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Abstract This paper concerns about energy-efficient broadcasts in mobile ad hoc
networks, yet in a model where each station moves on the plane with uniform rec-
tilinear motion. Such restriction is imposed to discern which issues arise from the
introduction of movement in the wireless ad hoc networks.

Given a transmission range assignment for a set of n stations S, we provide an
polynomial O(n2)-time algorithm to decide whether a broadcast operation from a
source station could be performed or not. Additionally, we study the problem of com-
puting a transmission range assignment for S that minimizes the energy required in a
broadcast operation. An O(n3 logn)-time algorithm for this problem is presented, un-
der the assumption that all stations have equally sized transmission ranges. However,
we prove that the general version of such problem is NP-hard and not approximable
within a (1−o(1)) lnn factor (unless NP⊂ DTIME(nO(log logn))). We then propose a
polynomial time approximation algorithm for a restricted version of that problem.
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1 Introduction

In its simplest form, a computer network may be modeled by a graph. In this graph,
computers are represented by nodes, and two nodes are adjacent if the corresponding
computers can communicate. Algorithmic issues for this model are very well under-
stood by now. However, technological advancement has made this model insufficient
in many instances. Perhaps the most important change was the arrival of mobile wire-
less devices. A wireless mobile device is any computer that can communicate using
radio signals and is also endowed with the ability to change its location. In its more
general form, the movement of the nodes is not know in advance (see Camp et al
(2002)). In the literature, the most common of these networks are called Mobile Ad-
hoc Networks (or MANETs), and they are the mobile version of the Wireless Ad-hoc
Networks.

In this paper we consider the algorithmic issues of networks that lie between these
two models, they are wireless ad-hoc networks but with a very restricted motion
which is known in advance. Particularly, we focus on issues related to broadcast
operations and energy optimization.

We briefly review wireless ad-hoc networks. A wireless ad-hoc network con-
sists of a collection of n radio stations, represented by a set of points on the plane
S = {s1,s2, . . . ,sn}, that exchange messages by wireless connections. Each station
has an assigned transmission range, and a station s j can receive a transmission from
another station si if and only if s j is within the transmission range of si. Typically,
the stations in such a network have a limited energy resource (battery for example),
and consequently, energy efficiency is an important design consideration for these
networks (see Clementi et al (2001); Wang and Li (2006)).

The power (energy) needed to correctly transmit data from a station si to a station
s j depends on the term d(si,s j)

α , where d(si,s j) is the Euclidean distance between
si and s j, and α ≥ 1 is the distance-power gradient. In an ideal environment α = 2,
but depending on the environment conditions it may be as large as 6 (Pahlavan and
Levesque (2005)).

In this context, a broadcast is a task initiated by a source station in order to dis-
seminate a message to all stations in the wireless network. Broadcasting is a basic
network communication task and for that reason has been widely studied (see for ex-
ample Williams and Camp (2002), Li (2004), Peleg (2007) and Clementi et al (2001)).

We do a small extension of this model to provide movement to the stations. Now
each point in S moves on the plane in a straight line with constant speed (which may
differ from that of other stations). Thus, the location of every station si can be seen as
function of time, where si(t) is the position of the station si at time t. The transmission
range of si ∈ S is represented by a disk Dsi of radius ri ≥ 1 centered at si(t), for all t;
we use ri greater or equal than 1 only to prevent infinitely small transmission ranges.
Similarly, a transmission range assignment for S is a function R : S→{r ∈ R|r ≥ 1},
so that ri = R(si) for each si ∈ S. Consequently, a station s j can receive a transmission
from si at time t if and only if s j(t) is inside the disk Dsi , with i 6= j.

In regard to broadcast, we assume the following conditions about message trans-
mission: a message transmission can be completed in an instant of time; and if si has
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a message M at time t, then it will transmit M to every station lying inside Dsi at any
time t ′ ≥ t.

As stated earlier, we study the algorithmic issues arising from the introduction
of movement to the wireless ad hoc networks, but in terms of minimizing the en-
ergy required in a broadcast operation. To properly discern those issues, our model
is intentionally restricted to simple movements (uniform rectilinear motion) and in-
stantaneous message transmission. From a practical point of view, a model with fixed
trajectories could seem rather unrealistic or naive, however such abstraction could
still be applied in for example satellite networks (see Resende and Pardalos (2006))
or in models like the one in Zhao et al (2004).

