Cluster structures and Tropicalization

Lara Bossinger

Universidad Nacional Autónoma de México, Oaxaca

June 1st 2020

Overview

(1) What is a cluster structure?
(2) What is tropicalization?
(3) How are they related?

What is a cluster structure?

For today: a projective variety X has a cluster structure, if there exist an embedding of X such that its homogeneous coordinate ring is a cluster algebra.

Examples: Grassmannians, (partial) flag varieties, Schubert varieties, (some) del Pezzo surfaces, ...

Cluster algebras

A cluster algebra ${ }^{1} A \subset \mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ is a commutative ring defined recursively by
© seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables;
(2) mutation: an operation to create a new seed from a given one by replacing one element.
For example, $s_{0}=\left\{x_{1}, \ldots, x_{n}\right\}$ then mutating at a variable x_{k} we get

$$
\mu_{k}\left(s_{0}\right)=\left\{x_{1}, \ldots, x_{k-1}, x_{k}^{\prime}, x_{k+1}, \ldots, x_{n}\right\},
$$

where $x_{k} x_{k}^{\prime}=\mathbf{x}^{m_{1}}+\mathbf{x}^{m_{2}}$ and m_{1}, m_{2} are encoded in some combinatorial data.
${ }^{1}$ Defined by Fomin-Zelevinsky.

Example: $\mathrm{Gr}_{2}\left(\mathbb{C}^{4}\right)$

$G r_{2}\left(\mathbb{C}^{4}\right)=\left\{V \subset \mathbb{C}^{4} \mid \operatorname{dim} V=2\right\}$ with Plücker embedding:

$$
\begin{array}{ccc}
\mathrm{Gr}_{2}\left(\mathbb{C}^{4}\right) & \hookrightarrow & \mathbb{P}\left(\wedge^{2} \mathbb{C}^{4}\right) \\
V=\left\langle v_{1}, v_{2}\right\rangle & \mapsto & {\left[v_{1} \wedge v_{2}\right]}
\end{array}
$$

its homogeneous coordinate ring

$$
A_{2,4}=\frac{\mathbb{C}\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right]}{p_{13} p_{24}=p_{12} p_{34}+p_{14} p_{23}}
$$

is a cluster algebra with two seeds:

$$
\begin{aligned}
& s_{0}=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{13}\right\}, \text { and } \\
& s_{1}=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{24}\right\} .
\end{aligned}
$$

Example: Grassmannains

More generally, let $A_{k, n}$ be the homogeneous coordinate ring of $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ with Plücker embedding.

Theorem (Scott)

$A_{k, n}$ is a cluster algebra.
$k \leq 2$ Plücker coordinates $=$ cluster variables,
$k \geq 3$ Plücker coordinates \subsetneq cluster variables,
$k=2$ or $k=3$ and $n \in\{6,7,8\}$ finitely many seeds.

Example: Fl_{3}

$\mathcal{F} \ell_{3}=\left\{\{0\} \subset V_{1} \subset V_{2} \subset \mathbb{C}^{3} \mid \operatorname{dim} V_{i}=i\right\}$ with Plücker embedding:

$$
\mathcal{F} \ell_{3} \hookrightarrow \operatorname{Gr}_{1}\left(\mathbb{C}^{3}\right) \times \operatorname{Gr}_{2}\left(\mathbb{C}^{3}\right) \hookrightarrow \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

Its homogeneous coordinate ring

$$
A_{3}=\frac{\mathbb{C}\left[p_{1}, p_{2}, p_{3}, p_{12}, p_{13}, p_{23}\right]}{p_{2} p_{13}=p_{1} p_{23}+p_{3} p_{12}}
$$

is a cluster algebra with two seeds:

$$
\begin{aligned}
s_{0} & =\left\{p_{1}, p_{3}, p_{12}, p_{23}, p_{2}\right\}, \text { and } \\
s_{1} & =\left\{p_{1}, p_{3}, p_{12}, p_{23}, p_{13}\right\} .
\end{aligned}
$$

Example: Flag varieties

More generally, let A_{n} be the homogeneous coordinate ring of $\mathcal{F} \ell_{n}$ with Plücker embedding.

Theorem (Berenstein-Fomin-Zelevinsky)

A_{n} is a cluster algebra.
$n=3$ Plücker coordinates $=$ cluster variables,
$n \geq 4$ Plücker coordinates \subsetneq cluster variables,
$n \leq 6$ finitely many seeds

Cluster toric degenerations

For every seed s we get a toric degeneration ${ }^{2} \pi: \mathcal{X}_{s} \rightarrow \mathbb{A}^{n}$ with

$$
\pi^{-1}(\mathbf{1})=X \quad \text { and } \quad \pi^{-1}(0)=X_{s, 0} \quad \text { toric variety. }
$$

The mutation relations $x_{k} x_{k}^{\prime}=\mathbf{x}^{m_{1}}+\mathbf{x}^{m_{2}}$ in X are deformed to $x_{k} x_{k}^{\prime}=\mathbf{x}^{m_{i}}$ in $X_{s, 0}$.

