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Abstract

We show a tight bound of [3(n — 1)/8] for the num-
ber of orthogonal floodlights sufficient to cover an
orthogonal polygon with n vertices. Our resulis lead
directly to a very simple linear algorithm that com-
putes a covering of the polygon and that guarantees
a total aperture of no more than 37n/16. This is an
improvement of a factor of 2 over the naive use of
the original theorem for orthogonal art galleries and
avoids complex algorithms {or partitioning of orthog-
onal polygons. Moreover, if floodlights can be placed
in the boundary of the polygon (not only at vertices),
we can reduce this to a tight bound of |n/4| and com-
pute their positions also in linear time.

1 Introduction

The question of guarding a polygonal art gallery
has raised many problems ranging from polygon de-
composition and problem complexity to combinato-
rial structure of visibility graphs [6]. Moreover, the
study of visibility in this type of geometric setting has
not only been naturally motivated by many applica-
tions, but it has also been fundamental in developing
many theoretical and practical results [8]. Despite
the many variants of the problem, little regard has
been placed to the assumption that guards can cover
a complete 2x range of orientations around them.
Rawlins [7] studied visibility along finitely oriented
staircases and provided corresponding Art Gallery
Theorems. Estivill-Castro and Raman [4] studied
edge mobile gnards with finite oriented visibility rays.
However, only recently the question of studying vis-
ibility covers with floodlights (that is, static guards
with resiricted angle of vision} has been raised for
covering a line [3] and covering the plane [1].
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In this paper we address the problem of covering
the interior of an orthogonal polygon with floodlights.
Section 2 describes the floodlight covering problem
for art galleries. Section 3 proves that {3(n — 1)/8|
orthogonal floodlights are always sufficient and some-
fimes necessary to cover an orthogonal art gallery.
Our proof leads to a linear algorithm for finding a
covering, that it is not only simple to implement, but
results in a covering with half the total aperture of
the naive use of the original art gallery theorem. Sec-
tion 4 demonstrates that we can reduce the number of
floodlights to [n/4} if they can be placed at points in
the boundary, and not only at vertices. Section 5 il-
lustrates the difficulties that make the study of flood-
light illumination of general polygons a hard problem.
Section 6 provides some final remarks.

2 The floodlight
problem

covering

Consider a polygonal art gallery given by & simple or-
thogonal polygon P in the plane with n vertices and
no holes. Given a set of k floodlights where each has
an aperture of a € (0, 2], the problem consists of de-
termining if it is possible to place the floodlights in &
distinct vertices of the polygon and illuminate (cover)
its interior. Note that no more than one floodlight is
allowed at a vertex of the polygon, otherwise we have
one floodlight with larger aperture. In particular, the
original version of the orthogonal art gallery theorem
establishes that, if o« = 2x, then |n/4] floodlights are
always sufficient and sometimes necessary to cover an
orthogonal art gallery [5].

The question we address here is what is the corre-
sponding version of the this result for a € (0, 27).

3 Orthogonal floodlights

Clearly, since in an orthogonal art gallery the angles
at the vertices are in {7/2,37r/2}, we immediately
have that, if « € [37/2, 27], then [n/4| floodlights are
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Figure 1: (a) An orthogonal polygon that requires one a-floodlight for each tong,
when a € [x/2,37/2). (b}, (¢} and (d) Subpolygons that require one, two and three

floodlights, respectively.

always sufficient and some times necessary to cover
an orthogonal art gallery.

In this section, we study the case when a €
[r/2,3%/2). We first establish the necessity of {3(n
1)/8] floodlights. Let a € [7/2,3x/2). Consider the
orthogonal polygon in Figure 1 (a), where the tongs
are long enough that a fioodlight as shown in the
picture can illuminate at most one tong. Clearly, at
least 4 floodlights are required to cover this polygon.
Moreover, the subpolygon of Figure 1 (b) has one re-
flex vertex and requires one floodlight. The subpoly-
gon of Figure 1 (c) has two reflex vertices and requires
2 floodlights. The subpolygon of Figure 1 (d} has
three reflex vertices and requires 3 floodlights. Now,
consider the progression illustrated by Figure 2. We
start with a rectangle in Figure 2 (a), which is illu-
minated with one floodlight. At each new stage, we
merge a copy of the polygon in Figure 1 (a) by its left
tong. Vertices 10 and 11 are identified with the two
right most vertices in the previous figure. It is not
hard to see that at each stage 3 more a-floodlights
are needed but only 8 vertices are added. Moreover,
since 27 + 4 = n [6], where r is the number of reflex
vertices, the last polygon in the sequence can be one
of the subpolygons in Figure 1 (b)-(d}. It now follows
that, for all », |(6r + 1)/8] + 1 floodlights are neces-
sary. That (3{n — 1)/8] floodlights arc necessary for
all n now follows from arithmetic manipulation.

