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Abstract

Let S be a point set in general position on the plane
such that its elements are colored red or blue. We
study the following problem: Remove as few points
as possible from S such that the remaining points can
be enclosed by two isothetic rectangles, one containing
all the red points, the other all the blue points, and
such that each rectangle contains only points of one
color. We prove that this problem can be solved in
O(n?3) time and space.

1 Introduction

In Data Mining and Classification problems, a natural
method to analyse data, is to select prototypes repre-
senting different classes of data. A standard technique
to achieve this, is to perform cluster analysis on the
training data [4, 6]. The clustering can be obtained by
using simple geometric shapes such as circles or boxes.
In [1, 5], circles and parallel-axis boxes respectively,
are considered for the selection. In [1], the following
problem is studied: given a bicolored point set, find a
ball that contains the maximum number of red points
without containing any blue point inside it.

In some cases these methods can produce slanted
classifications due to the fact that some data may be
defective or contain values out of reasonable ranges.
In other cases, we may obtain data hard to classify
due to relatively small similarities between different
classes. A possible way to find a better classification
for the former problem is to remove some data-points
from the input. Culling the minimum number of such
points can be a suitable criterium to lose as less in-
formation as possible. Thus, in this paper we study
the following problem: Let S be a bicolored point set
in general position on the plane such that no two ele-
ments of S lie on a vertical or horizontal line. Find
the largest subset S’ of S that can be enclosed by two
isothetic rectangles R and B such that:

e R (resp. B) contains all the red (resp. blue)
points of S’ respectively
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e R (resp. B) contains no blue (resp. red) points
of §'.

We will refer to this problem as Empty Intersection
Enclosing Boxes problem or simply as EIEB-problem.

For example, the solution to the EIEB-problem for
the point set shown in Figure 1 is 2, since by remo-
ving the points r; and b; we can obtain two rectangles,
R and B each of them containing only red and blue
points respectively.
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Figure 1: Removing points r1 and by, we get a solu-
tion.

From now on, an isothetic rectangle enclosing a set
of red (resp., blue) points will be called red rectangle,
denoted by R (resp., blue rectangle, denoted by B).

To solve our problem, we observe first that given a
bicolored point set S, and two rectangles R and B that
provide an optimal solution to the EIEB-problem for
S, there are three types of relative positions of R with
respect to BB, up to symmetry. These are depicted in
Figure 2. We call a corner solution to that in which R
contains exactly one corner of B; a sandwich solution
to that in which R intersects properly two parallel
sides of B; and disjoint solution to that in which R
and B can be separated either by a horizontal or a
vertical line.
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Figure 2: a.) Corner, b.) sandwich and, c.) disjoint
solutions.

Our procedure consists on looking for the best so-
lution of each type keeping the best among them. In
all of the previous cases, we reduce our 2-dimensional
problem to the following 1-dimensional problem:

Mazximum Consecutive Subsequence (MCS):
Given a sequence x1, 2, ..., Ty of 0's, +1’s and —1’s,



compute, for every index ¢ = 1,...,n, all the subse-
quences %;,Ti+1,...,&; of consecutive elements such
that x; + 2441 + ...+ x; is maximized over all subse-
quences starting at x;.

It is relatively easy to see that the MCS-problem
can be solved in linear time by using the same tech-
niques used to solve Bentley’s Mazimum segment sum
problem [2].

2 Finding the optimum Corner Solution

We now sketch the key idea to find the best corner
solution. The remaining cases are solved using similar
techniques.

We proceed now to show how to solve the EIEB-
problem in O(n?) time.

Red(R\ B)
Blue(R\ B)
Red(R N B)
Blue(RNB
Blue(B\R) L) e
Red(B\R)
B

Figure 3: Notation for points in S depending on their
location.

Let (R, B) be a corner type pair of rectangles. Assu-
me for the rest of this section that, as in Figure 3, R
contains the topmost right corner of B. We denote by
Red(R \ B) to the set of red points of S contained in
R\ B. Similarly we define Blue(R \ B), Red(B\ R),
Blue(B\R), Red(RNB), and Blue(RNB), see Figu-
re 3. We remark that R and B are considered to be
closed sets.

Proposition 1 Let (R,B) be a corner type pair of
rectangles. Then, it is possible to find another corner
type pair (R, B) such that R\B (resp., B\R) contains
at least Red(R\B) red points (resp., Blue(B\'R) blue
points) and the sides of R (resp., l%) go through red
(resp., blue) points.

Corollary 2 There exists a pair (R, B) of corner type
rectangles that provides an optimal corner solution
such that the sides of R (resp., B) go through red
(resp., blue) points.

From now on, any rectangle R (resp., B) will be
considered to be delimited by red (resp., blue) points
of S.

A pair (R, B) of corner type rectangles that pro-
vides an optimal corner solution will be a pair that
maximizes the sum |Red(R \ B)| + |Blue(B\ R)|.

Let Qr be the quadrant obtained from R by ex-
tending to infinity its left and lower sides towards the
North and the East respectively. We will refer to Qr
as the red quadrant. Similarly we define the blue quad-
rant Qp, obtained by extending to infinity the right
and upper sides of B towards the South and West re-
spectively. We will assume that the quadrants include
their borders.

