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Abstract

Let P and F be sets of n ≥ 2 and m ≥ 2 points in a plane, respectively. We study the
problem of finding the minimum angle α ∈ [2π/m, 2π] such that one can install at each point
of F a stationary rotating floodlight with illumination angle α, initially oriented in a suitable
direction, in such a way that, at all times, every target point of P is illuminated by at least
one floodlight. All floodlights rotate clockwise at unit speed. We provide bounds for the case
in which the elements of P ∪ F are on a given line, and present exact results for the case in
the plane in which we have two floodlights and many target points. We further consider the
non-rotating version of the problem and look for the minimum angle α such that one can install
a non-rotating floodlight with illumination angle α at each point of F , in such a way that every
target point of P is illuminated by at least one floodlight. We show that this problem is NP-hard
and hard to approximate.

Keywords: Floodlight scheduling; illumination; rotating sensors; coverage.

1 Introduction

Art gallery theory and illumination problems are well-known in Discrete and Computational Ge-
ometry. There are many variations on this area which are surveyed by Urrutia[12] and O’Rourke[8].

An important and practical issue that arises in the automation of various security, surveillance,
and reconnaissance tasks is that of observing continuously a set of targets in an area of interest. A
key issue in these problems is the placement of the floodlights (i.e. sensors), that is, determining
where to locate a set of static (i.e. non-rotating) floodlights to maintain the targets under view. In
this static model, the number of floodlights is fixed in advance to ensure adequate illumination of
the area of interest. We define a floodlight as a point in the plane, and its illumination region as a
wedge with apex at the point, that is, a region bounded by two halflines emanating from the point.

The scheduling of static floodlights for covering a given region was first considered by Bose
et al.[1]: Given m points in the plane, and m angles α1, α2, . . . , αm, where each αi is at most π,
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floodlights of the given angles can be placed at the given points so as to illuminate the whole plane
if and only if α1 + · · · + αm ≥ 2π. Furthermore, for the case where α1 + · · · + αm ≥ 2π, they
provided an O(m logm)-time algorithm to place the floodlights.

In practical situations, the area may be so large that economical concerns prohibit the placement
of the required number of static floodlights. In these circumstances, the available floodlights will be
insufficient to cover the terrain of interest. This suggests the possibility of using multiple floodlights
that continuously rotate over time, perhaps with a wider illumination angle to compensate for the
reduction in the number of floodlights. This is the variant of the problem introduced by Kranakis
et al.[6]: Given the locations of the rotating floodlights (or in their case, antennae) and a region,
their problem asks for scheduling the floodlights so that the entire region is covered at all times. An
important advantage in considering rotating floodlights is that in addition of covering the target
region at all times, we are able to monitor all other points of the plane periodically. This increases
the degree of fault-tolerance of the entire system as even if one or more floodlights fail, every target
point is illuminated part of the time. If, on the contrary, stationary floodlights are used, then there
might be several regions of the plane that are never illuminated.

In this article, we investigate a discrete version of the problem studied by Kranakis et al., namely,
the problem of continuously covering a discrete set of points. We define the Rotating Floodlights
Illumination Problem as follows. Let P be a set of n ≥ 2 points in the plane called target points,
or simple targets, and F be a set of m ≥ 2 other points in the plane representing the location of
rotating floodlights. We assume that all the floodlights rotate clockwise at unit speed. We say
that F covers P with (illumination) angle α if there exists a suitable initial orientation of each
floodlight with angle α so that, at all times, each target point of P is illuminated by at least one
floodlight. When α is known, we simple say that F covers P . Obviously, if the illumination angle
is smaller than 2π/m, then every target point of P will not be covered at some time, independently
of how the floodlights are oriented initially. We consider the problem of finding the minimum angle
α = α(P, F ) ∈ [2π/m, 2π], and the initial orientation of each floodlight, so that F covers P . We
emphasize that the discrete version of the problem considered here is more complicated than the
continuous one. For instance, while there is a simple formula for illuminating a given line by a
finite set of rotating floodlights on that line, the continuous illumination of discrete target point
sets in the line can sometimes be realized with smaller angles by using a better strategy depending
on the relative locations of the target points and the floodlights.