We now prove that [3(n — 1)/8| floodlights, with
a = w/2 are always sufficient to illuminate an orthog-
onal art gallery with n vertices. We use the following
notation introduced by Rawlins [7]. Given an orthog-
onal polygon P, an edge e of P is said to be a North
edge (N-edge for short), if the interior of the poly-
gon is immediately below e. East, West and South
edges are defined analogously. A vertex is said to
be a North-East vertex (NE-vertex for short), if the

e
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Figure 3: Orthogonal polygons may have
these 8 types of vertices.

polygonal edges that intersect at the vertex are an
N-edge and an E-edge. NW-vertices, SE-vertices and
SWh-vertices are defined similarly. Figure 3 displays
the eight possible types of vertices in an orthogonsl
polygon.

We define the following floodlight placement rule.

North-East placement rule (NE-rule}): For
each North edge e of the polygon, place a
floodlight aligned with e at the East ver-
tex of e. For each East edge e of the poly-
gon, place a floodlight aligned with e at the
North vertex of e.

For a diagram of the NE-tule see Figure 4 (a).

Proposition 3.1 The NE-rule produces an assign-
ment of floodlights that illuminates the interior of P.

Proof: Let p be a point in the interior of the poly-
gon P. Let z be the first point in the border of P
visible by a horizontal ray from p to the East. Clearly,
z is in an E-edge ¢ and p is visible from z. Now, con-
sider a point &’ in e just above z and consider the
rectangle R with extreme points at z’ and p; see Fig-
ure 4 (b). Clearly, if 2’ is close enough to z, the
rectangle R is contained in P. Consider moving x'
North until it cannot be moved further without R
leaving the interior of P. This happens because
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Figure 2: Orthogonal polygons that require one a-floodlight for each tong, when

a € [r/2,3x/2).
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Figure 4: Diagram illustrating the placement of floodlights by the NE-rule

o 2’ has reached the North vertex of e, in which
case, pis illuminated by a floodlight at this point;
see Figure 4 (c), or

o the upper side of the rectangle R has coincided
with a North edge, in which case, pis illuminated
by a floodlight at the East point of this North
edge; see Figure 4 (d).

In both cases, p is illuminated and the proof is com-
plete. a

Similarly, we can define a NW-rule, a SE—ruie and
a SW-rule, each illuminating the polygon. We are
now ready to prove sufficiency.

Proposition 3.2 If a = /2, then (3(n — 1)/8]
floodlights are sufficient to illuminate an orthogonal
polygon P.

Proof: Illuminate the polygon by each of the fonr
rules proposed above. Let || X|| denote the number
of floodlights used by the X rule. Note that each
edge of the polygon receives at most two floodlights
(for example, a N-edge receives a floodlight at its E-
vertex in the NE-rule and at its W-vertex in the NW-
rule). Moreover, in the NE-rule, a NE-convex vertex
receives only one flocdlight. Thus, the number || N E||
of floodlights used by the NE-rule is given by

INE| = (¥l + | Bl — |V E|.,

where ||N||, is the number of N-edges, ||E||, is the
number of E-edges and {|N E||. is the number of NE-
convex vertices. Thus, the total number of floodlights
used by the four rules is given by

I¥NE| + {|[NWI| + |SE|| + ||SW]|} = 2n — ¢,

where ¢ is the number of convex vertices in the
polygon. Since ¢ = (n + 4)/2 [6], we have that
INE|| + [N W[+ SEI +I1SW]| = (3n - 4)/2. Now,
note that each of the rules defines a disjoint set of
floodlights; thus, there is one of the four rules that
uses no more that [3(n ~ 1}/8] floodlights. Placing
floodlights according to the rule with least floodlights
gives the resuit. .|

We have proved the following result.

Theorem 8.8 Let P be an orthogonal polygon with n
vertices and a € [1/2,37/2), then |3(n — 1)/8] flood-
lights are always sufficient and some times necessary
to illuminate P.

