i′, i′′})) −→ {N2 + 1, . . . , N2 + n+ bn2 c}, such that

ej,j+i 7→ N2 + j,

ej+i+1,j+i+1+i′ 7→ N2 + j,

for j ∈ {1, . . . , n}, and

ej,j+i′′ 7→ N2 + n+ j,

ej+i′′+1,j+i′′+1+i′′ 7→ N2 + n+ j,

for j ∈ {1, . . . , bn2 c}. See Figure 7 (left and middle) for examples.

j+i′′

j

j+i′′+1+i′′

j

j+i

j+i+1 j+i+1+i′

j+i′′+1
n

⌊
n
2

⌋
−1

⌊
n
2

⌋

n−1

Figure 7: Examples with n = 13, for n is odd and i 6= i′: n ≡ 1 mod 4.
Left: Halving pair with color N2 + j from E(Cn({i, i′})). Middle: Halving pair
with color N2 + n + j from E(Cn({i′′})). Both for fixed j. Halving pairs are
shown solid, witnesses of the halving pairs are shown dashed. Right: The single
remaining edge en,bn2 c−1 (solid) is combined with the halving edge ebn2 c,n−1
(dotted), colored with color N1 + bn2 c.

Each new chromatic class consists of a pair of edges. These pairs
are either (ej,j+i, ej+i+1,j+i+1+i′) or (ej,j+i′′ , ej+i′′+1,j+i′′+1+i′′) com-
bined from the edges of Cn({i, i′}) or Cn({i′′}), respectively. The
pair (ej,j+i, ej+i+1,j+i+1+i′) is a halving pair with the halving edge
ej,j+i+1+i′ = ej,j+bn2 c as witness, and (ej,j+i′′ , ej+i′′+1,j+i′′+1+i′′)
is a halving pair with the halving edges ej,j+i′′+1 = ej,j+bn2 c and
ej+i′′,j+i′′+1+i′′ = ej+i′′,j+i′′+bn2 c as witnesses. Each chromatic class

12



so far consists of either a halving edge or a halving pair. Hence,
the coloring is complete (by Lemma 3.5) and proper (as the edges of
halving pairs are disjoint).

Note, that a single edge, e
n,bn2 c−1

of Cn({i′′}), remains uncolored.

We add this edge to the chromatic class (with color N1+bn2 c) contain-
ing the halving edge ebn2 c,n−1 = ebn2 c,bn2 c+bn2 c. See Figure 7 (right).
Observe, that en,bn2 c−1 and ebn2 c,n−1 are disjoint, thus the coloring re-
mains proper. Further, adding an edge to an existing chromatic class
of a complete coloring, maintains the completeness of the coloring.

As all edges are colored, the total number of colors used is N3 =

N2 +n+ bn2 c = n(b b
n
2 c−1
2 c+1)+ bn2 c, that is N3 =

⌊
n2+n

4

⌋
, as n ≡ 1

mod 4 in this case.

2. Case n > 5 is even. Recall that only N1 chromatic classes exist so far,
each containing a halving pair of edges. The thrackle E(Cn({bn2 c})) =
E(Cn({n2 })) is not maximal in this case. See Figure 8 (left). To get a
maximal thrackle we add half the edges of Cn({n2 − 1}) to Cn({n2 }). Note
that E(Cn({n2 − 1})) is the set of almost-halving edges if n is even.

n
2

1

n

n
2

1

n

n
2

1

n

Figure 8: Examples with n = 14, for the case when n is even. Left: The thrackle,
E(Cn(n2 })), of the n

2 halving edges. Middle: The thrackle, E(C ′n({n2 − 1})),
of the first n

2 almost-halving edges of E(Cn({n2 − 1})). Right: The thrackle,
E(C ′′n({n2 − 1})), of the second n

2 almost-halving edges of E(Cn({n2 − 1})).