We should point out that our problems are closely related to the problems studied by Fusco
and Gupta[5]. They consider a finite set of target points and a finite set of directional sensors, both
in the plane. Each sensor has a closed sensing region (i.e. illumination region) and a finite number
of possible orientations. The time is discretized and at every instance of time each sensor changes
from its current orientation to the next one. The dark time of a point is the number of time slots
during which the point is not covered by any sensor. They then look for the initial orientation
of the sensors such that a certain function of the dark time of the target points is minimized.
They consider that both the possible orientations and the (bounded) illumination region of each
sensor are arbitrary, and prove that deciding the possibility of zero dark time, i.e., whether these
exists an initial orientation of the sensors such that at every discrete instance of time every target
point is illuminated, is NP-complete. They mention, without any explicit proof, that deciding zero
dark time is NP-complete even if the illumination regions of the sensors are cone-shaped. Since a
cone-shaped region is not precisely a wedge, and the set of possible orientations of each antenna
is arbitrary, this hardness result does not imply that our problem is NP-hard in the more general
setting.

In addition to the above rotating floodlights problems, we study the problem of finding the
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minimum angle α such that a non-rotating floodlight of angle α can be installed at each point of
F so that the floodlights illuminate all the points of P .

Further research related to our problems can be found in many domains, including art gallery
and related problems, multi-target tracking, placement and orientation of rotating directional sen-
sors, and multi-robot surveillance tasks[2, 3, 4, 5, 9, 10, 11, 12].

1.1 Results

In this paper we study restricted instances of the Rotating Floodlights Illumination Problem, leaving
the general solution as an interesting open problem. Concretely, we provide results for the following
two cases: (i) the scenario where the elements of P ∪F are located on a given line (Section 2), and
(ii) the planar version with two floodlights and an arbitrary number of targets (Section 3). For
case (i), where the elements of P ∪ F are on a line (say the x-axis), suppose that P1, P2, . . . , Pk−1
is the minimum-cardinality partition of P such that each Pi is formed by consecutive elements in
P ∪F . Let m1 denote the number of elements of F to the left of the elements of P1, mi denote the
number of elements of F to the right of the elements of Pi and to the left of the elements of Pi+1

for i = 2, . . . , k − 1, and mk denote the number of elements of F to the right of the elements of
Pk−1. Let Q be the number of odd numbers in the sequence {m1 + mk,m2, . . . ,mk−1}. If all the
numbers m1 +mk,m2, . . . ,mk−1 are zero, except one of them that is equal to m, we show that the
angle α = 2π/m is optimal. Otherwise, we show the following bounds:

2π

m− Q
3

≤ α(P, F ) ≤ min

{
3π

m
,

2π

m−Q+ 2bQ3 c

}
.

In case (ii) we consider two situations. In the first one, there are elements of P on both sides of
the line through the two floodlights f1 and f2. Then, α(P, F ) = π + (β+ + β−)/2, where β+ is the
maximum of the angles ∠f1pf2 of the points p ∈ P in one side of that line, and β− is the maximum
of the angles ∠f1p′f2 of the points p′ ∈ P in the other side. In the second one, all the points
of P are on the same side of the line through f1 and f2. Here, α(P, F ) = π + (βmax − βmin)/2,
where βmax and βmin are the maximum and the minimum, respectively, of the angles ∠f1pf2 of the
points p ∈ P . In both cases (i) and (ii), our proofs lead to simple algorithms for determining the
initial orientation of the rotating floodlights. The problem of non-rotating floodlights is studied in
Section 4. We show that this problem is NP-hard and hard to approximate.

1.2 Notation

Given points u, v in the plane, `(u, v) denotes the line containing both u and v. Given a floodlight
f ∈ F and an angle β < 2π, we say that we configure f with angle β if f rotated (clockwise) with
angle β starts to illuminate the positive x-axis. That is, f illuminates the positive x-axis if f is
rotated with angle β, whereas f rotated with angle β − ε does not for all arbitrary small enough
positive values of ε. Given that all floodlights rotate at the same speed, it suffices to consider only
the interval of time [0, 2π).

