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Abstract. For every n ∈ N, there is a straight-line drawing Dn of a
planar graph on n vertices such that in any crossing-free straight-line
drawing of the graph, at most O(n.4982) vertices lie at the same position
as in Dn. This improves on an earlier bound of O(

√
n) by Goaoc et al. [6].

1 Introduction

A straight-line drawing of a graph G is a representation of G in the plane where
the vertices are mapped to distinct points in the plane, and each edge is repre-
sented by a line segment joining pairs of points representing adjacent vertices.
A drawing is crossing-free if no two edges intersect, except perhaps at a com-
mon endpoint. A geometric graph is a graph given with a straight-line drawing.
Every planar graph has a crossing-free straight-line drawing by Fary’s Theo-
rem [5], however, not all straight-line drawings are crossing-free. Suppose that
we are given a planar geometric graph G. Since G is planar, it can be redrawn
(by relocating some of its vertices) such that no two edges cross anymore. The
process of redrawing G to obtain a crossing-free straight-line drawing, is called
an untangling of G.

In this paper we study the following problem: For an integer n ∈ N, what
is the maximum number f(n) such that every planar geometric graph with n
vertices can be untangled such that at least f(n) vertices remain in their original
position.

The first question on untangling planar geometric graphs was posed by
Mamoru Watanabe in 1998: Is it true that every polygon P with n vertices
can be untangled in at most εn steps, for some absolute constant ε < 1, where
in each step, we move a vertex of G to a new location. Watanabe’s question was
proved to be false by Pach and Tardos [9], who also showed that every n-gon
can be untangled in at most n −

√
n moves. Recently, Cibulka [3] proved that

every n-gon can be untangled while keeping Ω(n2/3) vertices fixed, and there
are n-gons where no more than O((n log n)2/3) vertices can be fixed.

The problem of untangling planar geometric graphs was studied by Goaoc et
al. [6]. They constructed planar geometric graphs showing that f(n) ≤

√
n+ 2.
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Kang et al. [8] explored several families of graphs in which no more than O(
√
n)

of n vertices can be fixed. Bose et al. [2] devised an untangling algorithm that
fixes at least (n/3)1/4 of n vertices, which proves f(n) ≥ (n/3)1/4.

In this note, we improve the upper bound for f(n) to O(n1/(3−log38 37)) ⊂
O(n.4982). We construct planar geometric graphs such that any untangling of
them fixes O(n1/(3−log38 37)) of n vertices. The framework of our construction
leads to new problems in graph drawing, which we discuss in Section 5. Any
improvement in these problems would immediately improve the upper bound
for f(n).

2 Preliminaries

Monotone subsequences. Erdős and Szekeres showed that every permutation
of [n] = {0, 1, . . . , n− 1} contains a monotonically increasing or degreasing sub-
sequence of length at least d

√
ne, and this bound is the best possible. The lower

bound is attained on many different permutations. The best known construction
consists of d

√
ne monotonically increasing subsequences of consecutive elements,

where the minimum element of each subsequence is larger than the maximum
element of the next. We will use permutations in which monotone subsequences
“spread out” more evenly. In a permutation (σ1, σ2, . . . , σn), we define the spread
of a subsequence (σj1 , σj2 , . . . , σjk), 1 ≤ j1 < j2 < . . . . < jk ≤ n, to be jk − j1.

Lemma 1. For every m ∈ N, there is a permutation πn of [n] = [4m] such that

– the length of every monotone subsequence is at most 2m =
√
n; and

– the spread of every monotone subsequence of length k ≥ 2 is at least k2+2
6 .

Proof. We construct the permutation πn by induction on m. For m = 1, let
π4 = (2, 3, 0, 1) and observe that it has the desired properties. Assume that πn =
(σ1, . . . , σn) is a permutation of [n] with the desired properties. We construct a
permutation π4n of [4n] by replacing each σi with the 4-tuple

(4σi + 2, 4σi + 3, 4σi + 0, 4σi + 1).

Let L be a monotone subsequence of length k in π4n. Note that L has at most
two elements from each 4-tuple. The sequence of these 4-tuples corresponds to a
monotone subsequence of πn, which we denote by L′. The length of L′ is at least
k/2, with equality iff L contains exactly two elements from each of the 4-tuples
involved. By induction, the length of L′ is k/2 ≤ 2m. Hence, we have k ≤ 2m+1,
as required. If the length of L′ is exactly k/2, then its spread is at least (k/2)2+2

6

in πn, and so the spread of L is at least 4( (k/2)2+2
6 )− 1 = k2+2

6 . If the length of

L′ is more than k/2, then its spread is at least (k/2+1)2+2
6 , and the spread of L

is at least 4( (k/2+1)2+2
6 )− 1 ≥ k2+2

6 , as required. ut

A recursive construction. We say that a planar straight-line graph T
is an (a, b, c)-triangulation for integers a ≥ b > c > 0 if T is a 3-connected
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triangulation such that it has a total of a faces, b of which are marked, and any
line intersects at most c marked faces in any plane straight-line drawing of T .