Let S be the set of mobile stations (points) and let s ∈ S be a source station that
generates a message M at time t0. We focus on the following problems:

(1) broadcast problem: Given a transmission range assignment R for S, to decide if s
could perform a broadcast of M, in other words, decide if the rest of the stations
in S will eventually receive M (at time t0 or later).

(2) min-equal-range problem: Find the minimum value r≥ 1 needed to broadcast M
from s, supposing that the transmission range assignment R is such that R(si) = r,
for all si ∈ S, i.e. supposing that all stations in S have the same transmission range
radius r.

(3) α-minsum problem: Given the distance-power gradient α ≥ 1, to find a transmis-
sion range assignment R, such that s could broadcast M and the value ∑si∈S R(si)

α

is minimized; such value represents the overall energy cost of R.
(4) minsum-binary problem: Is a restricted case of the α-minsum problem, where

each station could either have a transmission range of radius 1 or cease to trans-
mit.

The first three problems have been widely studied for the static case. The general
approach (see Clementi et al (2001) and Wang and Li (2006)) is to obtain a directed
transmission graph from the transmission range assignment R, and then look for a
specific connectivity property of that graph. However, these strategies cannot be used
directly in the mobile case, as the transmission of messages also depends on the time
of transmission.

This paper is organized as follows: Section 2 presents an algorithm for solving
the broadcast problem. Section 3 proposes an O(n3 logn)-time algorithm to solve
the min-equal-range problem. In Section 4 we prove that the α-minsum problem
is an NP-hard problem, and cannot be approximated in polynomial time within a
(1−o(1)) lnn factor, unless NP has slightly superpolynomial time algorithms. In the
same section, we propose an approximation to the minsum-binary problem, which
maintains the NP-hardness property from the α-minsum problem. Finally, we present
our conclusions in Section 5.

2 Broadcast problem

We first recall the broadcast problem: Given a set of mobile stations S, a transmission
range assignment R for S, a source station s ∈ S, and a message M generated in s at
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time t0, to decide if the rest of the stations in S will eventually receive M (at time t0
or later).

To solve the broadcast problem, we propose a method based on Dijkstra’s al-
gorithm, which, as a side result, also computes the first time at which each station
receives M.

Since each si ∈ S moves in a straight line and with constant speed, then si can
send a message to s j only within one time interval, with i 6= j. We name this interval
as transmission interval from si to s j and is denoted by I(si,s j). If si and s j does not
move in parallel lines (i 6= j) then I(si,s j) = [ta, tb], where ta is the first instant of time
at which s j lies in Dsi , and tb is the instant of time at which s j leaves Dsi , see Fig. 1.

ta
si

sj tb
si

sj

Fig. 1 Example of times defining I(si,s j) = [ta, tb].

Note that, depending on R and the trajectories of si and s j, the interval I(si,s j)
could be empty; and is always true that I(si,s j)⊆ I(s j,si) or I(s j,si)⊆ I(si,s j).

The connectivity graph GR, defined by S and R, is a directed graph with S as
vertex set. An arc from si to s j, labeled by I(si,s j), is in GR if and only if I(si,s j) 6= /0.
See the left side of Fig. 2 for an example.

If ti is the first time at which the station si receives M, then si can pass M to
another station s j if and only if ti ≤ tb, where [ta, tb] = I(si,s j), that is, before si losses
(directed) connectivity with s j. This concept can be expressed in GR in the following
way: assign the value ti to the vertex si; consider the arc from si to s j (labeled by
[ta, tb]) and assign the time t j to s j (the time at which s j first receives M from si),
where t j = ti if ti ∈ [ta, tb] or t j = ta if ti ≤ ta.

Thus, to solve the broadcast problem, it is enough to show that GR has an induced
spanning tree rooted at s, with suitable time intervals on the arcs. Therefore, to solve
the broadcast problem, we only need to run the following algorithm with GR and s as
inputs:

Algorithm 1 IS-CONNECTED(G,s, t0)
\∗ G is a connectivity graph and s is the start vertex generating M at time

t0. ∗\
1. Assign the value t0 to the vertex s.
2. Assign the value ∞ to the other vertices.