2 Points and floodlights on a line

We first consider the case in which the points of P and the floodlights of F lie on a line L, say the
x-axis. Kranakis et al.[6] considered the case in which the floodlights are located on a line that they
need to illuminate. They showed that the whole line can be illuminated by m rotating floodlights
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using illumination angle 3π/m and that this bound is tight. This can be viewed as a special case
of our problem in which n ≥ m + 1 and each of the m + 1 segments of the line determined by F
contains at least one point of P . We consider other cases and show that the illumination angle is
smaller than 3π/m for some of them.

We partition P into k − 1 (k ≥ 2) maximal intervals denoted s1, s2, . . . , sk−1 from left to right,
each of which contains elements of P but no elements of F . Note that two points of P belong to the
same subset if and only if there exists no floodlight between them. Let F1 denote the elements of F
to the left of s1, Fi (i = 2, . . . , k− 1) denote the elements of F between si−1 and si, and Fk denote
the elements of F to the right of sk−1. Let mi = |Fi| for i = 1, . . . , k. Observe that m1,mk ≥ 0,
mi ≥ 1 for i = 2, . . . k − 1, and m1 +m2 + . . .+mk = m.

Lemma 1 Two floodlights f1 and f2 with illumination angle α ≤ π, belonging to the same set
among F1 ∪ Fk, F2, F3, . . . , Fk−1, can be configured to illuminate P during one or two intervals of
total length 2α. Furthermore, if two floodlights of F cover P (at all times) with angle α < 3π/2,
then they must belong to the same set among F1 ∪ Fk, F2, F3, . . . , Fk−1.

Proof. Suppose that both f1 and f2 belong to the set Fi (i = 1, . . . , k), and assume w.l.o.g. that
f1 is to the left of f2. Configure f1 with angle zero and f2 with angle π (see the top of Figure 1a).
At time t = π the configuration of f1 and f2 is as shown in the bottom of Figure 1a. Since there is
no element of P in the segment connecting f1 and f2 then all elements of P are illuminated during
the time intervals [0, α] and [π, π + α], for 2α time in total.

f1 f2

f1 f2

(a)

f1 f2

f1 f2

(b)

Figure 1: Proof of Lemma 1: (a) Case where f1 and f2 belong to the same set Fi. (b) Case where f1 ∈ F1

and f2 ∈ Fk.

Suppose now that f1 ∈ F1 and f2 ∈ Fk. Configure both f1 and f2 with angle zero (see the top
of Figure 1b). At time t = π the configuration of f1 and f2 is as shown in the bottom of Figure 1b.
Since all elements of P belong to the segment connecting f1 and f2 then all elements of P are
illuminated during the intervals [0, α] and [π, π + α], 2α time in total.

For the second part of the lemma, let f and g be the two floodlights that cover P . Clearly
α ≥ π. Assume, w.l.o.g., that g 6∈ F1 ∪ Fk. Then, it is trivial to see that f and g must belong to
the same set whenever α ≥ 3π/2. 2

Lemma 2 Three floodlights f1, f2, and f3 with illumination angle α < π, can be configured so
that, together, they cover the whole line L (hence, P ) during 2α time in total.

Proof. The proof can be obtained from the arguments of Kranakis et al.[6]. Assume, w.l.o.g., that
f1, f2, and f3 appear in this order from left to right. Configure f1, f2, and f3 with angle zero, π,
and zero, respectively (top of Figure 2). At time t = π the configuration is as shown at the bottom
of Figure 2. During the interval [0, α] of time the line is illuminated by f1 and f2, and during the
interval [π, π + α] by f2 and f3. The result follows. 2
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f1 f2 f3

f1 f2 f3

Figure 2: Proof of Lemma 2

We now establish the main result for the case in which the target points and the floodlights lie
on a common line.

Theorem 1 If all floodlights belong to the same set among F1∪Fk,F2,F3, . . . , Fk−1, then α(P, F ) =
2π/m, which is optimal. Otherwise, α(P, F ) satisfies:

2π

m− Q
3

≤ α(P, F ) ≤ min

{
3π

m
,

2π

m−Q+ 2bQ3 c

}
(1)

where Q denotes the number of odd numbers in the set {m1 +mk,m2, . . . ,mk−1}.