Theorem 3.3 proves that a total aperture of 3rn/16
is always sufficient to illuminate (guard) an orthog-
onal polygon. We claim that this result is of signif-
icant relevance despite the fact that it may suggest
that more gnards are required than in the original art
gallery theorem. We support this claim with three
observations:

1. Using Theorem 3.3, the total aperture of 3rn/8
naively proposed by the original version of the

orthogonal art gallery theorem has been reduced
by half,

The placing rules lead directly to a linear al-
gorithm that is much simpler than the algo-
rithms for guards that require sophisticated
trapezoidization, quadrilateralization or decom-
position into L-shaped pieces (6].
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3. The placing rules does not always place 3n/8
floodlights but it may place much less; for exam-
ple, in a staircase polygon, only one floodlight is
used.

4 INuminating with [n/4] or-
thogonal floodlights

An orthogonal art gallery P with » reflex vertices can
be partitioned into [#/2]|+1 L-shaped pieces (6], and
since each L-shaped piece can be illuminated with
one floodlight, we have that [n/4| orthogonal flood-
lights are sometimes necessary and always sufficient
to illuminate an orthogonal polygon. This seems to
contradict our previous results; however, the missing
details is that using O'Rourke’s algorithm to parti-
tion P into L-shaped pieces, some of the floodlights
will be placed in the interior of the polygon. This
seems rather unsatisfactory.

In this section, we show that we can illluminate the
polygon P with {n/4| orthogonal floodlights placed
at points in the boundary of P. We prove this
by showing that |r/2| + 1 orthogonal floodlights at
points in the boundary are always sufficient to illu-
minate P, where r is the number of reflex vertices in
£

Necessity is established by the well-known “comb”
example [6, Figure 2.18]. Sufficiency follows an induc-
tive argument similar to O’Rourke’s proof of the or-
thogonal art gallery theorem [6, Sections 2.5 and 2.6].

A horizontal cut of an orthogonal polygon P is an
extension of the horizontal edge incident to a reflex
vertex through the interior of the polygon. A cut
resolves a reflex vertex in the sense that the vertex
is no longer reflex in either of the two pieces of the
partition determined by the cut. Clearly, a cut does
not introduce any reflex vertices. A horizontal cut is
an odd-cut (also and H-odd-cut) if one of the halves
contains an odd number of reflex vertices.

Proposition 4.1 Let P be an orthogonal polygon
and partition P into Py, Ps,..., P, by drawing all H-
odd-culs and all H-cuts that are visibility rays of iwo
reflez vertices. Then, each P; is in general position
and can be covered with [r;/2]| + 1 floodlights in the
boundary of P, where r; is the number of reflez ver-
tices in P;.

Each P, for ¢+ = 1,...,t is a polygon with no
H-odd-cuts, and thus, is formed by two histograms
Joined at their bases [6]. Moreaver, the structure of

Figure 5: The H-tree of a polygon in gen-
eral position with no H-odd-cuts.

the polygons P;, for i = 1,...,¢, can be determined
further in term of their H-graph. We will profit of
the tree structure of this H-graph to prove Proposi-
tion 4.1.

Call a reflex vertex H-isolated if the other endpoint
of its incident horizontal edge is not reflex, and oth-
erwise call it an H-pair. The H-graph of F; is con-
structed as follows. For each H-pair introduce H-cuts
for both reflex vertices in the pair. The H-graph is
the adjacency graph of the partition defined by the
H-cuts at H-pairs. Each ptece of the partition cor-
responds to a node in the graph, and a node A is
connected by an arc directed to a node B iff (1) A
and B are adjacent pieces separated by an H-cut, and
(2) the H-pair corresponding to the H-cut lies on the
boundary of the A piece.

The H-graph of a P; is a tree, but since P; has
no H-odd-cuts, then P; has exactly one H-isolated
vertex, located at a region that is the only region
corresponding to a source node in the H-graph [6];
see Figure 5.

To prove Proposition 4.1 we first note that all
vertical edges of P; are in the boundary of P, for
+=1,...,t. We will prove Proposition 4.1 by intro-
ducing a transformation T that

1. replaces two leaves and a branch of the H-tree
for a leaf,

2. places an orthogonal floodlight at a reflex vertex
called d in a region that is not a leaf,

3. resolves vertex d and introduces a reflex vertex
d.f

4, removes two other reflex vertices called a and b,
and

5. produces a new polygon with two less reflex ver-
tices, no H-odd-cuts and such that all the vertical



edges of regions in the H-tree that are not leaves
are edges of the original polygon.

