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Abstract

A k-dissection D of a polygon P , is a partition of P into a set of
subpolygons {Q1, . . . ,Qm} with disjoint interiors such that these can
be reassembled to form k polygons P1, . . . ,Pk all similar to P . D is
called non-trivial if none of {Q1, . . . ,Qm} is similar to P .

In this paper we show that any convex n-gon has a k-dissection
(resp. sequential dissection) with (k − 1)n + 1 pieces, n ≤ 5.

Let k ≥ 2 and n ≥ 3 be integers and let P be an n-gon. We show
that if P is a convex polygon and n ≤ 5, then there exists a dissection
of P consisting of at most (m−1)n+1 polygons which combine to form
sequentially 2, 3, · · · , m unequal polygons similar to P . If P is a convex
polygon and n ≥ 6, then there exists a dissection of P consisting of at
most b 5m−4

3
nc−2(m−1) polygons which can be assembled similarly as

stated above. We also show that for m ≡ 1 ( mod .3) and general n-gon
P , we can dissect P into at most 2n − 2 + m−4

3
(b 7

3
nc − 4) polygons

which combine to form sequentially 4, 7, · · · , m polygons similar to P .

1 Introduction

Dissections of polygons is a truly classical field of study in the mathemat-
ical sciences. A classical result of the 18-th century by Lowry, Wallace,
Bolyai, and Gerwing, asserts that given two simple polygons P and Q of the
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same area, we can dissect P into a finite number of polygons which can be
reassembled to form Q.

Books on dissections of polygons appear from time to time in the litter-
ature, each bringing new advances and interesting puzzles to the topic we
study here, e.g. Fourrey [3](1907), Kraitchik [6](1942), Gardner [5](1961),
. . . , and lately Frederickson [4].

Let P be a polygon on the plane. A k-dissection D of P is a partitioning
of P into subpolygons {P1, . . . ,Pm} with disjoint interiors such that they
can be reassembled to form k polygons all similar to P. Each P i is called a
piece of D. If none of the pieces of D is similar to P, D is called non-trivial.
A dissection of P is called sequentially k-divisible if for every j, 1 ≤ j ≤ k, its
pieces can be assembled so as to form j polygons similar to P. In Figure 1(a),
we show a sequentially 2-divisible dissection of a triangle. Figure 1(b) shows
a non-trivial sequentially 2-divisible dissection of the same triangle.

(a)

(b)

A

B C

D

E

F

G

P1,1

H

Figure 1: A 2-dissection and a nontrivial 2-dissection of a triangle.

Sequentially k-divisible dissections of squares have been studied in [1, 2,
7, 8]. In this paper we present sequentially k-divisible dissections of triangles,
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convex quadrilaterals, and convex pentagons with 3k − 2, 4k − 3, and 5k −
4 pieces respectively. For triangles we present non-trivial sequentially k-
divisible dissections with 3k − 1 pieces. For regular 4n-gons, we present
sequentially k-divisible dissections with (k − 1)n + 1 or (k − 1)n − k + 2
pieces for n odd and even resp. Finally for simple polygons, not necessarily
convex, with n vertices we present a 4-dissection with 2n − 2 pieces. This
allows us to construct 4+3k-dissections with at most (2n−2)+k(2n+b n

3 c−4)
pieces.

2 Sequentially divisible dissections of triangles

Two polygons P and Q are called similar if there is mapping f : R
2 → R

2

such that f(x) = p0 + λx, and f(P) =Q, where p0 is a point in R
2. P and

Q are called congruent if there is a translation T , a rotation R, and perhaps
a reflection that maps P onto Q.

Let P be a polygon on the plane. A dissection D of P is a partititoning
of P into m subpolygons P1, . . . ,Pm such that intP i ∩ intPj = φ, 1 ≤ i <

j ≤ m, where intP denotes the interior of P. Each P i is called a piece of
D. Given two polygons P and Q we say that P can be dissected into Q if
there are dissections D = {P1, . . . ,Pm} and D′ = {Q1, . . . ,Qm} of P and
Q such that P i is congruent to Qi, i = 1, . . . ,m. We will also say that the
pieces of D can be reassembled into Q. If none of the pieces of D is similar
to P, D will be called a non-trivial dissection of P.