3. Run a modified Dijkstra’s algorithm from s, extracting the vertices from the

priority queue according to the time at which they receive M.
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Dijkstra’s algorithm ensures that the vertex coming out of the priority queue has
been assigned the minimum distance to the source. In a similar way, IS-CONNECTED
assures that each vertex coming out of the queue has been assigned the minimum
time at which it receives M. Therefore, if the tree obtained from IS-CONNECTED
is a spanning tree of GR, then the broadcast from s will succeed (see right side of
Fig. 2). In this way, we transform the connectivity problem to a shortest path like
problem. As a side result, we also obtain the first time at which each vertex receives
the message. The correctness and complexity of IS-CONNECTED follow from those
of Dijkstra’s algorithm. As GR could be a complete graph, then the total running time
of IS-CONNECTED is O(n2), and thus we obtain to the following result:

Theorem 1 The broacast problem can be solved in O(n2) time.

s
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Fig. 2 The graph GR for some set of stations S and the spanning tree obtained by the algorithm (t0 = 1).

3 Equally sized transmission ranges

In this section we describe an O(n3 logn) algorithm to solve the min-equal-range
problem. We recall that the problem consists in, given a set of mobile stations S, a
source station s ∈ S and a message M generated in s at time t0, to find the minimum
value r ≥ 1 needed to broadcast M from s, supposing that the transmission range
assignment R is such that R(si) = r, for all si ∈ S.

As the radius of Dsi would be equal to the radius of Ds j , we have that I(si,s j) =
I(s j,si) and hence we can use them interchangeably. This fact transforms the connec-
tivity graph into an undirected graph.

For any r ≥ 1, we use the symbol Gr to denote the connectivity graph GR for the
case when R(si) = r, for each si ∈ S. We also denote by Tr to the tree obtained by
running the algorithm IS-CONNECTED (from the previous section) on Gr with s and
t0. The min-equal-range problem is then reduced to find the minimum radius rMIN for
which TrMIN is a spanning tree of GrMIN .

The key idea is to calculate a discrete set of possible values for rMIN , and then
perform a search over this set. We call such set the critical radii of S, CR(S), and
contains all the radii r where Tr and Tr−ε could differ, for every ε > 0.
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Formally, r is a critical radius for S if by taking R(si) = r for each si ∈ S, one of
the following cases arises:

a) Two different stations, si and s j, have only one instant t of connection (I(si,s j) =
[t, t]). See Fig. 3(a) for an example.

b) There is a time t where I(si,s j)∩ I(si,sk) = [t, t] for some stations si, s j, and sk,
with (s j 6= sk). See Fig. 3(b) for an example.

sj

sk

si

t time

I(si, sj) I(si, sk)t time

I(si, sj)

si

sj

(a) (b)

Fig. 3 Examples of the two cases of critical radii.

A critical radius of type a) corresponds to the insertion of an edge in Gr that
was not present in Gr−ε , for every ε > 0. A radius of type b) could correspond to
the insertion of an edge in Tr that was not present in Tr−ε , for every ε > 0; yet the
addition of such edge depends on the execution of IS-CONNECTED in Gr and Gr−ε .

Given two different stations, si and s j, let di, j(t) be the squared Euclidean dis-
tance between si and s j at time t. As si and s j move along lines, di, j is a quadratic
polynomial in t, and note that di, j = d j,i.

Consider the arrangement of the n−1 functions involving si ({di, j | i 6= j}). Any
two of these functions intersect at most twice. Therefore, the arrangement contains
O(n2) intersections. Each of the O(n2) intersections gives us a (squared) radius cor-
responding to a critical radius of type b), and each of the n−1 function minima gives
us a (squared) radius corresponding to a critical radius of type a); refer to Fig. 4.

Since we have n different arrangements, then the size of CR(S) is O(n3). As-
suming that we can obtain the minima of any of these functions, and calculate the
intersection of two of these functions in constant time; then we can compute CR(S)
in O(n3) time.

The algorithm MIN-RADIUS to solve the min-equal-range problem, can be de-
fined as follows.

