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Abstract

A triangulation of a point set Pn is a partitioning of the convex
hull Conv (Pn) into a set of triangles with disjoint interiors such that
the vertices of these triangles are in Pn, and no element of Pn lies in
the interior of any of these triangles. An edge e of a triangulation T is
called flippable if it is contained in the boundary of two triangles of T ,
and the union of these triangles forms a convex quadrilateral C. By
flipping e we mean the operation of deleting e from T and replacing
it by the other diagonal of C. A triangulation of a polygon Qn is a
partition of Qn into a set of n−2 triangles with disjoint interiors such
that the edges of these triangles are vertices of Qn.

In this paper we will prove that any triangulation of a point set
(polygon) can be transformed into any other by a sequence of flips. We
will also prove that there are triangulations of point sets (polygons)
such that to transform one into the other takes O(n2) flips. We prove
that any triangulation of any set of points contains at least ⌊n−4

2 ⌋
flippable edges. Motivated by this result, we generalize the concept of
flipping edges to that of simultaneously flipping sets of independent
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edges, i.e. edges such that the quadrilaterals formed by the union
of the triangles containing them are quadrilaterals with disjoint inte-
riors. We show that for parallel flips, the flipping distance between
triangulations of convex point sets is O(n log n).

We will also study the problem of flipping edges in labelled trian-

gulated graphs, i.e. labelled planar graphs with exactly 3n − 6 edges.
A classical result of Wagner asserts that any unlabelled triangulated
graph can be transformed into any other by a sequence of edge flips.
We will prove that the flipping distance for labelled planar triangula-
tions is at most O(n log n). We also prove that any planar triangula-
tion contains at least n − 2 flippable edges. This bound is tight.

1 Introduction

Let Pn = {v1, . . . , vn} be a collection of points on the plane. A triangulation

of Pn is a partitioning of the convex hull Conv(Pn) of Pn into a set of triangles
T = {t1, . . . , tm} with disjoint interiors such that the vertices of each triangle
ti of T are points of Pn. The elements of Pn will be called the vertices of T
and the edges of the triangles t1, . . . , tm of T will be called the edges of T .
The degree d(vi) of a vertex vi of T is the number of edges of T that have vi

as an endpoint. We say that an edge e of T is flippable if e is contained in
the boundary of two triangles ti and tj of T such that C = ti ∪ tj is a convex
quadrilateral. By flipping e we mean the operation of removing e from T
and replacing it by the other diagonal of C. See Figure 1.

e

Figure 1: Flipping edge e in T .

Given a collection of points Pn we define the graph of triangulations
Gt(Pn) to be the graph whose vertex set is the set of triangulations of Pn;
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two triangulations of Gt(Pn) being adjacent if one can be obtained from the
other by an edge flip.

Given two triangulations T ′ and T ′′ of Pn we say that they are at distance
k if as vertices of Gt(Pn) they are at distance k. In this case we will say that
T ′ can be transformed into T by flipping k edges. Triangulations of polygons
with or without holes, and the operation of flipping edges in them are defined
in an analogous way.

Triangulations of point sets and polygons on the plane have been studied
intensely in the literature both because of their intrinsic beauty and for their
use in many problems, such as image processing [38], mesh generation for
finite element methods [3, 16, 39, 46], scattered data interpolation [27, 34]
and many others such as computer graphics, solid modeling and geographical
information systems [1, 4, 10, 33, 35, 36, 37, 41, 44, 45].

It is well known that if Pn is convex, i.e. the vertex set of a convex polygon,
then the diameter of Gt(Pn) is at most 2n − 3. Graphs of triangulations of
convex sets of points have been studied in [15, 40]. If Pn is convex, Gt(Pn)
is isomorphic to the rotation graph RG(n− 2). The vertex set of RG(n− 2)
is the set of all binary trees with n − 2 vertices [40].

It is known that any triangulation can be transformed to the Delauney
triangulation by a simple greedy algorithm (see [12]).

It is also known that the graph of triangulations of a simple polygon Qn

with n vertices is connected [4, 12, 20, 24, 25, 33] and that its diameter is at
most O(n2) [15].

Some additional results on the graph of triangulations of convex polygons
have been obtained in [15].

In Section 2 we give a new and simple proof that the graph of triangu-
lations of a polygon Qn with n vertices with or without holes is connected.
Next we show that there are polygons with n vertices such that the diameter
of their graph of triangulations is O(n2). We then develop two algorithms
that transform any triangulation T of Qn into any other triangulation T ′′.
The number of flips required by our first algorithm is at most the number
of edges of the visibility graph of Qn. Our second algorithm uses at most
O(n + k2) flips where k is the number of reflex vertices of Qn.

In Section 3 we study triangulations of point sets on the plane. Our main
result in that section is to prove that any triangulation of a point set Pn with
n points on the plane contains at least ⌊n−4

2
⌋ flippable edges. Our bound is

tight.
Graph theorists have also studied flipping edges in maximal planar graphs,
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i.e. planar graphs with exactly 3n − 6 edges. To this end, consider a maxi-
mal planar graph G and an embedding of it on the plane. This embedding
induces a topological partition of the plane into a set of triangular regions.
In this sense, a triangular region is one bounded by three edges of G. These
regions need not be convex, and the edges of G need not be line segments as
we required before. The edges bounding a face of an embedding of G will be
called the faces of T . That the faces of T are well defined follows from a well
known result that up to isomorphisms maximal planar graphs have a unique
embedding on the plane.