Let the thrackle E(C ′n({n2 − 1})) = {e1,n2 , . . . , en
2 ,n−1} and the thrackle

E(C ′′n({n2 − 1})) = {en
2 +1,n, . . . , en,n2−1} define the two halves of Cn({n2 −

1}) with n
2 almost-halving edges each. See Figure 8 (middle and right). It

is easy to see that E(C ′n({n2 −1})) is a thrackle (all its edges intersect each
other). Further, by Lemma 3.7, each almost-halving edge intersects each
halving edge. Thus, E(Cn({n2 }) ∪ C ′n({n2 − 1})) is a maximal thrackle
of size n. The following function assigns one color to each edge of this
maximal thrackle.

f : E(Cn({n
2
}) ∪ C ′n({n

2
− 1})) −→ {N1 + 1, . . . , N1 + n}, such that

ej,j+n
2
7→ N1 + j,

ej,j+n
2−1 7→ N1 +

n

2
+ j

13



for each j ∈ {1, . . . , n2 }.
The coloring so far is proper, because each new chromatic class has size
one. Further, each chromatic class consists of either a halving edge, a
halving pair, or an almost-halving edge. The almost-halving edges used
so far form a thrackle and thus intersect each other. Hence, by Lemmas 3.5
and 3.7, the coloring is also complete. It is easy to see that we are using
N2 = N1 + n = nbn−24 c colors so far.

The remaining uncolored edges are

E(C ′′n({bn2 c − 1}))
⋃

E(Cn({i, i′}))

where i = bn−24 c and i′ = n
2 − 1− i (as n is even). We will color these two

circulant graphs together. For brevity, let i′′ = n
2 − 1 and let C ′′n({i′′}) be

the set of the remaining n
2 almost-halving edges. The size of E(Cn({i, i′}))

depends on the two cases i = i′ and i 6= i′.

(a) i = i′: As n is even, n ≡ 2 mod 4. The circulant graph Cn({i, i′}) =
Cn({i}) is of size n. Thus, n+ n

2 edges remain uncolored. We assign
n
2 + bn4 c colors to the n+ n

2 edges of Cn({i}) ∪ C ′′n({i′′}) as follows:

fi : E(Cn({i})∪C ′′n({i′′})) −→ {N2 +1, . . . , N2 + n
2 +bn4 c}, such that

en
2 +j,

n
2 +j+i′′

7→ N2 + j,

en
2 +j+i′′+1,

n
2 +j+i′′+1+i

7→ N2 + j

for j ∈ {1, . . . , n2 }, and

en
2 +j,

n
2 +j+i

7→ N2 + n
2 + j,

en
2 +j+i+1,

n
2 +j+i+1+i

7→ N2 + n
2 + j

for j ∈ {1, . . . , bn4 c}. See Figure 9 (left and middle) for examples.

Each new chromatic class consists of a halving pair of edges from
E(Cn({i})∪C ′′n({i′′})), either (en

2 +j,n2 +j+i′′ , en
2 +j+i′′+1,n2 +j+i′′+1+i)

with the halving edge en
2 +j,n2 +j+i′′+1 = en

2 +j,n2 +j+n
2

as witness,
or (en

2 +j,n2 +j+i, en
2 +j+i+1,n2 +j+i+1+i) with, again, the halving edge

en
2 +j,n2 +j+i+1+i = en

2 +j,n2 +j+n
2

as witness. Each chromatic class so
far consists of either a halving edge, a halving pair, or one of the
n
2 almost-halving edges that form a thrackle. Hence, the coloring
is complete (by Lemmas 3.5 and 3.7) and proper (as the edges of
halving pairs are disjoint).

Note, that a single edge, en
2 +bn4 c+1,n of Cn({i}), remains uncolored.

We add this edge to the chromatic class (with color N1 + 1) contain-
ing the halving edge (e1,n2 +1). See Figure 9 (right). Observe, that
en

2 +bn4 c+1,n and (e1,n2 +1) are disjoint. Thus, the coloring remains
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n
2 +j

n
2 +j+i

′′

n

n
2 +j+i

′′+1

n
2 +j+i

′′+1+i

n
2 +j

n
2 +j+i

n
2 +j+i+1

n
2 +j+i+1+i

1

n
2 +bn4 c+1

2

3
n
2 +1

Figure 9: Examples with n = 14, for the case when n is even and i = i′:
n ≡ 2 mod 4. Left: Halving pair with color N2 + j. Middle: Halving pair
with color N2 + n

2 + j. Both for fixed j. Halving pairs are shown solid, wit-
nesses of the halving pairs are shown dashed. Right: The single remaining edge
en

2 +bn4 c+1,n (solid) is combined with the halving edge (e1,n2 +1) (dotted), colored
with color N1 + 1.

proper. Further, adding an edge to an existing chromatic class of a
complete coloring maintains the completeness of the coloring.