Algorithm 2 MIN-RADIUS

1. Compute the set CR(S).
2. Sort the elements of CR(S).
3. Look for the minimum radius rMIN , such that TrMIN is a spanning tree of GrMIN , (use Binary search in

CR(S) and apply the IS-CONNECTED algorithm at each search step).
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Fig. 4 Example of the critical radii involving s1.

The time complexity of this algorithm is easy to determine: step 1 takes O(n3)
time, step 2 takes O(n3 logn) time, and step 3 takes O(logn) sub-steps at most,
each with a cost of O(n2) time. Thus, the total time complexity of the algorithm
is O(n3 logn).

Therefore the next result follows immediately.

Theorem 2 The min-equal-range problem can be solved in O(n3 logn) time.

4 Optimizing the transmission range assignment

In this section we show that the α-minsum is not solvable in polynomial time, unless
P = NP , and neither can be approximated in polynomial time within a sublogarith-
mic factor, unless NP has slightly superpolynomial time algorithms. We prove such
statements by reducing the well-known set cover problem (Vazirani (2001); Chvatal
(1979)) to the α-minsum problem (in polynomial time). Additionally, we discuss an
approximation algorithm for the minsum-binary problem. Although the proved ap-
proximation factor is not satisfactory, it is worth the study for theoretical insights.

4.1 The α-minsum problem

We first recall that the α-minsum problem consists in, given a set of mobile stations
S, a source station s ∈ S, a message M generated in s at time t0, and the distance-
power gradient α ≥ 1, to find a transmission range assignment R, such that s could
broadcast M and the value ∑si∈S R(si)

α is minimized; in other words, to broadcast M
minimizing the energy cost.
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The static version of the α-minsum problem was analyzed in Clementi et al
(2001) for several dimensions and different values of α . From their results, the NP-
hardness of the α-minsum is implied for α > 1 and stations lying on the plane. How-
ever, in our mobile model the α-minsum problem is also NP-hard for α = 1. In the
same way, although the static problem is approximable within a constant factor on
the plane (for α ≥ 1), we will show that the α-minsum problem is not approximable
within a (1−o(1)) lnn factor, unless NP⊂ DTIME(nO(log logn)), where DTIME(t) is
the class of problems for which there is a deterministic algorithm running in time
O(t).

An instance of set cover consists of a set U , a family F of subsets of U , and a
cost function Cost : F → Q+. The problem is to find a subcollection F ′ of F that
covers U (every element of U is in at least one element of F ′), while minimizing the
sum of the costs of its elements, ∑F∈F ′ Cost(F).

It is known that the set cover problem is NP-hard (Vazirani (2001)) and can not
be approximated in polynomial time within a (1− o(1)) lnn factor, unless NP ⊂
DTIME(nO(log logn)) (Feige (1998)). The same properties can be proven for the α-
minsum problem, by providing a suitable polynomial time reduction of the set cover
problem to the α-minsum problem. We now proceed to show such reduction.

4.1.1 Reduction

Let U = {u1, . . . ,un}, F = {F1, . . . ,Fk}, and Cost : F → Q+ be an instance of set
cover. We assume that every set Fi has a cost greater or equal than 1. If this is not
satisfied for this particular instance of set cover, we may add 1 to the cost of each of
the sets in F without changing the optimal solution.

We first describe the initial positions and flight directions of the stations. After-
wards their speeds are specified.

Initial Positions and Directions.

Let N ≥ 1 and a distance parameter

P := (N( ∑
Fi∈F

Cost(Fi))+n+1)1/α .

Let LU , LF and LC be three horizontal lines in the plane so that LU is above LF , and
LF is above LC. We will decide upon the distances between these lines later on. Let
su1 ,su2 , . . . ,sun be n stations lying in LU at distance greater than P from each other,
and sF1 , . . .sFk be n stations lying in LF , also at distance greater than P from each
other. Both sets of stations sFi and su j will be static.

The stations su j represent the elements of U , and the stations sFi represent the
elements of F . To represent the fact that a set Fi covers an element u j we will add
a station sci, j whose original position is in LC. We partition this set of stations into
sets of the form C j := {sci, j |u j ∈ Fi}. All the stations in C j will move from their
original position towards the station su j . We choose the original position of each sci, j

so that the line li, j containing its flight direction, is tangent to the closed disk Di

centered at sFi with radius (Cost(Fi)N)1/α . Remark that we assume that every station
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has a minimum transmission range of 1 (that is either it does not transmit or if it
does so with a minimum radius of 1). As Cost(Fi) is greater or equal to 1, so is
(Cost(Fi)N)1/α .

