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Abstract

A tetrahedralization of a point set in 3-dimensional
space is Hamiltonian if its dual graph has a Hamilto-
nian cycle. Let S be a set of n points in general posi-
tion in 3-dimensional space. We prove that by adding
to S at most ⌊m−2

2
⌋ Steiner points in the interior of

the convex hull of S, we obtain a point set that admits
a Hamiltonian tetrahedralization. We also obtain an
O(m

3

2 ) + O(n log n) algorithm to solve this problem,
where m is the number of elements of S on its convex
hull. We also prove that point sets with at most 20
convex hull points have a Hamiltonian tetrahedraliza-
tion without the addition of any Steiner points.

1 Introduction

Let S be a set of n points in R
3 in general position.

The convex hull of S (Conv (S)) is the intersection of
all convex sets containing S.

The points of S lying on the boundary of Conv (S)
are called convex points and the points lying in the
interior of Conv (S), interior points.

A tetrahedralization T of S is a partition of
Conv (S) into tetrahedra with vertices in S such that:

1. The tetrahedra only intersect at points, lines or
faces.

2. The tetrahedra do not contain points of S in their
interior.

In a similar way, a triangulation of a point set in
the plane is a partition of its convex hull into triangles
satisfying the above properties.

Given a tetrahedralization T of S, we define DT ,
the dual graph of T , to be the graph whose vertex set
is the tetrahedra of T , two of which are adjacent if
and only if they share a common face.

In this paper, we are interested in tetrahedraliza-
tions such that their dual graph contains a Hamilto-
nian cycle or path. In general, we call such tetrahe-
dralizations Hamiltonian tetrahedralizations. To dif-
ferentiate between cycles and paths, we write Hamil-
tonian cycle and Hamiltonian path tetrahedraliza-
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†Instituto de Matemáticas, Universidad Nacional Autónoma
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tions. We say that S admits a Hamiltonian tetrahe-
dralization if there exists a Hamiltonian tetrahedral-
ization of S.

A well known problem in computational geometry
(see [5], Problem 29) asks if every convex polytope
in R

3 admits a Hamiltonian tetrahedralization, that
is, a tetrahedralization of the set of vertices of the
polytope.

The question was raised in [1], where a Hamilto-
nian triangulation was sought; in that paper the same
problem was solved in the plane. In [3] it was proved
that triangulations produced by applying Graham’s
Scan to calculate the convex hull of point sets are
Hamiltonian.

It was observed in [1] that Hamiltonian triangula-
tions allow for faster rendering of triangular meshes.
The same holds true for tetrahedra. In [1], the prob-
lem of finding a Hamiltonian tetrahedralization for
a convex polytope in R

3 was conjectured to be NP-
complete.

The existence of a Hamiltonian tetrahedralization
of a convex polytope remains open. In this paper we
study the following related problem: Given a convex
polytope P in R

3, how many Steiner points must be
placed in the interior such that the set of vertices of
P together with the added Steiner points admits a
Hamiltonian tetrahedralization?

We consider the more general case and consider
point sets rather than convex polytopes. Let S be
a set of n points in R

3 in general position such that
its convex hull contains m vertices, and let m′ be the
number of S that belong to the interior of Conv (S).

We present an algorithm that adds at most ⌊m−2

2
⌋

Steiner points, located in the interior of Conv (S), to
S. Our algorithm produces a Hamiltonian tetrahe-
dralization. The overall complexity of the algorithm
is O(m

3

2 ) + O(n log n).
Finally we show that if m ≤ 20, no Steiner points

need to be added.

2 The algorithm

The main idea is to first add a point to S to obtain
a tetrahedralization such that its dual graph can be
partitioned into cycles.

We then insert Steiner points to join existing cycles.
We continue this process until the cycle partition con-
sists of just one cycle. This final cycle is a Hamiltonian
cycle in the dual graph of the final tetrahedralization.
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Figure 1: Join Operation.

Actually, we first remove the interior points of S

and those convex hull point sof degree 3 (that is,
points adjacent to 3 other points in the boundary of
Conv (S)). We can do this in view of the following:

Lemma 1 If the convex hull points of S admit a

Hamiltonian tetrahedralization, so does S.