Note that, by Steiniz’s theorem, a 3-connected triangulation is the 1-skeleton
of a combinatorially unique 3-dimensional polytope. Hence an (a, b, c)-triangu-
lation has a unique embedding in the plane up to homeomorphisms and the
choice of the outer face. In the following lemma, we recursively construct a
larger triangulation from an (a, b, c)-triangulation.

Lemma 2. If there exists an (a, b, c)-triangulation for constants a ≥ b > c > 0,
then for every n ∈ N, there is an (a′, b′, c′)-triangulation with a′ = Θ(n), b′ =
Θ(n), and c′ = Θ(nlogb c).

Proof. Let Ta,b,c be an (a, b, c)-triangulation. Plug in Ta,b,c in all marked faces of
Ta,b,c recursively k times, where k is specified shortly. We obtain a 3-connected
triangulation T ka,b,c (that is, Ta,b,c = T 0

a,b,c), which has b′ = bk+1 marked faces, a
line intersects at most c′ = ck+1 marked faces in any plane straight-line drawing,
and the total number of faces is a′ = bk+1 + (a − b)(bk+2 − 1)/(b − 1). If we
denote by v the number of vertices of T ka,b,c, then it has 2v − 4 faces, Θ(v) of
which are marked, and a line intersects at most Θ(vlogb c) marked faces in any
plane straight-line drawing of T ka,b,c. Choose k such that a′ = Θ(v). ut

3 Upper Bound Constructions

Theorem 1. If there exists an (a, b, c)-triangulation for constants a ≥ b > c >
0, then f(n) ∈ O(nκ) for κ = 1/(3− logb c).

Note that b > c, and so we have 0 < logb c < 1 and 0 < κ < 1/2. That is, the
existence of any (a, b, c)-triangulation implies an upper bound f(n) ∈ O(n

1
2−ε)

for some ε > 0. We discuss (a, b, c)-triangulations in Section 4.

Proof. For every n ∈ N, we construct a drawing of a planar graph Gn with Θ(n)
vertices such that in any untangling of Gn, at most O(nκ) vertices remain fixed.

Fig. 1. Triangulation S = P2 ∗ P5.

Construction. We first construct the planar graph Gn. By Lemma 2, there is
a 3-connected triangulation T with Θ(nκ) vertices and Θ(nκ) marked faces such
that any line intersects at most Θ(nκ logb c) marked faces in any plane straight-
line drawing of T . Let S be the join P2 ∗ Ps+1 of two paths with 2 and s + 1
vertices, respectively, where s = Θ(n1−κ) and s is a power of 4 (see Fig. 1).
Note that S has exactly s interior vertices, which have a natural order along an
interior path. We construct Gn by plugging in a copy of S into each marked face
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of T . Denote the copies of S by Si, for i = 1, 2, . . . , Θ(nκ). The total number of
vertices of Gn is Θ(nκ + nκ · n1−κ) = Θ(n).

Next, we describe a straight-line drawing of Gn. Embed the vertices of the
triangulation T arbitrarily in general position above the x-axis. Embed the in-
terior vertices of S1 into integer points {0, 1, . . . , s− 1}× {0} on the x-axis such
that their natural order is permuted by πs from Lemma 1. The interior vertices
of Si, for each i > 1, are embedded into a translated copy of this permutation,
translated along the x-axis by δi for some small 0 < δ � n−κ.
Bounding the number of fixed vertices. Consider a crossing-free straight-
line drawing of Gn. The Θ(nκ) vertices of T may be fixed. It is sufficient to
consider the interior vertices of Si, i = 1, 2, . . . , Θ(nκ). Suppose that `i interior
vertices of Si are fixed, for i = 1, 2, . . . , Θ(nκ). Since the x-axis intersects at
most O(nκ logb c) triangles of T , all but at most O(nκ logb c) values of `i are zero.

Consider now a triangulation Si where `i > 0. Note that Si contains a se-
quence of s+ 1 nested triangles that share a common edge (the horizontal edge
in Fig. 1). In any straight-line drawing of Si (independent of the choice of the
outer face), at least (s+ 1)/2 of these triangles form a nested sequence. Hence,
at least `i/2 fixed interior vertices of Si are vertices in a sequence of nested
triangles in the crossing-free straight-line drawing of Gn. The intersection of the
x-axis with a sequence of nested triangles is a line segment. It can be partitioned
into two directed segments, with opposite directions, such that each of them is
directed towards the deepest point in the arrangement of nested triangles. At
least `i/4 fixed points of Si lie on the same directed segment, and these points
must form a monotone sequence along the x-axis. Furthermore, the elements
of this monotone subsequence are all contained in the largest triangle from the
nested sequence of triangles in Si, therefore, their convex hull is disjoint from
the convex hulls of similar sequences in any other Sj , j 6= i.