The following notation will be useful throughout our paper: Given two
points P and Q on the plane, PQ will denote the line segment joining them.
The point (1 − λ)P + λQ will be denoted as λ(PQ). Notice that λ(PQ) is
different from λ(QP ). For example when λ = 0, we obtain P , and when
λ = 1 we get Q, and when λ = 1

2 we obtain the mid point of the segment
PQ. In a similar way, let Q be a polygonal with vertices Q1, . . . , Qn, then
λ(P,Q) will denote the poligonal with vertices λ(PQ1), . . . , λ(PQn). If line
segments PQ and RS are parallell, we will write PQ ‖ RS. If a polygon P
has vertices V1, . . . , Vn we will often refer to it as the polygon {V1, . . . , Vn}.

Observe that if two polygons P and Q are similar, any dissection D=
{P1, . . . ,Pm} of P induces in a natural way, a dissection D ′ of Q such that
the pieces of D′ are the sets f(P i), i = 1, . . . ,m. Dissection D′ will be
refered to as the dissection induced in Q by D. We now prove:

Theorem 2.1 Any triangle has a sequentially k-divisible dissection (resp.
non-trivial sequentially k-divisible dissection) with 3k − 2 pieces (resp. 3k −
1).
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Proof: Let P0,1 be a triangle with vertices {A,B,C}, and assume that
the perpendicular line through A to the line segment BC intersects it. Let
D0 be the dissection of P0,1 obtained as follows: Let D and E be the points
on AB such that D = 3

5(AB) and E = 4
5 (AB), and let F ∈ AC, G ∈ BC

and H ∈ DF be the points such that DF ‖ BC, EG ‖ AC and GH ‖ AB

(Figure 2.1.(a)). Then triangle P1,1 with vertices {A,D,F} is similar to
P0,1 and their ratio of similitude is 3

5 . Notice that triangle P1,2 with vertex
set {B,E,G} and trapezoids P1,3 and P1,4 with vertices {D,E,G,H}, and
{C,F,H,G} respectively can be assembled into a triangle similar to P 0,1

with ratio of similitude equal to 4
5 , see Figure 1(a).

In a recursive way, let Dj be the disection induced in P j,1 by D0, where
Pj,1 is the triangle of Dj−1 containing vertex A, j ≥ 1. For any fixed integer
k, (D0 −{P1,1})∪(D1 −{P2,1})∪ . . .∪Dk defines a disection Dk of P0,1 with
exactly 3k + 4 pieces. See Figure 2(a). Clearly Dk is a sequentially (k + 2)-
divisible dissection of P0,1.

(a) (b)

A

B C

A

B C

Figure 2: A sequentially 4-divisible dissection of a triangle.

Finding non-trivial sequentially k-divisible dissections of triangles is more
challenging. First we start by modifying Dk to obtain a sequentially k-
divisible dissection D of triangle {A,B,C} as shown in Figure 2(b). The
main objective of our modification, is to make sure that every second trian-
gle of Dk from top to bottom touches AB, and the others touch AC (with
the exception the triangle containing A, which touches AB, and AC). The
details of this modification are straightforward, and are left to the reader.
We now proceed to show how we can modify this construct to obtain a
sequentially k-divisible dissection of our triangle.

Suppose that we relabel the triangles of D from top to bottom by
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(a)

(b)

Figure 3: Finding a non-trivial sequentialy 5-dissection dissection of a tri-
angle.

T 1, . . . , T n as shown in Figure 3(a). Split T 2 into two triangles L2 and
R2 by drawing a vertical through its top vertex. Join triangle L2, the left
piece of T 2 to the element of D below it. Next split T 1 into two pieces, one
of which, containing its rightmost vetex, is similar to R2, and join the right
piece to the element of D below it, as shown in Figure 3(b). In a recursive
way, we now split T i into a right piece Ri and a left piece Li such that if i

is odd, then Li is congruent with Li−1, and if i is even then Ri is congruent
to Ri−1, i = 2, . . . , k. Next if i is odd, join Ri to the piece of D below it,
else if i is even join Li to the piece of D below it, i < k, see Figure 3(b).
It is now easy to see that the pieces of the dissection thus obtained form a
sequentially k-divisible dissection. In Figure 4 we show how to assemble the
pieces of the dissection in Figure 3(b) into five triangles.
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Figure 4: Reassembling the dissection in Fig 3(b) into five triangles.