Proof. Consider an interior point x of S and suppose
S − {x} admits a Hamiltonian tetrahedralization T .
Let τ be the unique tetrahedron of T that contains
x in its interior. If we remove τ from T and add the
four tetrahedra induced by the faces of τ with x, we
obtain a tetrahedralization of S and the Hamiltonian
cycle of DT can be extended to a Hamiltonian cycle
of the new tetrahedralization. Applying this process
recursively, the theorem follows. �

In the same manner we can suppose that S does
not have any convex hull vertices of degree 3.

Theorem 2 Let x be a convex hull point of S of de-

gree 3. If S − {x} admits a Hamiltonian tetrahedral-

ization, then so does S.

Proof. Suppose S−{x} admits a Hamiltonian tetra-
hedralization T . The three convex hull vertices of
S adjacent to x form a face F of the boundary of
Conv (S − {x}). Let τ1 be the only tetrahedron of T
that contains F as a face and let τ2 be the tetrahedron
induced by x and F . Clearly τ1 ∪ τ2 is convex. If we
remove τ1 and τ2 from T and replace them with the
three tetrahedra induced by the faces of τ1 (except F )
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Figure 2: DT before and after the join operation.

and x, we obtain a tetrahedralization T ′ of S. The
Hamiltonian cycle of DT can now be extended to a
Hamiltonian cycle of DT ′

�

Assume now that S does not contain interior points
or convex hull points of degree 3.

We insert a point p0 in the interior of Conv(S) and
join every face of the boundary of Conv (S) to it, form-
ing a tetrahedralization T of S ∪ {p0}.

Let G be the graph induced by the 1-skeleton of the
boundary of Conv (S); that is, the graph whose vertex
set consists of the convex hull points of S and whose
edges are the edges of the boundary of Conv (S). It is
easy to see that both G and its dual graph are planar
and 3-connected. By construction, the dual graph of
G is isomorphic to DT . Since every face of G is a
triangle, DT is a regular graph of degree 3.

To obtain the initial partition, we use a theorem
of Petersen [8] that states that every 2-connected cu-
bic graph contains a perfect matching. Since DT is
3-connected, in particular it is 2-connected and there-
fore contains a perfect matching M . If we remove
the edges of M from DT , we obtain a regular graph
of degree 2. This subgraph of DT is the initial cycle
partition.

2.1 Joining cycles

Consider two disjoint cycles, C1 and C2, in our cycle
partition of DT , and furthermore suppose that there
is an edge e of DT that has its end points τ1 and τ2 in
C1 and C2 respectively. Since τ1 and τ2 are tetrahedra
in T , e corresponds to a shared face F of τ1 and τ2.

The join operation consists of adding a point p to
the interior of τ1 so that the line segment joining the
point q in τ2 opposite to F in τ2 intersects F . We
now remove τ1 and τ2 and replace them by the six
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tetrahedra induced by the faces of τ1, τ2 and p (except
F ) as shown in Figure 1.

It can now be shown that there is a cycle that passes
through all the vertices of Ci∪C2−{τ1, τ2} plus the six
new tetrahedra containing p as a vertex (see Figure 2).

We repeat this process until a single cycle is ob-
tained. We will show in the next section that the
number of Steiner points we need to insert before a
Hamiltonian cycle is reached is at most ⌊n−2

2
⌋.

3 Complexity and implementation.

In this section we will analyze the running time and
implementation issues of the algorithm sketched in
Section 2.

Suppose now that S is a point set with n points in
R

3 with m convex hull points and m′ interior points,
m + m′ = n. We first calculate the convex hull of S

in O(n log n), and then remove the points of S in the
interior of Conv (S).

Next, we remove the convex hull vertices of degree
3. This can be done in O(m) by using a priority queue
with all convex hull vertices of degree 3. Each time
one is removed, the degree of its neighbors is checked
and if necessary they are added to the queue.

Adding the first Steiner point p0 and tetrahedraliz-
ing as in the previous section takes time O(m).