As all edges are colored, the total number of colors used is N3 =

N2 + n
2 + bn4 c = nbn−24 c + n

2 + bn4 c, that is N3 =
⌊
n2+n

4

⌋
, as n ≡ 2

mod 4 in this case.

(b) i 6= i′: As n is even, n ≡ 0 mod 4. The circulant graph Cn({i, i′}) is
of size 2n. Thus, 2n+ n

2 edges remain uncolored. We assign n
2 + 3n4

colors to the 2n+ n
2 edges of Cn({i, i′}) ∪ C ′′n({i′′}) as follows:

fi : E(Cn({i, i′})∪C ′′n({i′′})) −→ {N2+1, . . . , N2+ n
2 +3n4 }, such that

en
2 +j,

n
2 +j+i′′

7→ N2 + j,

en
2 +j+i′′+1,

n
2 +j+i′′+1+i

7→ N2 + j,

e
3
n
4 +j,3

n
4 +j+i′′

7→ N2 + n
4 + j,

e
3
n
4 +j+i′′+1,3

n
4 +j+i′′+1+i′

7→ N2 + n
4 + j,

for each j ∈ {1, . . . , n4 }, and

en
4 +j,

n
4 +j+i

7→ N2 + n
2 + j,

en
4 +j+i+1,

n
4 +j+i+1+i′

7→ N2 + n
2 + j

for each j ∈ {1, . . . , 3n4 }. See Figure 10 for an example of these three
different types of pairs of edges.

Each new chromatic class consists of a halving pair of edges from
Cn({i, i′}) ∪ C ′′n({i′′}), either (en

2 +j,n2 +j+i′′ , en
2 +j+i′′+1,n2 +j+i′′+1+i)
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n
2 +j+i

′′
n
2 +j

n
2 +j+i

′′+1+i

n
2 +j+i

′′+1

3n4 +j+i
′′

3n4 +j+i
′′+1+i′

3n4 +j

3n4 +j+i
′′+1

n
4 +j+i+1+i′

n
4 +j+i+1

n
4 +j+i

n
4 +j

Figure 10: Examples with n = 16, for the case when n is even and i 6= i′: n ≡ 0
mod 4. Left: Halving pair with color N2 + j. Middle: Halving pair with color
N2 + n

4 + j. Right: Halving pair with color N2 + n
2 + j. All for fixed j. Halving

pairs are shown solid, witnesses of the halving pairs are shown dashed.

with the halving edge en
2 +j,n2 +j+i′′+1 = en

2 +j,n2 +j+n
2

as witness (Fig-
ure 10 (left)), (e3n

4 +j,3n
4 +j+i′′ , e3n

4 +j+i′′+1,3n
4 +j+i′′+1+i′) with the halv-

ing edge e3n
4 +j,3n

4 +j+i′′+1 = e3n
4 +j,3n

4 +j+n
2

as witness (Figure 10 (mid-
dle)), or (en

4 +j,n4 +j+i, en
4 +j+i+1,n4 +j+i+1+i′) with, again, the halving

edge en
4 +j,n4 +j+i+1+i′ = en

4 +j,n4 +j+n
2

as witness (Figure 10 (right)).
Each chromatic class so far consists of either a halving edge, a halv-
ing pair, or one of the n

2 almost-halving edges that form a thrackle.
Hence, the coloring is complete (by Lemmas 3.5 and 3.7) and proper
(as the edges of halving pairs are disjoint).