Proof. Obviously α(P, F ) ≥ 2π/m in all cases. All the floodlights belong to the same set among
F1 ∪ Fk,F2,F3, . . . , Fk−1 if and only if k = 2, or k = 3 and m1 = m3 = 0. In both cases, the
illumination angle α = 2π/m is sufficient. Assume first that k = 2 and let F1 = {f1, . . . , fm1} and
F2 = {f ′1, . . . , f ′m2

}. Floodlight fi is configured with angle (i− 1)α for i = 1, . . . ,m1, and floodlight
f ′j , with angle π− jα for j = 1, . . . ,m2 (see Figure 3). Then, at any time t ∈ [0,m1α) P is covered

f1 f3p1 p2 p3 f4 f5f2

Figure 3: Two groups of floodlights F1 = {f1, f2} and F2 = {f ′1, f ′2, f ′3} = {f3, f4, f5}, where m1 = 2 and
m2 = 3, and a configuration with angle α = 2π/5.

by an element of F1 and, at any time t ∈ [m1α, 2π), by an element of F2. Assume now that k = 3
and m1 = m3 = 0. Then, F = F2 = {f1, . . . , fm}. By configuring fi with angle 2iπ/m, P is covered
by F . This proves optimality when all the floodlights belong to the same set F2,F3, . . . , Fk−1, or
F1 ∪ Fk.

Assume now that neither of the two cases above occurs. We first show that the upper bound in
Equation 1 is sufficient by configuring the floodlights as follows. We consider the case m1 = mk = 0
and mi = 1 (i = 2, . . . , k − 1) separately because the result follows immediately from Kranakis et
al.[6], since our problem is equivalent to illuminating the whole x-axis. In this case, m = Q and

α(P, F ) = 3π/m = min
{

3π
m ,

2π

m−Q+2bQ
3
c

}
, which is also optimal.

For the remaining cases, we proceed as follows. Pair the elements of F into N = bm1+mk
2 c +

bm2
2 c+. . .+b

mk−1

2 c = m−Q
2 pairs: (f1,1, f1,2), (f2,1, f2,2), . . . , (fN,1, fN,2) so that the elements of each

pair belong to the same set among F1 ∪ Fk, F2, F3, . . . , Fk−1. Group the remaining Q floodlights
into M = bQ3 c triples (f ′1,1, f

′
1,2, f

′
1,3), . . . , (f

′
M,1, f

′
M,2, f

′
M,3) (leaving at most two elements of Q

ungrouped). Let α = 2π

m−Q+2bQ
3
c

= 2π
2N+2M . We now schedule the floodlights as follows. Configure
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fi,1 and fi,2 with angles (i − 1)α and π + (i − 1)α, respectively, for i = 1, . . . , N ; and configure
f ′j,1, f

′
j,2, and f ′j,3 with angles (N + j − 1)α, π + (N + j − 1)α, and (N + j − 1)α, respectively,

for j = 1, . . . ,M . Finally, arbitrarily configure the remaining floodlights (at most two). The
correctness of this configuration follows from lemmas 1 and 2.

To establish the lower bound in Equation 1, we use the geometric interpretation of dual space
proposed by Kranakis et al. [6]. Let α = α(P, F ) be the optimal angle and let z0 denote a suitable
initial configuration of the floodlights, with illumination angle α, at time t = 0. Furthermore, let C
represent the unit circle with center o and let ` be a directed line through o oriented horizontally
and pointing in the positive x-axis direction. Translate each floodlight f ∈ F to the center o,
keeping the same orientation as in z0. Then, each floodlight f ∈ F maps to the circular arc cf
of C of amplitude α (called an f-arc) and the (clockwise) rotation of the floodlights maps to the
counter-clockwise rotation of the line `, around o, keeping static the f-arcs. Indeed, at any instant
of time t ∈ [0, 2π), a floodlight f illuminates the positive (resp. negative) direction of the line L if
and only if the line `, rotated with angle t, intersects the static arc cf and the oriented segment
from the center o to the point ` ∩ cf points in the same (resp. contrary) direction as `.