3 Quadrilaterals

We now show:

Theorem 3.1 Any convex quadrilateral has a sequentially k-divisible dis-
section with 4k − 3 pieces.

Proof: Let P= {A,B,C,D} be a convex quadrilateral to be dissected.
Since ( 6 A + 6 B) + ( 6 C + 6 D) = 2π, we may assume that 6 A + 6 B ≤ π.
Since ( 6 A+ 6 D)+( 6 B + 6 C) = 2π, we may also assume that 6 B + 6 C ≤ π.

We first give a sequentially 2-divisible dissection of P consisting of five
pieces. Let E ∈ AB, F ∈ AD be the points such that E = 3

5 (AB), F =
3
5 (AD) and let G be the point on the diagonal AC such that EG ‖ BC (so
FG ‖ DC). Let H ∈ BC, I ∈ DC be the points such that H = 1

5(BC), I =
1
5 (DC), let J ∈ EG, K ∈ FG be the points such that JH ‖ AB and
KI ‖ AD and let  L be the mid-point of JH. Let M be the intersection
point of the line passing through E and parallel to DC and the line passing
through L and parallel to AD. Since 6 A + 6 B ≤ π and 6 B + 6 C ≤ π, M is
a point in the parallelogram {B,E, J,H}. This produces the the dissection
of P with pieces {P1,1, . . . ,P1,5} as shown in Figure 5(a). It is easy to see
now that this is a sequentially 2-divisible dissection of P (Figure 5(b)).

In a recursive way let Di be the dissection induced in Pi,1 by D. This
produces a sequence of sequentially k-divisible dissections of P with 4k − 3
pieces.
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P1,1

P1,5

P1,2 P1,3

P1,4

P1,4

P1,5 P1,3

P1,2

P1,1

(a) (b)

Figure 5: A 2-dissection of a convex cuadrilateral.

4 Pentagons

Theorem 4.1 Any convex pentagon has a sequentially k-divisible dissection
with 5k − 4 pieces.

Let P be a pentagon. As in the previous section, we will exibit a 2-
sequential dissection of P into six pieces P1, . . . ,P6 such that:

1. P1 is similar to P

2. P2, . . . ,P5 can be assembled into a pentagon similar to P.

Some preliminary results will be proved now.

Lemma 4.2 Let P be a pentagon. Then we can label its vertices A, B, C,
D, and F in the clockwise or counter-clockwise direction such that:

1. 6 A + 6 B > π , 6 B + 6 BCE ≥ π

2. At least one of the following holds:
6 ACD + 6 D ≥ π or 6 D + 6 E > π
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Proof: Assume that the vertices of P are labelled P1, . . . , P5 in the coun-
terclockwise direction, and for each i let Qi be the polygon with vertices
{P1, . . . , P5}− {Pi+2}, addition taken mod 5. If the sum of the angles of Qi

at Pi and Pi+1 is greater than π we color Pi with color 0, else color Pi with
color 1.

It now follows that there is an index i such that one of the following two
conditions hold:

1. Pi, and Pi+1 are colored 0 and Pi−1 is colored 1 or Pi−2 is colored 0

2. Pi, and Pi+1 are colored 1, and Pi+2 is colored 0 Pi+3 is colored 1

It is now easy to verify that, in the first case when Pi and Pi+1 are colored
0, if Pi−1 is colored 1, then 6 Pi + 6 Pi+1 > π , 6 Pi+1 + 6 Pi+1Pi+2Pi+4 ≥ π

and 6 PiPi+2Pi+3 + 6 Pi+3 ≥ π. If Pi−2 is colored 0, then 6 Pi + 6 Pi+1 > π ,
6 Pi+1 + 6 Pi+1Pi+2Pi+4 ≥ π, and 6 Pi+3 + 6 Pi+4 > π. Let A = Pi, . . . , E =
Pi+4.