This allows us to define the concept of flipping edges on planar trian-
gulations as follows: let vivj be an edge of a planar triangulation T , and
{vi, vj, vk} and {vi, vj , vl} be the vertices of the faces of G containing vivj on
their boundaries. We say that vivj is flippable if vk and vl are not adjacent
in T . By flipping vivj, we mean the operation of removing it from T followed
by the insertion of vkvl into T .

It is easy to see that this produces a new graph T ′ which is also a planar
triangulation; see Figure 2. This operation is called a diagonal flip on ab,
and ab is called a flippable edge in T .

vi

vj vj

vi

Figure 2: Flipping an edge in a planar triangulation

A classical result of Wagner states that any two planar unlabelled tri-
angulations with the same number of vertices can be transformed into each
other by a sequence of diagonal flips.

Let Tn be the set of all planar triangulations with n vertices. The diagonal

flip adjacency graph denoted by GT is the graph with vertex set Tn, two
members of Tn being adjacent if and only if one can be transformed into
other by a single diagonal flip. In this language Wagner’s result implies that
GT is connected.
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Dewdney [7], Negami and Watanabe [32] have shown similar results for
triangulations of the torus, the projective plane and the Klein bottle. It is
easy to see that Wagner’s result extends to labelled planar triangulations.
However it is not always true for labelled triangulations on the projective
plane, the torus and the Klein bottle, since there are different triangular em-
beddings of a labelled complete graph in each of these surfaces. For triangu-
lations in general surfaces, GT need not be connected even for unlabelled tri-
angulations [29]. However, Negami [31] showed that for any surface Σ, there
is a constant L such that Gl

T
is connected for labelled triangulations with at

least L vertices. Very recently Komuro, Nakamoto and Negami [22, 30] ob-
tained similar results for triangulations with minimum vertex degree at least
4. Diagonal flips preserving some specified properties are discussed in [5].

We point out here that Wagner’s original argument for unlabelled planar
triangulations gives a quadratic bound on the diameter of GT . That the
diameter of GT is linear was recently proved by Komuro [21]. The difference
in the diameter of GT and the diameter of graph of triangulations of point sets
leads in a natural way to the study of GT for labelled graphs: the positions
of the elements of a point set make them labelled points in a natural way.
To be more precise, in the last section of this paper we study the following
problem. Let V = {v1, . . . , vn} be a set of vertices, and let G and G′ be two
planar triangulations with vertex set V . How many edge flips are needed to
transform G into G′? We will prove that the flipping distance for labelled
planar triangulations is at most O(n log n). We also prove that any planar
triangulation contains at least n − 2 flippable edges. This bound is tight.
In Figure 18 we show two labelled triangulations on {v1, . . . , v6} such that
to transform one into the other requires 2 flips. Notice that as unlabelled
triangulations, the triangulations shown in the same figure are isomorphic,
and no flipping is needed to transform one into the other; however as labelled
triangulations they are different.

2 Flipping edges in polygons

Let Qn be a simple polygon with n vertices. Assume that the vertices of Qn

are labelled v1, . . . , vn in the clockwise direction around its boundary. The
visibility graph of Qn is the graph with vertex set {v1, . . . , vn}. Two vertices
vi and vj of Qn are adjacent in the visibility graph of Qn if the line segment
joining them is contained in Qn. We now prove:
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Theorem 1 The graph of triangulations Gt(Qn) of a simple polygon is con-

nected. Moreover, the diameter of Gt(Qn) is proportional to the number of

edges of the visibility graph of Qn.

Some definitions and preliminary results will be needed to prove our re-
sult.

Let T be a triangulation of Qn, and let vi, vj be non-adjacent vertices in
T . We say that vivj can be inserted in T by flipping k edges if there is a
sequence of triangulations T1 = T, . . . , Tk such that vivj is an edge in Tk and
Ti+1 can be obtained from Ti by flipping one of its edges, i = 1, . . . , k − 1.
We say that a vertex vi of Qn is exposed if it lies in the convex hull of Qn.
Consider the two vertices vi−1 and vi+1 of Qn adjacent to vi. The shortest
polygonal chain joining vi−1 to vi+1 totally contained in Qn will be denoted
by Pi−1,i+1.

Lemma 1 Let vi be an exposed vertex of Qn and T a triangulation of Qn.

Then it is always possible to insert Pi−1,i+1 into T using exactly as many flips

as the number of edges of T , not in Pi−1,i+1, that intersect it.

Proof: Let w(Pi−1,i+1) be the number of edges in T that cross it. Suppose
that w(Pi−1,i+1) > 0 and let vivk be the longest edge in T that crosses an
edge in Pi−1,i+1. It is easy to see that vivk can always be flipped, decreasing
w(Pi−1,i+1) by one; see Figure 3.