Observe from Lemma 1 and Lemma 2 that at any instant of time (i.e. any position of `) the
line ` intersects at least two f-arcs. Let T2 be the set of instants in the interval [0, 2π) such that the
line ` intersects exactly two f-arcs, and let T≥3 = [0, 2π) \ T2 denote the complement of T2. Note
that both T2 and T≥3 are the union of pairwise disjoint arcs of C. Let a and b denote the total
amplitude of the arcs in T2 and T≥3, respectively.

Obviously, a + b = 2π. We also have that mα ≥ a + (3/2)b since at every instance of time of
T2 the line ` intersects exactly two f-arcs, and at every instance of time of T≥3 it intersects at least
three f-arcs. Hence 3π − αm ≤ a/2. We further have that T2 has at most N pairs of floodlights
and, by Lemma 1, each pair can cover P during at most 2α time, accordingly a ≤ 2Nα. We then
obtain that 3π − αm ≤ Nα, which implies that 2π

m−Q
3

≤ α, as claimed. 2

3 Many points and two lights

In this section, we consider the case of two floodlights f1 and f2, i.e., m = 2. Let p1, . . . , pn denote
the elements of P . Assume w.l.o.g. that the line `(f1, f2) is horizontal and that f1 is located to
the left of f2. Given any target point pi (i = 1, . . . , n), let θi ∈ [0, π) denote the angle at pi in the
triangle 4pif1f2 with vertices p, f1, and f2. If there are points from P on both sides of the line
`(f1, f2), then we define two angles β+ and β− as the maximum of θi over all points pi above and
below `(f1, f2), respectively (see Figure 4a). Otherwise, if all the points of P are on the same side
of `(f1, f2), we define two angles, βmax and βmin, as the largest and smallest θi over all points pi,
respectively (see Figure 4b).

Theorem 2 (Two floodlights) For m = 2, n ≥ 2:

(1) If there are points of P on both sides of `(f1, f2) then α(P, F ) = π + β++β−

2 .

(2) If all the points of P lie on one side of `(f1, f2) then α(P, F ) = π + βmax−βmin

2 .

Proof. First, we prove part (1) of the theorem. We configure the floodlights f1 and f2 initially
as follows. Let Af1Bf2 be the quadrilateral with vertices A, f1, B, and f2 such that the angle
∠f1Af2 is equal to β+, the angle ∠f2Bf1 is equal to β−, and the points f1 and f2 are symmetric
with respect to the line `(A,B), as shown in Figure 5a.

Since f1 and f2 rotate at unit speed, it always holds that ∠f1Af2 = β+ and ∠f2Bf1 = β− (see
Figure 5b). Furthermore, the region not illuminated by the floodlights is always a subset of the
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f1 f2

β+

β−

(a)

f1 f2

βmax

βmin

(b)

Figure 4: (a) β+ and β−. (b) βmax and βmin.

f1 f2

β−

β+

A

B

(a)

f1 f2

A

B

β+

β−

(b)

f1

f2

B

(c)

Figure 5: (a) Initial position. (b),(c) General position.

interior of the union of the triangles 4f1Af2 and 4f2Bf1 (see Figures 5b and 5c), and it never
contains points of P by the definition of β+ and β−. It remains to show that any illumination angle

smaller than π + β++β−

2 is not feasible.
Suppose that, initially, floodlight fi (i = 1, 2) covers the directions in the interval [αi, βi]. First,

we show that these intervals together cover all the possible directions in [0, 2π]. If, to the contrary,
a direction t is not covered by [α1, β1] ∪ [α2, β2], then there exists a rotation such that pi is not
illuminated, where pi is the point above the line `(f1, f2) and ∠f2pif1 = β+, a contradiction.
Therefore, the floodlight intervals overlap as shown in Figure 6a.