By Lemma 1, the spread of the monotone subsequence of length at least
`i/4 is at least (`2i + 32)/96. Hence these fixed points “occupy” an interval of
length (`2i + 32)/96 on the x-axis. As noted above, the convex hulls of monotone
sequences from distinct copies of S are disjoint, and so we have

Θ(nκ)∑
i=1

`2i + 32
96

≤ 2s. (1)

Recall that at most O(nκ logb c) values of `i are nonzero. By Jensen’s inequal-
ity, the sum

∑Θ(nκ)
i=1 `i is maximized if all nonzero values of `i are equal. Suppose,

by relabeling the copies of S if necessary, that `i = ` for i = 1, 2, . . . , Θ(nκ logb c);
and `i = 0 for all other i. In this case, Inequality (1) becomes Θ(nκ logb c) · `2 ≤
Θ(n1−κ), or ` ∈ O(n(1−κ(1+logb c))/2). Therefore, the number of fixed vertices is
at most

Θ(nκ)∑
i=1

`i ≤ Θ(nκ logb c) · ` = Θ(n(1+κ(logb c−1))/2) = Θ(nκ),

as required. ut
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4 (a, b, c)-Triangulations.

Non-Hamiltonian triangulations. By Steinitz’s theorem, every 3-connected
cubic planar graph G is the 1-skeleton of a convex polytope. The dual graph
G∗, corresponding to the dual polytope, is a 3-connected triangulation. Tait [10]
conjectured in 1884 that every 3-connected cubic planar graph is Hamiltonian.
Tutte [11] found a counterexample with 44 vertices in 1946. The smallest known
counterexample, due to Bernette, Bosák, and Lenderberg, has 38 vertices, and
it is known that there is no counterexample with 36 or fewer vertices [7].

A Hamiltonian cycle of G corresponds to a simple closed curve visiting every
face exactly once in any plane drawing of G∗. In a straight-line drawing, every
face of a triangulation is convex and thus it is visited by a line at most once.
Therefore, if G is not Hamiltonian, then G∗ has no plane straight-line drawing in
which a line visits every face (including the outer face). The smallest known coun-
terexample to Tait’s conjecture implies that there is a (38, 38, 37)-triangulation.
Combined with Theorem 1, we obtain a new upper bound for f(n).

Corollary 1. f(n) ∈ O(n1/(3−log38 37)) ⊂ O(n.4982).

5 Conclusion

Our upper bounds for f(n) depend on the value logb c of an (a, b, c)-triangulation.
The (a, b, c)-triangulations we considered are all derived from counterexamples
for Tait’s conjecture. Since these are counterexamples for Hamiltonicity, they all
have a = b > c > 0. It is conceivable, though, that there are better constructions
for (a, b, c)-triangulations in which a > b.

The best possible upper bound for f(n) achievable with our framework would
come from the minimum value of logb c, leading to the following problems.

Problem 1. What is the minimum value of logb c over all (a, b, c)-triangulations?

Problem 2. What is the minimum value of logb c over all 3-connected cubic pla-
nar graphs G, where G has b has marked vertices and any simple cycle visits at
most c marked vertices?

The latter problem is purely graph theoretical. But the two problems are,
in fact, equivalent. The dual of Problem 2 asks for the minimum value of logb c
over all 3-connected plane triangulations T with a faces, b of which are marked,
such that any closed Jordan curve γ that visits every face at most once can
visit at most c marked faces. One can show that every such Jordan curve γ is
“stretchable.” That is, T has a plane straight-line drawing T ′ in which a line
L visits the exact same faces as γ visited in T (in the same cyclic order). See
Fig. 2. Details are omitted, and will be given in the full version of this paper.
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Fig. 2. Left: a plane 3-connected triangulation T , where curve γ visits every face exactly
once. Right: a plane straight-line drawing T ′ of T , where line L stabs every face.
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5. Fáry. I, On straight line representation of planar graphs, Acta Univ. Szeged, Acta
Sci. Math. 11 (1948), 229–233.

6. X. Goaoc, J. Kratochv́ıl, Y. Okamoto, C. S. Shin, A. Spillner, and A. Wolff, Untan-
gling a planar graph, Discrete Comput. Geom. 42 (4) (2009), 542–569.

7. D. A. Holton and B. D. McKay, The smallest non-Hamiltonian 3-connected cubic
planar graphs have 38 vertices, J. Combin. Theory Ser. B 45 (3) (1988), 305–319.

8. M. Kang, O. Pikhurko, A. Ravsky, M. Schacht, and O. Verbitsky, Untangling planar
graphs from a specified vertex position—Hard cases, Discrete Appl. Math. 159 (8)
(2011), 789–799.

9. J. Pach and G. Tardos, Untangling a polygon, Discrete Comput. Geom. 28 (4)
(2002), 585–592.

10. P. G. Tait, Listing’s Topologie, Philosophical Magazine 17 (1884), 30–46.
11. W. T. Tutte, On Hamiltonian circuits, J. LMS 21 (2) (1946), 98–101.