We now proceed to prove Theorem 1:

Proof: Let vi be an exposed vertex of Qn, and T1, T2 two triangulations of
Qn. By Lemma 1 we can insert Pi−1,i+1 in T1 and T2 to obtain new trian-
gulations T ′

1 and T ′

2 of Qn. Delete from Qn the subpolygon bounded by the
vertices of Pi−1,i+1 and vi. This will result in a collection of simple polygons
with disjoint interiors. Each of these polygons has two triangulations induced
by T ′

1 and T ′

2 respectively and fewer vertices than Qn. Our result now follows
by induction on the number of vertices of Qn.

To prove that the diameter of Gt(Qn) is at most the size of its visibility
graph, we notice that each edge incident with vi is used at most twice while
transforming T1 into T2, once while inserting Pi−1,i+1 into T1, and a second
time while inserting Pi−1,i+1 into T2.
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vk

vi

vi-1vi+1

Figure 3: Inserting Pi−1,i+1 in T .

Consider the polygon Rn with 2n vertices {p1, . . . , pn, q1, . . . , qn} such
that:

a) {v1, . . . , pn} lie on a convex curve, and {q1, . . . , qn} lie on a concave
curve.

b) The line joining pito pj leaves all the elements of {q1, . . . , qn} below it,
and all the elements of {p1, . . . , pn} lie above any line joining qito qj ,
1 ≤ i < j ≤ n; see Figure 4.

We now show that there are two triangulations of Rn such that to trans-
form one into the other requires exactly (n − 1)2 flips. This will prove our
result. Consider any triangulation T of Rn. We assign a code to it as follows.
Each triangle ti of T has either two vertices in {p1, . . . , pn} or two vertices
in {q1, . . . , qn}. In the first case, assign a 1 to ti; in the second case, ti is
assigned a 0 (see Figure 4).

If we read the numbers assigned to the triangles of T from left to right, we
obtain an ordered sequence of 0’s and 1’s; this sequence is the code assigned
to T . The triangulation presented in Figure 4 receives the code 01011100. It
is clear that each triangulation of T is thus assigned a sequence containing
exactly n − 1 0’s and n − 1 1’s. Clearly, each sequence of n − 1 0’s and
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0

1

0

1 1
1

0 0

Figure 4: Rn, and a triangulation with code 01011100.

n − 1 1’s also defines a unique triangulation of Rn. Thus we have a one-to-
one correspondence between the set of triangulations of Rn and the set of
binary sequences containing n− 1 0’s and n− 1 1’s. Flippable edges in these
triangulations can be easily identified within this encoding. An internal edge
of a triangulation T can be flipped if the triangles of T containing it have
been assigned a 1 and a 0. Moreover, flipping an edge in T corresponds to a
transposition of a 0 with a 1 in the code of T .

Consider the triangulations T1 and T2 of Rn that receive the encodings
11 . . . 100 . . . 0 and 00 . . . 011 . . . 1. It is now clear that to transform one into
the other requires exctly (n − 1)2 flips, i.e. we have:

Theorem 2 The diameter of Gt(Rn) is (n − 1)2.

Recall that Theorem 1 states that the diameter of Gt(Qn) is bounded by
the size of the visibility graph of Qn. However if Qn is convex, the diameter of
Gt(Qn) is lineal. It is thus natural to ask if there is some polygon parameter
that allows us to obtain a better bound on the size of the diameter of Gt(Qn).
The next result provides a partial answer to this question. We now prove:

Theorem 3 Let Qn be a simple polygon with k reflex vertices. Then the

diameter of Gt(Qn) is at most O(n + k2).

Two vertices vi and vj of a polygon Qn are called c connected if they are
visible and the vertices vi+1, . . . , vj−1 of Qn are all convex, addition taken
mod n. If in addition, vi and vj are reflex vertices, we call them consecutive
reflex vertices.
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The segment vivj will be called normal if either for each edge e of T
intersecting it, the end vertex of e below vivj is a convex vertex of Qn, or for
each edge e of T intersecting vivj, the end vertex of e above it is a convex
vertex of Qn; see Fig 5.

vj vi

Figure 5: A normal diagonal of a triangulation.

The following lemma given without proof will prove useful to us. The
proof of this result is similar to that of Lemma 1.

Lemma 2 Let vivj be a proper diagonal of a triangulation T of Qn. Then if

vivj is intersected by k edges of T , we can insert it into T using at most 2t
flips.

A polygon Q is called spiral if the vertices of Q can be labeled v1, . . . , vs, vs+1, . . . , vn

such that v1, . . . , vs are reflex vertices and vs+1, . . . , vn are convex. The stan-

dard triangulation of a spiral polygon Q is now defined as follows. Let pσ(1)

and qβ(1) be the last reflex and convex vertex of Q visible from vn−1. Join
pσ(1) and qβ(1). Next join vn−1 to all convex and reflex vertices of Q visible to
it. Remove from Q vn and all vertices visible from it, except pσ(1) and qβ(1).
This defines another spiral ploygon Q′. Iterate this process until we obtan a
triangulation of Q; see Figure 6.