Figure 6 illustrates the transformation.

An inductive application of transformation T
proves the result since condition 4 guarantees the
bound of [r;/2| + 1 floodlights to illuminate P;, and
conditions 2 and 5 guarantee that floodlights are al-
ways placed in points of the boundary of the original
polygon. Condition 3 guarantees that no two flood-
lights are placed at the same point.

Since the H-graph can be constructed in linear
time {6] and trapezoidization can be achieved in linear
time [2], it is not hard to see that the above argument
results in a linear algorithm. Thus, we have proved
the following result.

Theorem 4.2 Let P be an orthogonal polygon with
n veriices, then |n/4| orthogonal floodlights placed
in the boundery of P are always sufficient and some-
times necessary o illuminale the interior of P. More-
over, such set of floodlights can be found in O(n)
time,

5 The difficulty of the general
case

Since each triangle has an angle of aperture at least
#/3, it seems that by placing a 7/3 floodlight at each
of the corresponding triangles of a triangulated poly-
gon a cover of the polygon will be obtained. Although
this argument demonstrates that nx/3 is enough to-
tal aperture, it does not provide a floodlight illumi-
nation, since two floodlights may be required at the
same vertex.

In this section, we attempt to illustrate that the
solution to the floodlight illumination problem of a
polygon requires the study of different partitioning
strategies than those considered so far, like triangu-
lation. We will construct a polygon that requires that
some a-floodlights be placed not aligned with any of
the polygonal edges. We will prove the following re-
sult,

Proposition 5.1 For a € [0, 1), there are polygons
P that cannot be illuminated by a-floodlights, unless
some of the floodlights are not aligned with the polyg-
onal edges.

Proof: Consider & < 37/4. Then, there is ¢ > 0 such
that 3 = a + € < er/4. Imagine a circle C of radius
r and centered at (0, 0) in the Cartesian plane. This
circle will be inside the polygon.

Figure 7: The construction of a polygon
that requires floodlights not aligned with
its edges.

The first vertex v, of the polygon is at (r,0); the
vertex vz is on the circle C and the ray I that makes
an angle of /4 with the z-axis. For i = 0,1,...,7,
vertex vz, is on the intersection of C and the ray I
that makes an angle of tx/4 with the z-axis.

The edge {vi, v2) lies on the line {y that forms an
angle of » — 8 with the z-axis and passes through ;.
Since 7 — B = 7 — (@ + ¢} > © - 37/4 = x/4, the
line {; intersects with the ray #1. The vertex vy is on
the opposite half-plane of the line I than v,; see Fig-
ure 7. The vertex vy, is defined analogously, rotating
clockwise by x/4 the construction in Figure 7.

We claim that any a-floodlight aligned with any of
its edges does not illuminate the center of C. Because
of symmetry, we just need to analyze what an a-
floodlight at v;, at »; aligned with the edge vy, v,
and at v aligned with the edge v3, v, can illuminate.

Clearly, an a-floodlight at v, cannot illuminate
{0, 0) because vy is on I} and v; is on the opposite side,
An a-floodlight at v, aligned with the edge vy, v, will
not illuminate (0,0) since the angle at v, is 8 > a.
Finally, an a-floodlight at v, aligned with vg, v can-
not illuminate (0, 0) since the angle v, v3(0,0) at vz is
larger than 7 and a < 37/4.

Adding more tongs to the polygon, the example
can be extended for o < . a

6 Final Remarks

We have shown a tight bound of |3(n — 1)/8] for the

number of orthogonal floodlights sufficient to cover

an orthogonal polygon with n vertices. Our results

have lead directly to a very simple linear algorithm

that computes a covering of the polygon and that

guarantees a total aperture of no more than 3rn/16.
However, several open problems remain.

1. What bounds can be found for other classes of
polygons?
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Figure 6: The transformation T that eliminates two reflex vertices, and replaces
two leaves and a branch for a region that is a leaf.

2. Is computing the minimum set of covering o-

floodlights an NP-hard or NP-complete prob-
lem?

. If the floodlights are allowed to have each a dif-

ferent aperture a;, what can be said about the
problem of finding a cover that optimizes the to-
tal angle power given by 2?:1 ai?
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