As all edges are colored, the total number of colors used is N3 =

N2 + n
2 + 3n4 = nbn−24 c + n

2 + 3n4 , that is N3 =
⌊
n2+n

4

⌋
, as n ≡ 0

mod 4 in this case.

Proof of Theorem 2.1 i). For n 6= 4, by Theorem 3.8 we get that
⌊
n2+n

4

⌋
≤

α1(G), and by Theorem 3.3 and Equation 2.4 we conclude that α1(G) = ψ1(G) =⌊
n2+n

4

⌋
.

4 On ψg(Kn)

In this section, we consider point sets in general position in the plane and present
lower and upper bounds for the geometric pseudoachromatic index. Recall that
the geometric pseudoachromatic index of a graph G is defined as:

ψg(G) = min{ψ1(G) : G is a geometric graph of G}.
To achieve the upper bound of ψg(Kn) ≤ 0.1781n2 + Θ(n), we count the

total number of edge intersections. That is, we count the number of edges that
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have a common endpoint and the number of edges that cross, and then we add
these two quantities together. It is clear that

(
ψ1(G)

2

)
must be less than the total

number of edge intersections. To achieve the lower bound we exhibit a complete
coloring for any geometric graph using 0.0710n2 −Θ(n) colors.

4.1 Upper bound for ψg(Kn)

Let G = (V,E) be a graph, and let G be a geometric representation of G.
Consider two intersecting edges in G, the intersection might occur either at a
common interior point (crossing), or at a common end point (at a vertex).

On one hand, if we consider all edges of G and denote by m the total number
of intersections that occur at vertices, m is precisely the number of edges in
the line graph of G. That is, if deg(v) is the degree of v ∈ V , then m =∑
v∈V

(
deg(v)

2

)
.

On the other hand, the rectilinear crossing number of G, denoted by cr(G),
is defined as the number of edge crossings that occur in G. Given a graph G,
the rectilinear crossing number of G is the minimum number of crossings over
all possible geometric embeddings of G; notationally

cr(G) = min{cr(G) : G is a geometric graph of G}.

It seems natural that there should be a relationship between the rectilinear
crossing number of a graph, and its geometric achromatic and pseudoachromatic
indices. In the following, we establish bounds for ψg(G) as a function of m and
cr(G).

Lemma 4.1. Let G be a geometric graph of order n, denote by cr(G) the number
of edge crossings in G, and by m the total number of edge intersections occurring
at vertices of G. Then:

ψ1(G) ≤
⌊

1+
√

1+8(m+cr(G))

2

⌋
.

Proof. The total number of edge intersections is m+ cr(G). Then, m+ cr(G) ≥(
ψ1(G)

2

)
so that ψ1(G)(ψ1(G)− 1) ≤ 2(m+ cr(G)). Solving this inequality we get

ψ1(G) ≤
⌊

1+
√

1+8(m+cr(G))

2

⌋
.

Using the above Lemma, we can establish the following result.

Theorem 4.2. Let G = (V,E) be a graph of order n, with m =
∑
v∈V

(
deg(v)

2

)
.

Denote by cr(G) its rectilinear crossing number. Then

ψg(G) ≤
⌊

1 +
√

1 + 8(m+ cr(G)

2

⌋
.
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Proof. Let G0 be a geometric representation of G such that cr(G0) = cr(G);
that is, G0 is a geometric graph of G with minimum number of crossings. As a
consequence of Lemma 4.1 we have the following:

ψg(G) = min{ψ1(G) : G is a geometric graph of G} ≤ ψ1(G0)

≤
⌊

1 +
√

1 + 8(m+ cr(G0))

2

⌋
=

⌊
1 +

√
1 + 8(m+ cr(G))

2

⌋

Establishing bounds for cr(Kn) is a well studied problem in the literature.
If we use these results, we can give a better bound for ψg(Kn). Note that in
this case m = n

(
n−1
2

)
. The following result was shown in [1].

Theorem 4.3. cr(Kn) ≤ c
(
n
4

)
+ Θ(n3) for c = 0.380488.