The following result is easy to prove:

Lemma 3 Any triangulation of a spiral polygon Qn can be transformed into

the standard triangulation of Qn with a linear number of flips.
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vs+1

v1

vs

v
β(1)

vn

vn-1

v
σ(1)

Figure 6: The standard triangulation of a spiral polygon.

Next suppose that Qn has k reflex vertices labelled vi1 , . . . , vik such that
i1 < . . . < ik. For each j = 1, . . . , k let Rj be the shortest polygonal chain
contained in Qn joining vij to vij+1

, addition taken mod k. Finally let R =
R1 ∪ . . . ∪ Rk; see Figure 7.

Figure 7: Constructing R.

The following lemma is easy to prove, and is given without proof:

Lemma 4 Any edge joining two vertices of Qn intersects at most two edges

of R. Moreover if e is an edge of R and T is any triangulation of Qn, e is

either an edge of T or a proper diagonal of T .
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We now prove the last lemma needed to prove Theorem 3, namely:

Lemma 5 Let T be any triangulation of Qn. Then all the edges of R can be

inserted into T using O(n) flips.

Proof: By Lemma 4, any edge of T intersects at most two edges of R. Since
T has n − 3 edges, the number of intersections between the edges of T and
those of R is at most 2(n − 3). However since all the edges of R are proper
edges of T , each of these intersections can be removed by flipping at most
two edges. Thus by flipping at most 4(n − 3) edges, we can insert all the
edges of R into T .

We can now prove Theorem 3

Proof: Let T and T ∗ be triangulations of Qn. By Lemma 4 we can insert the
edges of R into each of them, flipping at most 4(n − 3) edges and obtaining
two new triangulations T1 and T ∗

1 respectively. Notice that R induces a
partitioning of Qn into a set of polygons of one of these types:

a) At most k convex or spiral polygons Q1, . . . , Qm, k ≤ m bounded by
edges of Qn or R.

b) A set of polygons R1, . . . , Rs bounded by edges in R.

Notice that the total number of edges bounding Q1, . . . , Qm is at most
n+k. Both T1 and T ∗

1 induce possibly different triangulations in Q1, . . . , Qm.
Since Q1, . . . , Qm are convex or spiral polygons, all these triangulations can
be transformed into each other by flipping O(n + k) edges.

To end our proof, we notice that R1, . . . , Rs are bounded by k edges, and
thus the triangulations induced in them by T and T ∗ can be transformed
into each other flipping O(k2) edges. Our result follows.

3 Flipping edges in triangulations of point

sets

We turn our attention to triangulations of point sets. The first thing to
notice is that the proofs of Theorems 1 and 2 can be easily adapted to
obtain equivalent results for triangulations of point sets. Thus we have:
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Theorem 4 The graph of triangulations of a point set is connected. More-

over, there are triangulations of the set of vertices of Rn such that to trans-

form one into the other takes O(n2) flips.

We now study the following problem for triangulations of point sets. An
alert reader will notice that all triangulations of point sets have many flip-
pable edges. It is thus natural to seek an answer to the following question:

How many edges can be flipped in any triangulation of a point
set?

We show:

Theorem 5 Any triangulation of a set of n points in general position has

at least ⌊n−4
2
⌋ flippable edges. Our bound is tight.

In what follows, Conv(Pn) denote the convex hull of a point set. Let T
be a triangulation of a point set Pn. Divide the edges of T into two subsets,
F (T ) the set of flippable edges of T , and NF (T ), the set of non-flippable
edges in T .

Orient the edges of NF (T ) as follows:

a) Orient all the edges in Conv(Pn) in the clockwise direction.

b) Let vivj be an edge of T not in Conv(Pn) and t1 and t2 be the triangles
of T sharing vivj . Let C = t1 ∪ t2. Since vivj is non-flippable, it follows
that one of its end-vertices, say vi, is a reflex vertex of C. Orient vivj

from vj to vi; see Figure 8.

The in-degree d−(vi) of vi the number of edges in NF (T ) oriented into
vi. We now prove:

Lemma 6 Let vi be any vertex in T . Then d−(vi) ≤ 3. Moreover if vi is

incident with at least 4 edges in T , d−(vi) is at most 2.

Proof: If vi is in Conv(Pn), then d−(vi) = 1. Suppose then that vi belongs
to the interior of Conv(Pn). Two cases arise:

Case 1: If d(vi) = 3, none of the edges incident with vi is flippable, and they
are oriented into vi, thus d−(vi) = 3.

Case 2: If d(vi) > 3 it is easy to verify that that no more than two non-
flippable edges of T can be oriented into vi.
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Figure 8: Orienting the non-flippable edges of a triangulation.

We prove now Theorem 5.

Proof: Let T be a triangulation of Pn, and S the set of vertices of T with
degree 3 not in Conv(Pn). By adding a point w in the exterior of Pn joined to
the points of Pn on its convex hull by some edges, not necessarily represented
by straight lines, we get a topological triangulation of the plane. Thus by
Euler’s theorem this triangulation contains 3n−3 edges. Let us classify these
new edges as non-flippable, and orient them towards Conv(Pn). Orient all
non-flippable edges according to the rules given above.