The complexity of finding the initial cycle partition
described at the end of Section 2 is that of finding a
perfect matching in G. In a graph with |V | vertices
and |E| edges, a perfect matching can be found in
time O(|E|

√

|V |) [7]. Since we are dealing with a
cubic graph, we have |E| = 3

2
|V |. Thus we can find

the cycle cover in 0(3

2
m
√

m) = O(m
3

2 ) time.

Once we have the initial cycle cover, we return the
vertices that were removed. This is done before the
join operations in order to take advantage of the struc-
ture of the tetrahedralization to return the convex hull
points of degree 3 and interior points efficiently. Us-
ing the fact that DT is a planar graph, the interior
points and convex hull points of degree 3 can be added
using point location at a cost of O(log m) per point.
The convex hull points of degree 3 are added first and
the interior points afterwards. As these points are
returned, the initial cycle partition is updated as in
Lemma 1 and Theorem 2.

We have to be careful about the order in which the
interior points are added. Suppose we have a tetrahe-
dra τ which contains k interior points that remain to
be added, and that we return q0, one of these points.
When we retetrahedralize the point set, τ would be
split into 4 new tetrahedra. We have to guarantee
that each of these tetrahedra receives a linear frac-
tion of the points in τ , for otherwise the iterative pro-
cess could take as much as O(k2). That is, we need a
splitter vertex (see [2]). Such a vertex can be found

in time O(k), thus ensuring a total of O(m′ log m′)
running time.

Finally we proceed to merge the set of cycles ob-
tained thus far into a single cycle as in Subsection 2.1.
Each time we join two cycles, we insert one Steiner
point. Since G has m vertices, the number of faces of
G is 2m − 4, and since all the cycles obtained have
at least four vertices, the initial cycle partition con-
tains at most ⌊ 2m−4

4
⌋ elements. Thus the number of

Steiner points required is at most ⌊m−2

2
⌋. This can

be done in O(n log n) since there are O(n) edges in
H . The overall complexity of the algorithm is thus
O(m

3

2 ) + O(n log n).

4 Hamiltonian Convex Hulls

To conclude the paper, we show that if the dual graph
G defined by the convex hull of S is Hamiltonian, then
no Steiner points need to be added.

Theorem 3 Let S be a point set in R
3 such that the

dual graph H of G is Hamiltonian. Then S admits a

Hamiltonian path tetrahedralization.

Proof. Consider a planar embedding of H and a
Hamiltonian cycle C of H . Let F be a face in this
embedding such that all except one of its edges are in
C.

Observe that there is a one-to-one mapping between
the vertices of G and the faces of H . Let v be the ver-
tex of G corresponding to F . Observe that each face
of Conv (S) (not containing v as one of its vertices)
together with v induces a tetrahedron, and that the
union of these tetrahedra forms a tetrahedralization
of Conv (S).

It is easy to see that the dual of this tetrahedral-
ization is isomorphic to H − F , and thus contains a
Hamiltonian path. �

Using Euler’s formula and the fact that all 3-
connected cubic planar graphs with 36 or fewer ver-
tices have a Hamiltonian cycle (see [6]), we obtain the
following corollary:

Corollary 4 Let S be a point set in R
3 having at

most 20 convex hull points. Then S admits a Hamil-

tonian path tetrahedralization.

The tetrahedralization mentioned in the proof of
Theorem 3 (where all the points are joined to a given
point) is known in the literature as a “pulling” tetra-
hedralization. Recently, point sets with no Hamilto-
nian path pulling tetrahedralizations have been shown
to exist [4].
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5 Conclusions

We presented an algorithm for computing Hamilto-
nian tetrahedralizations of a given point set S in R

3

by adding Steiner points.
The algorithm has a running time of O(m

3

2 ) +
O(n log n) and inserts at most ⌊m−2

2
⌋ Steiner points.

We believe that this bound is not optimal.
We also showed that point sets with at most 20

convex hull points always admit a Hamiltonian path
tetrahedralization.

We remark that have restricted ourselves to adding
Steiner points to the interior of Conv (S). If we allow
the use of Steiner points in the exterior of Conv (S),
four exterior points (the vertices of a tetrahedron con-
taining the elements of S in its interior) suffice.
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