The case when Pi and Pi+1 are colored 1 is solved in a similar way, with
A = Pi, B = Pi−1, . . . , E = Pi−4 = Pi+1.

Let P be a pentagon with its vertices labelled A, B, C, D, E as in
Lemma 4.2. Let A1 = A, B1 = 3

5 (AB), . . . ,E1 = 3
5(AE), A2 = 2

5 (DA),. . . ,
C2 = 2

5(DC), D2 = D, and E2 = 2
5(DE). Let F1 = 2

5 (BC), and G1 =
1
3 (B1C1).

Since 6 B + 6 C > π by the first condition 1 in Lemma 4.2, pentagons
{A1, B1, C1, D1, E1} and {A2, B2, C2, D2, E2} have no common inner point.
Notice that BB1 and B2A2 have the same length. Since 6 A + 6 B > π the
translation that maps BB1 to B2A2 maps the rectangle {B,F1, G1, B1} to
a subset of the pentagon {A2, B2, C2, D2, E2}.

Consider next the pentagon with vertices C3 = C2, A3 = 1
2 (C2A2), B3 =

1
2 (C2B2), D3 = 1

2(C2D2), E3 = 1
2(C2E2). Let us now rotate pentagon

{A3, B3, C3, D3, E3} 180 degrees around A3 as shown in Figure 6(a) to obtain
the pentagon P4 with vertices {A4, B4, C4, D4, E4}.

Two cases arise: E4 belongs to the interior of pentagon {A,B,C,D,E}
as in Fig 6(a), or E does not lie in the interior of the same pentagon.

In the first case, the reader can now verify that the dissection shown in
Figure 7(a) is realizable. In the case when E4 lies outside of our original
pentagon, (this situation can arise if we move point E in Figure 6(a) far
enough to the right, for aesthetic reasons we don’t show a picture for this
case) we will show that the pentagon obtained by translating {A3, . . . , E3}
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P2
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P4

P5

P6
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C

A3

B1

C1

E 1

E
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G1

E 2

B2

B3 E 3

D = D2

A = A 1

D = A 21

C  = C 32

A3

P3

P2

P1

P4
P5

P6

A

B

C D

E

(a) (b)

Figure 6: Finding a dissection of a convex pentagon.

such that E3 lies on D1 is contained in the parallelogram {D1, E2, E,E1}.
The dissection shown in Figure 7(b) will now be realizable.

P2

P3

P4

P5

P6

P2

P3

P4

P5

P6

(a) (b)

Figure 7: Showing the regrouping of the pieces of the dissection from figure 6.
P1 is not shown here, but it is a part of the 2-dissections illustrated here.

Given two points P and Q,
−−→
PQ will denote the vector P − Q. Let

a =
−→
AC, b =

−→
AE and consider the unique real numbers α and β such that

−−→
AD = αa + βb.

Clearly
α > 0, β > 0 and α + β > 1 (4.1)
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We also have
β ≤ 1 or α < 1, (4.2)

depending on whether 6 ACD + 6 D ≥ π or 6 D + 6 E > π holds.
Two cases arise:

Case 1. β > max{ 1
3 , α − 1}:

This corresponds to the case when E4 belongs to the interior of our pen-
tagon. For this purpose, we show that P4 ⊂ {F1, C, C2, F2, B4, C4, C1, G1}
and that {F1, C, C2, F2, B4, C4, C1, G1} \ P4 is connected. Since

−−−→
C4E4 = −1

5

−−→
CE

= 1
5(a − b)

= 1
3β

· 35 [a − (αa + βb)] + α+β−1
2β

· 25a

= 1
3β

−−−→
C4C1 + α+β−1

2β

−−−→
C4C2

and since 0 < 1
3β

< 1 and 0 < α+β−1
2β

< 1 by the assumption of Case 1 and
(4.1), E4 is an inner point of the parallelogram {C, C2, C4, C1}. Since
6 B4A4E4 < π, this implies E4 ∈ int {F1, C, C2, F2, B4, C4, C1, G1}, and
hence P4 ⊂ {F1, C, C2, F2, B4, C4, C1, G1} and {F1, C, C2, F2, B4, C4, C1, G1}\
P4 is connected, as desired.