Notice that d−(vi) = 2 for all the vertices in the convex hull of Pn. Remove
from T all the elements of S. Notice that we will remove exactly 3|S| edges
of T which are not flippable. Furthermore, notice that what remains is
still a triangulation T ′ of Pn − S, which by Euler’s formula contains exactly
2(|Pn − S| + 1) − 4 = 2(n − |S|) + 2 triangles. Moreover, any element
vi of T not in Conv(Pn) has degree at least 4 in T , and thus by Lemma 6,
d−(vi) ≤ 2.

Let Q be the set of vertices vi of P − S that have d−(vi) = 2. Then
by Lemma 6, we can associate to each element of Q a different triangle of
T which is also a triangle in T . From the triangles having w as one of their
vertices, we can also associate a different ‘triangle’ to each vertex of Q in
Conv(Pn). That is, to each vertex of Q, except w and the vertices of T
with d−(vi) < 2, we can associate a different triangle of T ′ that contains no
element of S.

Let m be the number of vertices of T that are on the boundary of
Conv(Pn) or have d−(vi) = 2. Since T ′ has 2(n − |S|) + 2 triangles, it
follows that |S| ≤ 2(n− |S|) + 2−m. It is easy to verify that the number of
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edges of T that can be flipped is minimized when all the vertices of Pn − S
have d− equal to two.

In this case, since we can associate to each element of Pn − S a different
empty triangle of T ′, we can easily verify that |S| = n − |S| − 2, that is:

n = 2|S| + 2 (1)

Since T ′ contains 3(|Pn − S| + 1) − 6 = 3(|Pn − S| − 3 edges and each
vertex of Pn has d−(vi) = 2, the number of flippable edges of T (i.e. those
edges of T that are not oriented in T ′) is exactly :

k = (3(n − |S|) − 3) − 2(n − |S|) = n − |S| − 3 (2)

Using (1) and (2) we get k = n−4
2

which concludes the first part of our
proof.

We now show that our bound is tight. Take any collection of m points
that are the vertices of a convex polygon Qm, together with any triangulation
of it. Next add to the interior of each triangle an extra vertex adjacent to the
three vertices of the triangle. If the convex polygon has m vertices, our final
point set has 2m − 2 points, and the only edges that can be flipped are the
m− 3 edges used to triangulate Pm. Trivially if n = 2m− 2, m− 3 = n−4

2
;

see Figure 9.

Figure 9: A triangulation of a point set with 2m−2 points and m−3 flippable
edges.
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4 Flipping edges in triangulations of point

sets in parallel

In the previous section, we showed that any triangulation of a point set con-
tains a linear number of edges that can be flipped. This motivated us to
study the following problem. Let S be a set of flippable edges of a triangu-
lation of a point set. We say that S can be flipped simultaneously if no two
elements of S bound a common triangle in T ; see Figure 10. The operation
of flipping all the elements of S at once will be called a parallel flip.

Figure 10: All the dark edges can be flipped simultaneously.

In this section we prove the following result:

Theorem 6 Any two triangulations of a convex point set can be transformed

into each other using at most O(n logn) parallel edge flippings.

Before proceeding with our proof, we mention that a similar result exists
for triangulations of arbitrary point sets, namely:

Theorem 7 ([18]) Any two triangulations of a point set Pn can be trans-

formed into each other using at most O(n logn) parallel flips.

The proof of this result is involved; the interested reader can find the
details in [18].

A triangulation of a convex point set Pn is called a fan triangulation
if there is a point v of Pn adjacent to all the elements of Pn. The point
v is called the apex of the triangulation. Notice that the dual graph of a
triangulation T of a convex point set is a binary three HT . The diameter of
T is the maximum distance between two nodes of HT . We now prove:
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Lemma 7 Let T be a triangulation of a convex point set Pn with diameter k,

and v any element of Pn. Then T can be transformed to the fan triangulation

of Pn with apex v using at most k parallel flips.

Proof: Let T be a a triangulation of Pn, v any element of Pn, and e an edge
of T not incident with v. The distance to v of an edge e is defined to be the
number of edges of T intersected by any line segment joining any interior
point of e to v plus 1; see Figure 11(a). It is now easy to see that at time i
we can flip all the edges at distance i from v, i = 1, . . . , k; see Figure 11.

v 1

2

2

3 3

2

2

3v

v

v

Figure 11: Transforming a triangulation to a fan triangulation.

Our problem is now that of transforming any triangulation of a convex
point set to one with a logarithmic diameter in a logarithmic number of
parallel flips.

Let H be a tree such that all the vertices of T have degree 3 or 1. Such a
tree will be called a leafytree. The following result justifies our terminology:
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Lemma 8 Any leafy tree has 2m + 2 vertices and m + 2 leaves, m > 0.

Let T be a triangulation of a convex point set. The dual graph of this
triangulation is a tree HT such that each vertex in it has degree 1, 2 or 3.
If a face of T generates a leaf in HT , it will be called a leaf of T . We now
prove:

Lemma 9 Any triangulation of a convex point set Pn can be transformed to

one with at least ⌈n+1
5
⌉ + 2 leaves using at most four parallel flips.