Finally, the source s is placed in LF in any point to the left of all stations sFi and
set its direction along LF moving to the right. The source will eventually hit every
station sFi . Hence, the instance of the α-minsum problem will have the set of stations
S = {s}∪{sFi |1≤ i≤ k}∪{su j |1≤ j ≤ n}∪{sci, j |1≤ i≤ k,1≤ j ≤ n}. See Fig. 5.

s sF5sF3 sF4sF2sF1

suj

Cj

(cost(F2)N)1/α

(cost(F4)N)1/α

LF

LC

LU

sc1,j sc2,j sc4,j

Fig. 5 Graphical representation of the initial positions and movements (all the involved distances are
greater than P, except for those explicitly defined).

We now decide upon the separation of the lines LU , LF and LC. Set them apart
from each other so that:

– The lines Lu, LF and LF are at a distance greater than P from each other.
– No station sci, j is ever at distance less than P from a station sFr , unless i = r.
– No station sci, j is ever at distance less than P from a station suk , unless j = k.

Flight Speeds

Note that the only stations moving are the source and those originally at LC. The
flight directions of these stations have been specified above, we need only to decide
on their speeds.

To ease the exposition, we partition the set of moving stations into n+1 subsets
S0,S1, . . . ,Sn. We refer to these subsets as stages. Stage S0 will consist of solely of the
source s passing above each sFi ; stage S j will consist of the set of stations C j going to
the station su j for 1≤ j ≤ n.

The speeds of the stations at each stage are chosen so that:

– For j > 0, all stations in stage S j arrive at station su j at the same time.
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– The source s is always at a distance greater than P from every station sci, j and
generates the message M (the one to be broadcasted) before passing over any
station sFi .

– No station sci, j in stage S j will touch the disk Di before a station sck,l in a previous
stage (i.e. j > l) touches the disk Dk.

– After a station sci, j in stage S j touches the disk Di, no station of a later stage will
be at distance less or equal than P from sci, j .

Observation 1 The previous construction can be done in polynomial time and we
can observe the following:

– If a station sci, j receives the message from a station not in C j and different from
sFi , then the transmission range of such station must be greater than P.

– If a station su j receives the message from a station not in C j, then the transmission
range of such station must be greater than P.

4.1.2 NP-hardness and Inapproximability Results

The following two lemmas guarantee the NP-hardness of the α-minsum problem.
Intuitively speaking, a range assignment R that solves the α-minsum problem in the
previous construction (allowing a broadcast from s and minimizing ∑si∈S R(si)

α ),
selects a set of stations SF ′ ⊆ {sFi |1 ≤ i ≤ k} where R(sFi) = (Cost(Fi)N)1/α for
each sFi ∈ SF ′ . Such set maps to a set F ′ ⊆ F of minimum cost that covers U ,
solving then our instance of the set cover problem.

Lemma 1 For every α ≥ 1 and N ≥ 1, a function f exists that transforms an instance
x of set cover into an instance f (x) of the α-minsum problem in polynomial time and
satisfying that:

1. If there is a solution to x of cost w, then there is a solution to f (x) of cost Nw+
(n+1).

2. If there is a solution to f (x) of cost w′ then there is a solution to x of cost at most
(w′− (n+1))/N.

Proof Let U = {u1, . . . ,un}, F = {F1, . . . ,Fk}, Cost : F →Q+ be an instance of set
cover. The function f will be the above construction, obtaining then an instance of
the α-minsum problem.

First assume that there is a solution to this instance of set cover of cost at most w.
Thus there is a subset F ′ = {F1′ , . . . ,Fk′} of F that covers U , such that

∑
Fi′∈F ′

Cost(Fi′) = w.