We show now that the overlapping interval [α2, β1] has length at least β+. Suppose, to the
contrary, that its length is smaller than β+. Consider the rotation by angle γ such that the β2-ray
of floodlight f2 passes through point pi defining β+ (see Figure 6b). Then the α1-ray of floodlight
f1 will not cover pi because the angle between the two rays is less than β+. Therefore, pi is not
covered if the rotation angle is slightly smaller than γ, a contradiction. Similarly, the overlapping
interval [α1, β2] has length at least β−. If the illumination angle is α then 2α ≥ 2π+ β+ + βi. The
claim of part (1) follows.

To prove part (2) of the theorem, we configure the floodlights f1 and f2 at the beginning as
follows. Let Af1Bf2 be the quadrilateral such that ∠f1Af2 = βmin and ∠f2Bf1 = βmax and the
points f1 and f2 appear symmetrically with respect to the line `(A,B), as shown in Figure 7a.
The argument is similar to the proof of part (1) since points A and B move along the arcs shown
in Figure 7a. The uncovered part is either the region Cf1Bf2D below the lines `(f1, A), `(f2, A),
`(f1, B), and `(f2, B), shown in Figure 7a, or the convex wedge XY Z with apex at point Y , shown
in Figure 7c. In any case, the area between the two arcs defined by βmin and βmax is always
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f1f2

α1

β1 α2

β2

(a)

f1 f2

β+

pi

(b)

Figure 6: The floodlight intervals.

illuminated.

f1 f2

A

B

C D

(a)

f1 f2

(b)

f1 f2

X Y

Z

(c)

Figure 7: The floodlight intervals.

The optimality of angle α = π + βmax−βmin

2 can be shown similarly to the proof of part (1). 2

4 The static illumination problem

In this section, we consider the following canonical problem, which we call the Minimum Angle
Illumination Problem: Given a set P of n target points and a set F of m (non-rotating) floodlights
in the plane, find the minimum angle α such that there exists an orientation of the floodlights with
illumination angle α that illuminates all of P . We show that this problem is NP-hard, by showing
that deciding whether α = 0 is NP-complete. Observe that illuminating all targets with angle
α = 0 is related to covering all the elements of P with (a minimum number of) lines. This problem
is proved to be NP-hard by Megiddo and Tamir [7] using a reduction from the 3SAT Problem. We
extend their construction to prove that the decision version of the Minimum Angle Illumination
Problem is NP-complete.

Theorem 3 Deciding whether α = 0 in the Minimum Angle Illumination Problem is NP-complete.

Proof. Given an orientation of the floodlights with angle α = 0, one can verify in polynomial time
whether all targets are illuminated or not. Hence, this decision question is in NP. To show that it
is NP-hard, we will use a reduction from the 3SAT Problem. Let the N variables v1, v2, . . . , vN and
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the M clauses C1, C2, . . . , CM be an instance of the 3SAT Problem. Assume that every variable
appears at most once in each clause. We start with the construction of Megiddo and Tamir [7], in
which M+N ·M2 points, M corresponding to the clauses C1, . . . , CM and M2 points corresponding
to each pair of literals (vi, vi), and 2N ·M lines are constructed. Such a construction can be done in
polynomial time and with polynomially-bounded coordinates, and satisfies the following properties
(refer to Figure 8):

• Each clause Cj is represented by a point, with a slight abuse of notation, denoted also by Cj .

• Each pair of literals (vi, vi) is represented by a grid Gi of M2 points, obtained from the
intersection points of the M lines Li1, . . . , LiM with the M lines Li1, . . . , LiM .

• With the exception of the lines Lij and Lij , no other line contains more than two points of
the set {C1, . . . , CM} ∪G1 ∪ · · · ∪GN .

• For every j, the point Cj lies on the line Lij if and only if the literal vi appears in the clause
Cj . Further, the point Cj lies on the line Lij if and only if the literal vi appears in the clause
Cj .

We claim that all the clauses C1, . . . , CM are satisfied if and only if the points {C1, . . . , CM} ∪
G1 ∪ · · · ∪GN can be covered by N ·M lines, in which case, for each variable vi, either all the M
lines Li1, . . . , LiM are present (i.e. vi is true), or all the M lines Li1, . . . , LiM are present (i.e. vi is
false).