Using this theorem we obtain:

Theorem 4.4. Let Kn be the complete graph of order n. The geometric pseu-
doachromatic index of Kn has the following upper bound:

ψg(Kn) ≤ 0.1781n2 + Θ(n).

Proof. Since m =
∑

v∈V (Kn)

(
deg(v)

2

)
= n

(
n−1
2

)
, by Theorem 4.2 and 4.3,

ψg(Kn) ≤ 1

2

√
8cr(Kn)) + Θ(n3) + Θ(1) =

1

2

√
8
c

4!
n4 + Θ(n3) + Θ(1)

=

√
c

12
n2 + Θ(n) ≤ 0.1781n2 + Θ(n).

4.2 Lower bound for ψg(Kn)

In this section we present a lower bound for ψg(Kn). First let us state a result
which will be used later; this result was shown in [8].

Theorem 4.5. Let S be a set of n points in general position in the plane. There
are three concurrent lines that divide the plane into six parts each containing at
least n

6 − 1 points of S in its interior.

Recall that a coloring is complete if each pair of colors appears on at least one
pair of intersecting edges. In order to prove the lower bound for ψg(Kn) stated
in Theorem??, we exhibit a complete coloring with at least 0.0710n2 − Θ(n)
color classes for any geometric graph Kn of Kn. For any Kn, let S be its set
of n = 13m + 6 + r points in general position in the plane, with n > 18 and
r < 13. We will subdivide the set of edges of Kn into 12m2 pairwise disjoint
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subsets (subgraphs of Kn) and prove that assigning one color to each such subset
results in a complete coloring. To this end, we first subdivide S into 7 disjoint
subsets using a specific configuration L = {`1, . . . , `6} of 6 lines as defined in
the following. (See Figure 11 for a sketch of the configuration L).

Let `1, `2 and `3 be 3 horizontal lines not containing any point of S, with
A′, B′ being the resulting subsets of S of the points between `1 & `2, and `2
& `3, respectively, such that |A′| = 12m + 6 and |B′| = m + r. Let `4, `5, `6
be 3 concurrent lines that divide A′ into 6 subsets, each containing at least 2m
points. The existence of `4, `5, `6 is guaranteed by Theorem 4.5. Let p be the
point of intersection of `4, `5, and `6. For each one of these 6 subsets of A′,
we choose a subset of exactly 2m points and denote them by A,B,C,D,E, F ,
listed in clockwise order. Further, let G ⊆ B′, such that |G| = m (see Figure 11
again).

`1

`2

`3

`4

`6

`5

p

A

F

E
D

C

B

G

{
{

A′

B′

Figure 11: The line configuration L.

LetA = {a1, . . . , a2m}, B = {b1, . . . , b2m}, C = {c1, . . . , c2m}, D = {d1, . . . , d2m}, E =
{e1, . . . , e2m}, F = {f1, . . . , f2m}; and G = {g1, . . . , gm}.

For i, j ∈ {1, . . . , 2m}, consider the following sets of subgraphs of Kn:

• The subgraphs Xi,j with vertex set {ai, bj , di, ej , gd j
2e} and edges

{aibj , bjdi, diej , ejai} ∪
{
{aig j

2
} if j is even

{dig j+1
2
} if j is odd .

Note that each Xi,j is a quadrilateral plus one edge. We call each quadri-
lateral X′i,j ⊆ Xi,j , induced by vertices ai, bj , di, ej .

• The subgraphs Yi,j with vertex set {bi, cj , ei, fj , gd j
2e} and edges
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{bicj , cjei, eifj , fjbi} ∪
{
{big j

2
} if j is even

{eig j+1
2
} if j is odd .

Let Y′i,j ⊆ Yi,j be the quadrilateral induced by vertices bi, cj , ei, fj .

• The subgraphs Zi,j with vertex set {ci, dj , fi, aj , gd j
2e} and edges

{cidj , djfi, fiaj , ajci} ∪
{
{cig j

2
} if j is even

{fig j+1
2
} if j is odd .

Let Z′i,j ⊆ Zi,j be the quadrilateral induced by vertices ci, dj , fi, aj .