Proof: We first observe that any tree obtained by subdividing any edge
joining two non-leaf vertices of a leafy tree into at most 3 edges, and any
edge joining a leaf to a nonleaf vertex at most once, has at least ⌈n1

5
⌉ + 2

leaves. We now show that using at most four parallel flips, any triangulation
T of Pn can be transformed into a triangulation T ′ with at least ⌈n+1

5
⌉ + 2

leaves.
Let v1, v2, v3 be three vertices of degree 2 in the dual graph of a trian-

gulation of a convex point set Pn. It is easy to see that by flipping at most
two edges we can obtain a new triangulation of Pn with one more leaf; see
Figure 12.

Figure 12: Eliminating long paths in the dual of a triangulation of a convex
point set.

Consider the dual graph HT of T . If it contains long paths consisting
of vertices of degree 2 in H we can subdivide them into subpaths of length
3 plus one path of length 1 or 2. By the previous observation, using two
parallel flips we can eliminate these paths and obtain a new triangulation
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T ′ of Pn such that its dual graph HT ′ contains no induced paths of length
greater than 3 consisting of vertices of degree 2. With two extra parallel
flips we eliminate these paths, obtaining a triangulation T ′ such thatits dual
graph contains at least ⌈n+1

5
⌉ + 2 leaves.

We now proceed to prove Theorem 6.

Proof: Let v be any element of Pn. We note that to prove our result, it is
sufficient to show that any triangulation T of Pn can be transformed to the
fan triangulation of Pn with apex v using a logarithmic number of parallel
flips.

By using the procedure described in Lemma 9 we can transform T to a
triangulation with at least ⌈n+1

5
⌉+ 2 leaves. Let P ′ be the polygon obtained

by joining the non-leaf faces of T ′. By recursive applications of Lemma 9 to
P ′ we obtain a triangulation H of Pn with logarithmic diameter.

By Lemma 7, using a logarithmic number of parallel flips, H can be
transformed to the fan triangulation of Pn with apex v. Our result follows.

5 Flipping edges in planar triangulations

We now turn our attention to the study of flipping edges in maximal planar
graphs, i.e. in planar triangulations.

5.1 The diameter of Gl
T

Given two vertices vi and vj , a triangulation T will be called a ∆(i, j) trian-
gulation if vi and vj are both adjacent to all vertices of T ; see Figure 13. We
will say that the edge joining vi and vj is the root edge of T . We now prove:

Theorem 8 Let T be a triangulation and let vi, vj be adjacent vertices in T .

Then we can transform T into a ∆(i, j) triangulation with at most 4n − 16
diagonal flips. Moreover let F be one of the triangular faces of T containing

edge vi vj. Then ∆(i, j) can be chosen such that F is also a face in ∆(i, j).

Proof: Let F be one of the two faces of T containing edge vi vj, and let vk

be the third vertex of F . We define the potential of T by

pT (i, j) = 3deg(vi) + deg(vj),
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vi

k

vj

v

Figure 13: A ∆(i, j) triangulation.

and show that if T is not a ∆(i, j) triangulation, then by performing some
diagonal flips we can increase pT (i, j). Note that pT (i, j) ≤ 4(n − 1) with
the equality holding only when deg(vi) = deg(vj) = n − 1, i.e. T is a ∆(i, j)
triangulation.

Let vj, vσ(1), vσ(2), . . . , vσ(i−1), vσ(l) = vk be the neighbors of vi in T in
the anticlockwise order. For convenience, we set vσ(0) = vj. Let m be the
largest integer such that vσ(1), vσ(2), . . . vσ(m) are all adjacent to vk in T , and
each triangle vjvσ(i−1)vσ(i) bounds a face for i = 1, 2, . . . , m. If m = l, then
T is a ∆(i, j) triangulation and no diagonal flip is needed. Otherwise let
vjvσ(m)u be the other face incident with the edge vjvσ(m) with u 6= vσ(m+1).
We distinguish the following two cases.

Case 1: u is not a neighbor of vi. If m = 1 we can flip vjvσ(1), and increase
pT (i, j) by 2. If m > 1, we can flip vjvσ(m) and then vσ(m−1)vσ(m), and
increase pT (i, j) by 2.

Case 2: u = vσ(s) for some m + 2 ≤ s ≤ l. In this case vσ(m)vσ(s) can be flipped
and pT (i, j) increases by 1.

By iterating the above process, we transform T into a ∆(i, j) triangulation
in which F remains a face. Notice that the total number of diagonal flips
involved does not exceed 4(n − 1) − pT (i, j). Our result follows.

Let T be a ∆(i, j) triangulation. Notice that T − {vi, vj} is a path
P . Assume without loss of generality that the vertices of P are labelled
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{vσ(1), . . . , vσ(n−2)}. If the elements of P are such that σ(1) < σ(2) < . . . <
σ(n− 2) we say that T is sorted. A ∆(i, j) triangulation T ′ is called a trans-

pose of T if T ′ − {vi, vj} is a path P ′ obtained from P by transposing two
consecutive vertices of P ; see Figure 14.

vjvi

v =
k

σ(1)v
σ(2)v

σ(3)v

σ(4)v

vjvi

v =
k

σ(1)v

σ(2)v

σ(3)v

σ(4)v

Figure 14: A ∆(i, j) triangulation and a transposition of it.