Case 2. β ≤ max{ 1
3 , α − 1}:

We will show now that in this case P5 ⊂ {E1, E5, E2, E} and that
{E1, E5, E2, E} \ P5 is connected. This will prove that the dissection
shown in Figure XXX is realizable. By (4.1), (4.2) and the assumption of
Case 2 we have that

α > 2
3 and β < 1 (4.3)

Let γ and δ be unique real numbers such that
−−→
EB = γ

−→
EA + δ

−−→
EC (=

γ(−b) + δ(a − b)).
Since 6 A + 6 B > π , 6 B + 6 BCE ≥ π we have that:

0 < δ ≤ 1 and 0 < γ < 1 (4.4)

We also have
−−−→
E5B5 = −1

5

−−→
EB

= −1
5 [γ(−b) + δ(a − b)]

= δ
3α

· 35 [b − (αa + βb)] + (γ+δ)α+δ(β−1)
2α

· 25b

= δ
3α

−−−→
E5E1 + (γ+δ)α+δ(β−1)

2α

−−−→
E5E2, (4.5)
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and

−−−→
E5C5 = −1

5

−−→
EC

= −1
5(a − b)

= 1
3α

· 35 [b − (αa + βb)] + α+β−1
2α

· 25b

= 1
3α

−−−→
E5E1 + α+(β−1)

2α

−−−→
E5E2. (4.6)

Since 0 < δ
3α

< 1
3α

< 1
2 , 0 <

(γ+δ)α+δ(β−1)
2α

<
2α+(β−1)

2α
< 1 and 0 <

α+(β−1)
2α

< 1
2 by (4.3) and (4.4), it follows from (4.5) and (4.6) that B5

and C5 are inner points in the parallelogram {E1, E5, E2, E}. Hence
P5 ⊂ {E1, E5, E2, E} and {E1, E5, E2, E} \ P5 is connected, as desired.

Consider next any of the dissections D shown in Figure 6. As we did
before, we will now take the dissection induced by D on P1 to obtain a 3-
dissection of P. By iterating this process, we get a sequence of sequentially
k-divisible dissections of P with 5k − 4 pieces.

5 Hexagons

In Figure 8 we give a 2-sequential dissection D of a regular hexagon P with
vertices A,B,C,D,E, F into 7 pieces. In this figure, B1 = 3

5(AB), C1 =
3
5 (AC), W = 1

3(B1C1), and Y = 3
5(CD). Also the following distances are

one fifth of the distance from B to C: the distance from B1 to W , the
distance from X to Y , and the distance from D1 to Z. The remaining
details are left to the reader. By recursively using the dissection induced in
P1 by D it follows that there are k-sequential dissections of regular hexagons
with 6m − 5 pieces.

6 Sequentially divisible dissections of regular 4k-

gons

In page 97 of [4], 2-dissections of regular n-gons are given. For n even those
dissections contain n pieces, for n odd, n + 1 pieces.

Using the iteration process studied in the second section of our paper
the following result now follow:

Theorem 3.A. Let P be a regular polygon with n vertices, and k ≥ 2
be an integer. Then if n is odd there is a sequentially k-divisible dissection
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P
7

P3P2
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4 P
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Figure 8: A 2-dissection of a regular hexagon. We show how to reassemble
{P2, . . . , P7} to form a regularhexagon.

of P with (k−1)n+1 pieces. If n is even a sequentially k-divisible dissection
with (k − 1)n − k + 2 pieces exists.

We now give a new 2-dissection of regular 4k-gons with 4k pieces. Let P
be a regular polygon with 4m vertices labelled A0, . . . , A4m−1 in the coun-
terclockwise direction, with A0 being the topmost vertex of P.