We extend the above reduction as follows. For each variable vi, we add a point at each line
Lij , thus forming a set of M new points denoted also by vi. Further, we add a point at each
line Lij forming a set of M new points denoted vi (see Figure 8). For each point of vi ∪ vi we
draw a line containing that point and so that a grid G′i of M2 new points is formed. Using the
arguments of Megiddo and Tamir [7], these 2N ·M +N ·M2 new points and 2N ·M new lines can
be added so that the only lines that contain a point of vi ∪ vi, for some i, and more than one point
in {C1, . . . , CM} ∪G1 ∪ · · · ∪GN ∪G′1 ∪ · · · ∪G′N are precisely the lines in the construction.

Consider now P = {C1, . . . , CM} ∪ G1 ∪ · · · ∪ GN ∪ G′1 ∪ · · · ∪ G′N , a set of targets, and F =
v1∪· · ·∪vN ∪v1∪· · ·∪vN , a set of floodlights. We claim that all the clauses C1, . . . , CM are satisfied
if and only the floodlights can be oriented to illuminate P with angle α = 0. This is equivalent to
claiming that in our construction all the points of P can be covered by 2N ·M lines. The result
thus follows. 2

Since deciding α = 0 in the Minimum Angle Illumination Problem is NP-complete, then the
problem does not admit any polynomial-time factor-approximation algorithm. Nevertheless, we can
approximate the minimum angle α with the minimum angle α′ such that there exists an orientation
of the floodlights that cover the whole plane. Assume m ≥ 2. Using the result of Bose et al. [1]
(precisely Theorem 1) we can orient each of the m floodlights of F with angle α′ = 2π/m ≤ π such
that the whole plane is illuminated and thus P , in O(m logm) time. This can be ensured because
the total sum of the angles is equal to 2π. As a further comment, observe that Theorem 3 implies
that the zero dark time decision problem studied by Fusco and Gupta[5] is NP-complete even if all
sensors have exactly two orientations, and the sensing region of each of them is a half-line.

5 Conclusions and open problems

Many real-world applications in security, surveillance, and reconnaissance tasks require multiple
targets to be monitored using mobile sensors. Given a set of points in the plane, P ∪ F , where
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Figure 8: Proof of Theorem 3: The construction for the clauses C1 = v1 ∨ v2 ∨ v3, C2 = v1 ∨ v2 ∨ v4, and
C3 = v2 ∨ v3 ∨ v4, over the variables v1, v2, v3, v4.

P represents n target points and F represents m floodlights, we have introduced the Rotating
Floodlights Illumination Problem: compute the minimum angle α(P, F ) so that the lights can be
scheduled to provide uninterrupted illumination of P as they rotate with identical speeds. We
studied the problem of finding tight bounds on the angle α(P, F ) in both the 1-dimensional and
the 2-dimensional version where there are exactly two floodlights.

Although the 1-dimensional continuous version of the problem can be easily solved[6], the
discrete version is trickier. Nonetheless, the optimal angle has been determined in some cases.
When the points or floodlights are not necessarily on a line (i.e. the 2-dimensional problem) we
presented results for the case in which we have two floodlights to schedule (m = 2). However,
nothing is known for n,m ≥ 3, except that α = π is always sufficient to cover the whole plane, and
thus, it is also sufficient to cover P when m = 3 (see [6]). We conjecture that our 2-dimensional
Rotating Floodlights Illumination Problem with n,m ≥ 2 is NP-hard in general, a fact that we
hope to establish in the future, in addition to improving the known bounds.

The problems introduced here provide opportunities for further studies, including interesting
and unexplored variations of the discrete version of the problem. These include a 1.5-dimensional
variant, where the floodlights lie on a given line and the targets are on the plane, special config-
urations (floodlights and/or targets on a grid), finite illumination range, etc. Some of them have
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already been partially or totally considered in the continuous version of this problem[6].

Acknowledgements. The problem studied here was introduced and partially solved during the VI
Spanish Workshop on Geometric Optimization, June 2012, El Roćıo, Huelva, Spain. The authors
would like to thank other participants for helpful comments.
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