Note that the source s may pass the message M to all stations sFi in LF with
a transmission range radius of 1. Set the transmission range of every station sFi′ to
(Cost(Fi′)N)1/α and turn off the transmission range of all other stations sFi . Each
station sFi′ transmits M to every station sci′, j with a cost of

((Cost(Fi′)N)1/α)α = Cost(Fi′)N;
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hence the total cost for this message transmission is ∑Fi′∈F ′(Cost(Fi′)N)=Nw. Since
for every element u j there exists a set Fi′ that covers u j, the station sci′, j received the
M from sFi and may transmit it to the station su j and all other stations sck, j arriving at
su j . Choose one of these stations per element u j and set its transmission range to 1.
We have the following conditions:

1. All stations sFi received M from the source s;
2. all stations sci, j also received M, either from sFi or from a station in C j;
3. all stations su j receive M from some element in C j.

Therefore, the constructed range assignment is a solution for this instance of the
α-minsum problem; its cost is Nw+(n+1).

Now assume that there is a solution to this instance of the α-minsum prob-
lem of cost w′. By Observation 1, if a station sci, j receives M from a station other
than sFi or a station not in C j then the transmission range of that station must be
greater than P = (N(∑Fi∈F Cost(Fi))+n+1)1/α and its associated cost greater than
N(∑Fi∈F Cost(Fi))+n+1. In this case

w′ > N( ∑
Fi∈F

Cost(Fi))+n+1

and we may take all of F as a solution to this instance of the set cover problem; its
cost would be at most (w′− (n+ 1))/N. Likewise if a station su j receives M from a
station not in C j. Assume then that all stations sci, j received M either from station sFi

or from a station in C j, and that all stations su j received M from a station in C j . Note
that the source must have a transmission range of at least 1. Also for every station
su j at least one station of C j had transmission range of at least 1. This accounts for
at least (n+ 1) of the cost. The remaining cost is of at most w′− (n+ 1). Therefore
the total cost of stations sFi whose transmission range is greater than zero is at most
w′− (n+ 1). So if we choose F ′ to be the subset of F of all Fi such that sFi has a
transmission range greater than 0 we obtain a set that covers U whose cost is at most
(w′− (n+1))/N. ut
Lemma 2 For every α ≥ 1 and N ≥ 1, a function f exists that transforms an instance
x of the set cover problem to an instance f (x) of the α-minsum problem in polynomial
time and satisfying that the optimum value OPT( f (x)) of a solution to f (x) is equal
to OPT(x)N +(n+1), where OPT(x) is the optimal value of a solution to x.

Proof Let U = {u1, . . . ,un}, F = {F1, . . . ,Fk}, Cost : F → Q+ be an instance of
set cover. Let f be as in Lemma 1. By Lemma 1, a solution to f (x) exists with cost
OPT(x)N+(n+1). If f (x) has a solution of cost less than OPT(x)N+(n+1), by the
same Lemma, x would have a solution of less than OPT(x), a contradiction. Therefore
OPT( f (x)) is equal to OPT(x)N +(n+1) as claimed. ut

The previous lemmas also help to prove the next result, regarding to approxima-
tion algorithms.

Theorem 3 Let α ≥ 1. If there exists a polynomial time β -approximation algorithm
for the α-minsum problem, then there exists a β -approximation algorithm for the set
cover problem.
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Proof Let x be an instance of the set cover problem. Choose N be large enough so
that (β −1)(n+1)/N is less than the minimum difference between any solution of x.
Assume that there exists a polynomial β -approximation algorithm for the α-minsum
problem. Let f be as in Lemma 2. If w′ is the cost solution produced by the algorithm,
then by Lemma 2:

w′ ≤ βOPT( f (x)) = β (OPT(x)N +n+1).

By Lemma 1 there is a solution to x of cost at most:

(w′− (n+1))/N ≤ βOPT(x)+(β −1)(n+1)/N.

And by choice of N this is at most βOPT(x). ut

The set cover problem is not approximable within a (1−o(1)) lnn factor, unless
NP⊂DTIME(nO(log logn)) (Feige (1998)), therefore, as a consequence of Theorem 3,
we arrive to the following result:

Theorem 4 The α-minsum problem is NP-hard and it is not approximable within a
(1−o(1)) lnn factor, unless NP⊂ DTIME(nO(log logn)).