Consider a second regular 4m polygon B with vertices B0, . . . , B4m−1 of
size 2

5 that of P. We present first a dissection of P2 with 2m pieces obtained
as follows:

For each i, 1 ≤ i ≤ m let Qi be the polygonal with vertices B0, . . . , B2i,
and let Q‘

i be the polygonal 1
2(B2i,Qi). Let Qi,1 be the polygonal obtained

by joining a copy of Q‘
i with the polygonal obtained by rotating Q‘

i 180
degrees around the point 1

2(B2iB0) as shown in Figure . Finally let Qi,2

be the polygonal obtained from Qi,1 by rotating it 180 degrees around the
center of B. The set of Qi,1, Qi,2, i = 1, . . . ,m induces a partitioning of B
into 2m pieces. Let us label the regions of this partitioning P 2i, i = 1, . . . , 2m

as shown in Figure for the case m = 3. With this labelling P 2i will contain
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vertex B2i−1 of B.
We now show a dissection of P that will contain pieces similar to P 2i,

i = 1, . . . , 2m. Let P1 be the polygon 3
5 (A0,P). Le us label the vertices of

P1 by Ci, i = 0, . . . , 4m − 1, where C0 = A0.
For each 1 ≤ i ≤ m let us translate a copy of P2i so that vertex B2i−1

is mapped to vertex A2i−1 of P. Since the lenght of segment A2i−1C2i−1 is
2
5 the lenght of A2i−1A0 the point B0 of P2i maps to vertex C2i−1 of P1.
See Figure . We now flip our current construction along the line passing
through A0 and A2m, to obtain a dissection of P with 4m pieces as shown
in Figure TOCOME. Label the immages of P2i under our flipping along
the line determined by A0 and A2m by P4m−2i+2, i = 1, . . . ,m as shown
in the same figure. Clearly when we reflect P4m−2i+2, i = 1, . . . ,m, the
resulting pieces togeter with P2i, i = 1, . . . ,m can be reassembled to form
B. It is now easy to verify that the remaining pieces, P 3, . . . ,P4m−1 can be
assembled to form a polygon similar to P of size 4

5 the size of P minus a
polygon congruent to B. It now follows that the resulting partititoning of
P is a 2-dissection of P.

7 Dissecting simple polygons

Consider a simple polygon P with n vertices. We now present a 4-dissection
of P that uses exactly 2n − 2 pieces. A triangulation T of P is a parti-
tion of P into n − 2 triangles {t1, . . . , tn−2} with disjoint interiors obtained
by cutting P along n − 3 diagonals joining pairs of vertices of P, see Fig-
ure 9(a). We observe now that if we dissect each ti ∈ T into 4 similar
triangles {ti,1, ti,2, ti,3, ti,4} by cutting it along the line segments joining the
mid points of its edges we obtain a dissection D ′ of P with 4(n−2) triangles,
see Figure 9(b). Clearly for each j, the set of triangles {t1,j , . . . , tn−2,j} can
be reassembled to obtain 4 polygons similar to P, j = 1, . . . , 4.

We now show how to modify D′ to obtain a 4-dissection D of P with
2n− 2 pieces. First we color the vertices of P with 3 colors 1, 2, and 3 such
that if two vertices of P are adjacent in T , (i.e. that are connected by a
diagonal of T or an edge of P) they receive different colors. See Figure 10(a).
Our new dissection D is now obtained from D ′ by eliminating the cuts made
in P along the diagonals used to obtain T , see Figure 10(b). The pieces of
D are n polygons each of which contains exactly one vertex of P, plus a set
of triangles, one for each ti ∈ T . Since T contains n − 2 triangles, it now
follows that the number of pieces of D is exactly 2n − 2.

We now show how to assemble the pieces of D into four polygons similar
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(a) (b)

Figure 9: Triangulating and dissecting P.

to P. Consider the triangulation T together with the 3-vertex coloring
defined before. Notice that each triangle in T has exactly one vertex of each
color. For each such vertex vi of P let P i be polygon obtained by joining the
set of triangles in T having vi as one of its vertices. We observe now that
each of the sets Sj = {P i : vi has color j}, j = 1, 2, 3 induces a dissection
of P. Furthermore, observe that for each vi the polygon of D containing
it, denoted by P

′

i is similar to P i. It now follows that the sets of polygons
S

′

j = {P
′

i : vi has color j} can be reassembled to form polygons similar to
P, j = 1, 2, 3. Observe now that the remaining triangles of D can also be
reassembled to form a fourth polygon similar to P. Summarizing we have:

Theorem 7.1 Every simple polygon with n vertices, has a 4-disection with
2n − 2 pieces, n ≥ 3.