As a consequence of Proposition 1, if (R, B) pro-
vides an optimal solution, then |Red(R \ B)| =
|Red(Qr \ Og)| and |Blue(R\B)| = |Blue(Qp\ Qr)|.
We then reformulate our problem as follows: find the
pair of quadrants (Qgr,Qg) that maximize the sum
|Red(Qr \ Q5| + |Blue(Q5 \ Qr)|.

It is easy to see that by using range search tech-
niques [3], we can solve this problem in O(n?) time.
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Figure 4: Tllustrating the Query problem.

2.1 The Algorithm

Consider the orthogonal grid generated by drawing
horizontal and vertical lines through the elements of
S.

Assume we have already preprocessed points in S
so that it is possible to answer in O(1) amortized time
the next problem (Figure 4):

OptQuad: Given a red quadrant Qr, determined
by two red lines < h,., v, >, and a blue horizontal line
hy above h,., find the blue vertical line v, to the right
of v, such the blue quadrant Qg bounded above and
to its right by hp and v, respectively, is such that it
maximizes the sum |Red(Qr \ Qp)|+|Blue(Qp\ Or)]
over all the possible choices of vy.

Our algorithm to solve an instance of a corner type
solution proceeds as follows.

Corner Solution Algorithm (CS-Algorithm):

1. For each vertex of the grid, compute the number
of red and blue points of S laying in the four
(North-West, North-East, South-West and South
East) quadrants with vertex in it.

2. For each red quadrant Qr < h.,v, > and for
every blue horizontal line hy above h,., the query
reports a blue vertical line vp. Store the sum
S(Qr,0s) = |Red(Qr \ @5)| + |Blue(Qs \ Qr)|-

3. Output the pair (Qr, Qp) that provides the ma-
ximum value s 0x)-



Complexity: It is easy to see that the first step
of our algorithm can be completed in quadratic time
[3]. The second step of our algorithm answers O(n?)
queries. These queries can be solved in amortized
constant time using OptQuad. Finally reporting the
best $(gr,0;) can be done in constant time.

2.2 The Preprocessing

Theorem 3 The number of red points in Qg plus
the number of blue points in Qp minus the number of
blue and red points in Qr N Qr equals by + 1 + c.

It follows now that we have to maximize ¢ to find
the optimal solution in which Qg participates, and
Op is bounded above by hp. This can be done
using the solution to the SMC problem in P =

We now describe briefly the preprocessing needed to
solve OptQuad and prove the correctness of the
whole algorithm. Consider the orthogonal grid ob-
tained by passing a horizontal and a vertical line
through every element of S. Assume that these lines
are colored red or blue according to the color of the
point in S they contain.

Each pair consisting of a horizontal blue line hy
and a horizontal red line A, below it determines a
horizontal strip HSp, p,.. We assign weights to some
elements of S according to the following criteria, see
Figure 5 a.):

1. Every red point inside HS}, p, has weight —1
2. Red points in or above HSp, n, have weight 0
3. Blue points in HS}, p, have weight 0

4. Blue points below H S}, n, have weight +1

Blue points above HSy, p, and red points below
HSy, n, are discarded. We next project our blue and
red points together with their weights on the x — axis
obtaining a sequence P = {p,(1),- - -, Po(k) } Of points

{Ps(1)s -+ Po(k)}- Thus we have:

Theorem 4 An optimum corner solution can be
found in O(n?) time and storage, given O(n®) pre-
processing time.

with weights —1,0, or +1, where k is the number of
weighted points of S. We use now the solution to the
MCS problem, and find for each p,(; the j > i s.t.
the sum of the weights of all the elements in P bet-
ween Py (;) and p,(;) (including the weight of py(;)) is
maximized.

Suppose now that we have a red quadrant bounded
below by h,. and to its left by a vertical line v,. through
a red point above h,, and a blue quadrant bounded
above by hp and to its right by a vertical line v
through a blue point as shown in Figure 5 b.). Let
@’ be the quadrant bounded above by hy, and to the
right by v,..

Let us define the following numbers:

e Let b; be the number of blue points in Q'
e Let r; be the number of red points in Qr

e Let ¢ be the sum of the weights of the ele-
ments of P = {py(1),---,Po(k)} between p,;
and p,(;), where p,(;) and p,(;) are the points
into which points in v, and v, were projected in
P =A{Ps(1),- -+ Pa(k) }-
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Figure 5: Illustrating the proof of the algorithm’s cor-
rectness.



3 Conclusions

We propose an algorithm to solve the EIEB-problem
that requires O(n?) time and quadratic space. The
algorithm solves separately three different possibilities
for an optimal solution type: corner, sandwich and,
disjoint solution. We have presented here the way to
solve the optimum corner solution. This is the most
interesting case, the others can be solved in a similar
way.

To conclude, let us mention that the 1-dimensional
EIEB-problem, where a set of red and blue points on
a line are given and we are asked to determine the
minimum number of points to be removed in order
to get two disjoint intervals containing points of only
one color, can be solved in lineal time.
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