4.2 The minsum-binary problem

The problem of determining a good approximation factor to the α-minsum problem
seems to be non-trivial. We now discuss an approximated solution to the minsum-
binary problem that can be computed in polynomial time. Although the achieved
approximation factor is high and it does not have a real merit in practice, it has interest
from a theoretical point of view.

First we recall that the minsum-binary problem consists in, given a set of mobile
stations S, a source station s∈ S, and a message M generated in s at time t0, to find the
minimum number of stations that must be turned on (have transmission range radius
set to 1), in order to broadcast M. We also assume that the rest of stations do not
transmit (or by abuse of notation, have a transmission range radius of 0).

In the same way as with Theorem 4, the construction of the previous subsection
and Theorem 3 imply the following result:

Theorem 5 The minsum-binary problem is NP-Hard and it is not approximable with-
in a (1−o(1)) lnn factor, unless NP⊂ DTIME(nO(log logn)).

Our approximation algorithm is based on the greedy approximation algorithm for
the set cover problem (Chvatal (1979)). Broadly speaking, at each step we maximize
the ratio of the number of new stations that receive the message over the cost of
transmitting the message to these stations. Specifically, we choose the station si and
the time t, that maximizes the ratio of the number of new stations that will get the
message from si after time t over the minimum number of stations that must be turned
on for si to receive the message by time t. We consider only those times where a
station s j enters in the transmission range of si.
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Formally, let us suppose that si is turned on and let ti,1 ≤ ti,2 ≤ . . . ≤ ti,ki be the
times at which other stations enter in the transmission range of si. Let Si,k be the set
of stations that would be in the transmission range of si at time ti,k or after. We then
define the cost of Si,k to be the minimum number of stations that must be turned on
in order for si to get M by time ti,k. We denote it by Cost(Si,k).

This cost function can be computed in polynomial time as follows: Suppose that
all the stations are turned on, and let t1 ≤ t2 ≤ ...≤ tp be the times at which communi-
cation is gained between any two stations. For any of these times tk, we define G(tk)
as the subgraph of G1 (from Section 3), that has an edge joining vertices si and s j, if
si is ever at a distance at most 1 of s j after time tk. Also let T (tk) be the tree obtained
by running IS-CONNECTED (from Section 2) with inputs G(tk), s and t0.

Now observe that, if si has the message M at time tk, then Cost(Si,k)−1 is exactly
the length of the path between s and si in T (tk). Therefore, by computing the trees
T (t1),T (t2) . . . ,T (tp) we obtain the cost of every set Si,k in polynomial time, and
hence the approximation algorithm could be stated as follows:

Algorithm 3 APPROX-MINSUM-BINARY

1. While S has stations not yet ‘‘covered’’

2. Select the Si,k with the maximum

ratio(Si,k) = (# stations in Si,k not yet ‘‘covered’’)/Cost(Si,k).
3. Mark the stations in Si,k as ‘‘covered’’.

4. Turn on si.

From the analysis in Chvatal (1979), our greedy algorithm will be at most at a
factor of the optimal solution of this set cover instance. However, for the minsum-
binary problem, the produced solution will be within a bigger factor from the opti-
mal solution. With an extra analysis it is possible to obtain the approximation factor
(lnn+1)OPT, where OPT is the value of the optimal solution.

5 Conclusions

In this paper we worked on problems related to energy-efficient broadcasts in mobile
ad hoc networks on the plane. Particularly, we were interested in the algorithmic is-
sues arising from the introduction of movement. To properly discern those issues, we
have restricted to uniform rectilinear motion and instantaneous message transmission.

Surprisingly enough, some of the proposed problems could still be solved in poly-
nomial time in such environment, like the broadcast problem and the min-equal-range
problem. As expected, some other problems got harder in their mobile version than
in their static version. The α-minsum problem is NP-hard even when α = 1 and its
minimum approximation factor grew from constant (in the static case) to logarithmic
on the number of stations (see Theorem 4).

We believe that very little can be accomplished by approximation algorithms for
the α-minsum problem. In fact, we conjecture that cannot be approximable within
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an even bigger factor than logarithmic. On the other hand, we must note that the
IS-CONNECTED algorithm could led to a simple heuristic method for the α-minsum
problem, by applying a tabu search strategy (Glover and Laguna (1997)).
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