The next lemma is easy to prove:

Lemma 10 Let T be a ∆(i, j) triangulation, and T ′ a transposition of T .

Then T ′ can be obtained from T by flipping at most 4 edges.

A ∆(1, 2) triangulation such that the vertices of one of its faces are pre-
cisely v1, v2, vn will be called a normal triangulation. We now prove:

Lemma 11 Within O(n) diagonal flips, any planar triangulation T with n
vertices can be transformed into a normal ∆(1, 2) planar triangulation T ′.

Proof: Let vi be any neighbour of v1. By Theorem 8 we can transform this
triangulation into a ∆(1, i) triangulation using O(n) diagonal flips. Since
vertex v2 is adjacent to v1, again by Theorem 8, we can transform this tri-
angulation into a ∆(1, 2) triangulation with a linear number of flips. Using
Lemma 10, we can now perform a linear number of transpositions until v1, v2

and vn belong to the same face.
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Notice that using this lemma, together with Lemma 10, we can prove that
any ∆(1, 2) triangulation can be transformed to the sorted ∆(1, 2) triangu-
lation with a quadratic number of transpositions, i.e. a quadratic number of
flips. We now proceed to show how to accomplish this in at most O(n logn)
flips.

5.1.1 The binary triangulation

To achieve our goal, we define a special type of triangulation which we call
binary triangulations. A planar triangulation with vertex set {v1, . . . , vn} is
called binary if:

Case 1: The vertices of a face of T are v1, v2, vn.

Case 2: The dual graph of T − {vn} (excluding the vertex corresponding to
the only face of T − {vn} that is not a triangular face) is an almost
balanced binary tree, i.e. any two paths starting at its root and ending
at a leaf have the same length, or their lengths differ by at most one;
see Figure 15.

v2v1

v
n

v2v1

Figure 15: A binary triangulation.

We now proceed to show how a binary triangulation can be transformed
to the sorted normal triangulation in at most O(n log n) flips.

A 2 ∆ triangulation is a triangulation consisting of two vertex-disjoint
sorted ∆ triangulations ∆(i, j) and ∆(j, k) glued along an edge plus the
edge joining vi to vk; see Figure 16(a).
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Figure 16: A 2-∆ triangulation and the resulting merged triangulation.

The following lemma will be essential to prove our main result:

Lemma 12 Any 2 ∆ triangulation can be transformed into a sorted ∆ tri-

angulation with a linear number of flips.

Proof: Let ∆(i, j) and ∆(j, k) be the sorted ∆ triangulations forming T ,
and let vs be the common neighbour of vi and vk, as in Figure 16(a). Let
vα(1), . . . , vα(r) and vβ(1), . . . , vβ(t) be the vertices in ∆(i, j) and ∆(j, k) re-
spectively. Assume without loss of generality that α(1) < β(1). Then by
performing two flips, we can obtain a triangulation in which vα(1) is adjacent
to vi, vj and vk; see Figure 17(b). It is now easy to see that using three flips
at a time, we can move the remaining vertices of ∆(i, j) and ∆(j, k) so that
in the end we get an almost sorted ∆(i, k) triangulation. The only vertex
out of place is perhaps vj . This can be fixed by performing a linear number
of transpositions until vj moves to its correct position; see Figure 17(c),(d).

We are ready to prove:

Lemma 13 Let T be a binary planar triangulation with n vertices. Then

T can be transformed into the ∆(1, 2) sorted triangulation by performing

O(n logn) diagonal flips.
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Proof: Our theorem is true for 22 ≤ n ≤ 23. Suppose that the result is true
for 2i−1 ≤ n ≤ 2i. We now show that it also holds for 2i ≤ n ≤ 2i+1. Let 2i ≤
n ≤ 2i+1 and let T be a binary triangulation with n vertices. Observe that T
splits into two binary triangulations T ′ and T ′′ with n1 and n2 vertices, 2i−1 ≤
n1, n2 ≤ 2i. By induction on i, T ′ and T ′′ can be transformed into sorted ∆
triangulations in O(n1 log n1) and O(n2 log n2) flips. By Lemma 12 we can
transform the resulting triangulation into a sorted ∆(1, 2) triangulation with
a linear number of flips. Our result follows.

We proceed to prove the main result of this section:

Theorem 9 Let T and T ′ be any labelled planar triangulation. Then T can

be transformed into T ′ using O(n log n) flips, i.e. the diameter of Gl
T

is at

most O(n log n).

Proof: To prove our result it is enough to show that T can be transformed
to the sorted ∆(1, 2) triangulation using O(n logn) flips. By Lemma 11,
within O(n) diagonal flips we can transform T into a not necessarily sorted
∆(1, 2) triangulation T ′ whose three exterior vertices are v1, v2, vn. Next
using O(n) flips, we can transform T ′ into a binary triangulation. To see
that this is possible, take any unlabelled binary triangulation T ′′ and using
a linear number of flips transform it into T ′ in such a way that v1, v2, and
vn remain in the exterior face of T ′. By reversing the order in which these
flips were performed, we can transform the labelled triangulation T ′ back
into a labelled binary triangulation T ′′, thus producing a labelled binary
triangulation. Finally by Lemma 12, we can transform T ′′ into the sorted
∆(1, 2) triangulation. Our result follows.