We now show how to obtain (4 + 3k)-dissections of P with at most
(2n − 2) + k(2n + bn

3 c − 6) pieces. Since the coloring of the vertices of T

induces a partition on its vertices, there is a chromatic class with at most
bn

3 c vertices. Suppose then that the cromatic class containing the vertices

with color 1 has at most bn
3 c elements. Let D

′′
be the dissection of P

obtained from D by adding cuts along the diagonals of T joining pairs if
vertices colored with colors 2 and 3, see Figure 11(a) and (b). Observe that
the number of diagonals of T with endpoints colored 2 and 3 is exactly the
number of vertices of color 1 minus 1, and that when we cut the pieces of
D along each of these diagonals, the number of pieces increases by 2, see
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Figure 10: Coloring and obtaining our final dissection D.

Figure 11. Since there are at most bn
3 c vertices with color one, we have that

the number of pieces of D
′′

is at most:

2n − 2 + 2(

⌊

n

3

⌋

− 1).

Observe now that the pieces of S
′

1 = {P
′

i : vi has color 1} when assem-
bled properly form a polygon P1 similar to P, dissected along its diagonals
corresponding to those of P joining pairs of vertices colored 2 and 3. Let D1

be the dissection induced in P1 by D
′′
. Combining D

′′
with D1 we obtain a

7-dissection of P with at most

(2n − 2) −

⌊

n

3

⌋

+ 2n − 2 + 2(

⌊

n

3

⌋

− 1) = (2n − 2) + 2n +

⌊

n

3

⌋

− 4

pieces. Clearly we can now iterate our previous procedure on the pieces of
our last dissection of P containing the vertices of P with color 1 to obtain
4 + 3k-dissections of P with (2n − 2) + k(2n + b n

3 c − 4) pieces.
Thus we have proved:

Theorem 7.2 Every simple polygon P with n vertices has a 4+3k-dissection
with (2n − 2) + k(2n + bn

3 c − 4) pieces.
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Figure 11: Obtaining D
′′
.

8 Star shaped polygons

A polygon P is called star shaped if there is a point p in P such that the line
segment connecting it to any other point in P is contained in P. We show
how to obtain dissections of star shaped polygons with n vertices having
2kn + 1 pieces such that the piecesw of these disections can be reasembled
to form 4, 7, . . . , or 3k + 1 polygons similar to P. We start by proving:

Theorem 8.1 Any star shaped polygon P has a 4-sequential dissection D
using 2n + 1 pieces, one of which is a star shaped polygon similar to P.

Let P be a star shaped polygon, and let p be a point in the interior of
P such that the line segment connecting p to any point q in P is totally
contained in P. Suppose first that P has an even number of vertices. Color
the vertices of P with colors 1 and 2 in such a way that adjacent colors
receive different colors. Connect p to all the vertices of P to obtain a set of
n triangles as shown in Figure 12(a). Subdivide the triangles obtained into 4
subtriangles using the mid-points of their edges as shown in the same figure.
Next delete the edges connecting p to the vertices of P, as in Figure 12(b)
to obtain a dissection D of P with 2n + 1 pieces, one of which is similar to
P. Observe that all the pieces containing a vertex of color 1 (resp 2) can
be regrouped to form a star shaped polygon similar to P. The remaining n

triangles can also be regrouped to form a fourth polygon similar to P. The
case when P has an odd number of vertices can be done in a similar way,
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Figure 12: A 4-sequential dissection of a star shaped polygon wit n vertices,
n even, using 2n + 1 pieces.

except that we color exactly one vertex of P with both colors 1 and 2. The
details are left to the reader. An example for this case is shown in Figure 13.

By using the piece of D similar to P, we can now easily obtain 3k + 1-
dissections of P with 2kn + 1 pieces. Thus we have proved:

Theorem 8.2 Any star shaped polygon with n vertices has 3k+1-dissections
with 2kn + 1 pieces.
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