Note that the set {Xi,j ,Yi,j ,Zi,j}, with i, j ∈ {1, . . . , 2m} contains exactly
12m2 edge-disjoint subgraphs. Recall that each subgraph X′i,j ,Y′i,j and Z′i,j ,
is a (not necessarily convex) quadrilateral. The following lemma shows that p
is inside (the boundary of) each of these quadrilaterals.

Lemma 4.6. Let p be the point of intersection of the three lines in Theorem 4.5.
Then p is inside each of the polygons induced by the graphs X′i,j ,Y′i,j , and Z′i,j,
defined above.

Proof. Consider the polygon P induced by X′i,j and recall that the vertices of P
are {ai, bj , di, ej}. The line `4 separates the subsets A and B from the subsets D
and E. Thus, `4 separates the edge aibj from the edge diej . The line `5 separates
the subsets A and E from the subsets B and D. Thus, `5 intersects the edges
aibj and diej , of P . Consider the segment of `5 defined by its intersection point
with aibj and by its intersection point with diej ; call this segment s. As `4 lies
between aibj and diej , the point of intersection of `5 with `4 (which is the point
p), lies in the interior of s. Furthermore, as `5 intersects P exactly twice, s is
inside P and thus, p is inside P .

Analogously, p is inside the polygons induced by Y′i,j and Z′i,j .

Lemma 4.7. For each pair of graphs from the set {Xi,j ,Yi,j ,Zi,j} there exists
a pair of edges, one of each graph, which intersect.

Proof. We prove by contradiction. Assume that Q and R are two different graphs
in {Xi,j ,Yi,j ,Zi,j}, such that no edge of Q intersects an edge of R. By Lemma 4.6,
p is inside both polygons, PQ and PR, induced by Q and R, respectively. Since,
by assumption, Q and R do not intersect, the boundaries of PQ and PR do
not intersect either, and one polygon has to be contained inside the other (as
both contain p). Without loss of generality, let PQ be inside PR. One edge of
Q is connecting PQ (in the interior of PR) with a vertex in G (in the exterior
of PR) and therefore intersecting an edge of R. This is a contradiction to the
assumption and the theorem follows.

20



We can now conclude the proof of our main theorem.

Proof of Theorem 2.1 ii). For every geometric graph Kn of Kn with n > 18,
one can construct the configuration L. Using L we define the edge-disjoint
subgraphs Gi,j (Gi,j ∈ {Xi,j ,Yi,j ,Zi,j}). By construction, Kn contains 12

169n
2 −

Θ(n) of these subgraphs, and we assign a different color to each of them. By
Lemma 4.7, each pair of these subgraphs intersects and therefore, 0.0710n2 −
Θ(n) ≤ ψg(Kn). (Note that for ψg(Kn) the coloring needs to be complete, but
not necessarily proper. Thus, uncolored edges, i.e., edges not in {}, can be
added to any existing color class.) The upper bound ψg(Kn) ≤ 0.1781n2 +Θ(n)
has been proven in Theorem??.

5 Conclusions

In this paper we introduced the pseudoachromatic index and the achromatic
index for geometric graphs. We proved the exact value of these parameters for
complete geometric graphs defined by point sets in convex position, and gave
upper and lower bounds for these parameters for (complete) geometric graphs
defined by point sets in general position.

Some questions remain unanswered. Clearly, the main problem that remains
open is to determine the exact values of the parameters for complete geometric
graphs defined by point sets in general position. However, to shed some light
on this issue, we might want to study the behavior of the parameters in com-
plete geometric graphs defined by families of certain well known point sets, for
instance, “double chain”, “double circle” or “Horton sets”. Further, it is clear
that the number of crossings between edges is related to the values of the chro-
matic indices that we studied. An interesting question is to determine how these
parameters are related with the crossing number of a graph. Finally, it is known
that calculating the chromatic, achromatic number, and the pseudoachromatic
number of a graph are NP-complete problems, see [7, 11, 22, 24, 25] and the
references therein. Is it true that computing the geometric chromatic indices is
also an NP-complete problem? Is it NP-complete to compute these indices if
we consider some of the other adjacency criteria?
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