We will prove that any labelled triangulation with n vertices can be trans-
formed into any other labelled triangulation using at most O(n log n) flips.
We also prove that any planar triangulation with at least five vertices con-
tains at least n − 2 flippable edges. We show that this bound is tight. In
the rest of this paper, all triangulations considered will be assumed to be
labelled triangulations on V = {v1, . . . , vn}.

5.2 The minimum vertex degree of Gl
T

Any planar triangulation contains a large number of flippable edges. In [17]
it is proved that any triangulation of a set of n points in general position
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contains at least ⌈n−4
2
⌉ flippable edges. In this section we prove the corre-

sponding result for planar triangulations, namely:

Theorem 10 Any planar triangulation T with n > 4 vertices contains at

least n−2 flippable edges. If T has minimum vertex degree at least 4, then T
contains at least min{2n + 3, 3n − 6} flippable edges. Our bounds are tight.

Proof: A triangle in a triangulation T is called separating if there are ver-
tices inside as well as outside the triangle. Two edges are called cofacial if
they belong to the boundary of a face of T . Let F (F̄ ) be the set of flippable
(nonflippable) edges in T . Define a relation R ⊆ F̄ × F as follows:

(e, f) ∈ R ⇐⇒ e ∈ F̄ , f ∈ F, and e and f are cofacial.

We claim that each nonflippable edge is related to at least two flippable
edges. Let e = vivj be any nonflippable edge in T , and let {vi, vj , vk} and
{vi, vj, vl} be the vertices of the two triangular faces of T incident with vivj .
Since vivj is nonflippable, vk and vl are adjacent in T . Since T has more
than four vertices, vertices vi and vj cannot both have degree 3. If vertex vi

has degree at least 4, then both edges vivk and vivl are flippable; if vertex
vj has degree at least 4, then both edges vjvk and vjvl are flippable. On the
other hand, each flippable edge is incident with exactly two faces, and hence
is related to at most four nonflippable edges. Therefore we have:

2|F̄ | ≤ |R| ≤ 4|F |.

Since the total number of edges in T is 3n−6, it follows that the number
of flippable edges is at least (3n − 6)/3 = n − 2.

Examples of planar triangulations that achieve this bound can be con-
structed as follows. Let T ′ be any planar triangulation with m vertices. Thus
T ′ contains 2m − 2 triangular faces. Let T be the triangulation obtained as
follows. In the middle of each of these triangular faces, insert a vertex adja-
cent to the vertices of the face. See Figure 19(a). It is easy to see that the
only edges of T that are flippable are exactly the edges of T ′, i.e. 3m − 6
edges. On the other hand T contains exactly m+2m− 4 = 2m = 4 vertices.
Taking n = 2m−4 yields the desired result. This proves the first part of our
theorem.

The argument in the previous paragraph shows that if T has more than
four vertices and a nonflippable edge, then T contains a separating triangle.
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Thus the second part of our result holds if T contains no separating triangles.
Assume that T has minimum vertex degree at least 4 and T contains a
separating triangle. The above argument shows that each nonflippable edge
is related to exactly four flippable edges, i.e. 4|F̄ | = |R|. Also, if {vi, vj, vk}
are the vertices of a face of T such that vivj is a flippable edge, then at least
one of vivk and vjvk is flippable. (Otherwise, the above argument implies
that vk has degree 3.) Hence each flippable edge is related to at most two

nonflippable edges. Now we show that T contains at least 18 flippable edges
which are not related to any nonflippable edge, and there are at least 3
extra flippable edges which are related to at most one nonflippable edge. Let
vivjvk be a separating triangle in T such that the triangulation T (vivjvk),
which consists of the triangle vivjvk and all its interior vertices, contains no
separating triangles. Since T has no vertex of degree 3, T (vivjvk) contains
at least 6 vertices. Since T (vivjvk) contains no separating triangle, all edges
of T (vivjvk) are flippable in T . Therefore, all edges inside vivjvk (there are
least 9 such edges) are not related to any nonflippable edges. Similarly, T
contains at least 9 flippable edges outside vivjvk which are not related to any
nonflippable edge. Notice also that each of the three edges vivj , vjvk, vivk

is related to at most one nonflippable edge. Thus we obtain:

4|F̄ | = |R| ≤ 2(|F | − 18 − 3) + 3.

Using |F̄ | + |F | = 3n − 6, we obtain |F | ≥ 2n + 2 + 1
2
, i.e. |F | ≥ 2n + 3.

Triangulations that achieve this bound can be obtained as follows. Let
T ′ be a ∆(i, j) triangulation with n − 6 vertices. Insert a triangle in each of
the two faces incident with vi and vj in such a way that the degree of the six
new vertices is four; see Figure 19(b). The reader can easily verify that the
resulting triangulation achieves the previous bound. Our result follows.
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Figure 17: Illustrating Lemma 12.
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Figure 19: Two triangulations, the first with n − 2 flippable edges, and the
second with minimum degree 4 and 2n + 3 flippable edges.
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