Example

For \mathcal{F}_{3} we have two such toric degenerations:

$$
\begin{aligned}
\mathcal{X}_{s_{0}} & :\left\langle p_{2} p_{13}-p_{1} p_{23}-t p_{3} p_{12}\right\rangle \\
\mathcal{X}_{s_{1}} & :\left\langle p_{2} p_{13}-t p_{1} p_{23}-p_{3} p_{12}\right\rangle
\end{aligned}
$$

${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

Gröbner degenerations

For $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ an ideal, $f=\sum c_{\alpha} \mathbf{x}^{\alpha} \in I$ and $w \in \mathbb{R}^{n}$ we define the initial form of f with respect to w

$$
\operatorname{in}_{w}(f):=\sum_{w \cdot \beta=\min _{c \alpha \neq 0}\{w \cdot \alpha\}} c_{\beta} \mathbf{x}^{\beta} .
$$

The initial ideal of I wrt w is $\operatorname{in}_{w}(I):=\left\langle\operatorname{in}_{w}(f): f \in I\right\rangle$.
For every w we have a Gröbner degeneration $\pi: \mathcal{V} \rightarrow \mathbb{A}^{1}$ with

$$
\pi^{-1}(1)=V(I) \text { and } \pi^{-1}(0)=V\left(\mathrm{in}_{w}(I)\right)
$$

Aim: $\mathrm{in}_{w}(J)$ is binomial and prime $\Rightarrow V\left(\mathrm{in}_{w}(I)\right)$ is toric.

Tropicalization

Definition

For $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous we define its tropicalization

$$
\operatorname{Trop}(I):=\left\{w \in \mathbb{R}^{n}: \operatorname{in}_{w}(I) \not \supset \text { monomials }\right\}
$$

Trop (I) has a fan structure:

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(I)=\operatorname{in}_{w}(I)
$$

Notation: $\mathrm{in}_{C}(I):=\operatorname{in}_{w}(I)$ for $w \in C^{\circ}$.
Aim: For a projective variety X find an ideal I with $X=V(I)$ such that $\operatorname{Trop}(I)$ contains a maximal cone with associated ideal in $C(I)$ binomial and prime.

Example: \mathcal{F}_{3}

We have $\mathcal{F} \ell_{3}=V\left(I_{3}\right)$ with $I_{3}=\left\langle p_{2} p_{13}-p_{1} p_{23}-p_{3} p_{12}\right\rangle$.
Then $\operatorname{Trop}\left(I_{3}\right) \subset \mathbb{R}^{6} / \mathbb{R}^{2}$ is 3-dimensional fan with 2-dimensional linear subspace \mathcal{L} and three cones

Well-poised

Best case: $V(I)$ is well-poised, i.e. all initial ideals of maximal cones in $\operatorname{Trop}(I)$ are prime.

Example

This is true for

- $\mathcal{F} \ell_{3}=V\left(I_{3}\right)$,
- $\mathrm{Gr}_{2}\left(\mathbb{C}^{n}\right)=V\left(I_{2, n}\right)$ by Speyer-Sturmfels,
- for rational complexity-one T-varieties by Ilten-Manon.
\rightsquigarrow In general well-poised is a lot to ask for.

Total positivity

Definition

An ideal $J \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ totally positive if it does not contain any non-zero element of $\mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]$.

Example

- $\left\langle p_{1} p_{23}+p_{3} p_{12}\right\rangle$ is not totally positive;
- $\left\langle p_{2} p_{13}-p_{3} p_{12}\right\rangle$ and $\left\langle p_{2} p_{13}-p_{3} p_{12}\right\rangle$ are totally positive.

Positively well-poised

We denote by $\operatorname{Trop}^{+}(I) \subset \operatorname{Trop}(I)$ the subfan with totally positive initial ideals [Speyer-Williams].

Definition

$V(I)$ is positively well-poised if all initial ideals of maximal cones in Trop ${ }^{+}(I)$ are prime.

Example

Take $I=\left\langle x_{1}+x_{1}^{3}-x_{2}^{2}\right\rangle \subset \mathbb{C}\left[x_{1}, x_{2}\right]$.
Trop(I):

$\rightsquigarrow V(I)$ is not well-poised as $\left\langle x_{1}+x_{1}^{3}\right\rangle$ is not prime.
Trop ${ }^{+}(I)$:

$\rightsquigarrow V(I)$ is positively well-poised!

Example: Tropicalizing $\mathcal{F} \ell_{4}$

Theorem (B.-Lamboglia-Mincheva-Mohammadi)

The tropical flag variety $\operatorname{Trop}\left(I_{4}\right)$ is a 6 -dimensional fan in $\mathbb{R}^{14} / \mathbb{R}^{3}$ with 78 maximal cone:

- 72 maximal cones have binomial and prime initial ideals,
- 6 maximal cones have binomial but not prime initial ideals.
$\rightsquigarrow V\left(I_{4}\right)$ is not well-poised.
$\operatorname{Trop}^{+}\left(I_{4}\right) \subset \operatorname{Trop}\left(I_{4}\right)$ consists of 14 maximal cones:
- 12 maximal cones have binomial and prime initial ideals,
- 2 maximal cones have binomial but not prime initial ideals.
$\rightsquigarrow V\left(I_{4}\right)$ is also not positively well-poised.

Example: Cluster structure $\mathcal{F} \ell_{4}$

The cluster algebra A_{4} has 14 seeds, all of which contain the frozen variables

$$
p_{1}, p_{4}, p_{12}, p_{34}, p_{123}, p_{234}
$$

and additional 3 cluster variables:

Example: $\mathcal{F} \ell_{4}$

Observation: combinatorially can identify seeds of A_{4} with maximal cones in Trop ${ }^{+}\left(I_{4}\right)^{3}$, but the toric degenerations do not match.
All cluster degenerations are toric while 2 degenerations of Trop ${ }^{+}\left(I_{4}\right)$ fail to be prime.
\rightsquigarrow replace the Plücker ideal of $\mathcal{F \ell _ { 4 }}$ by its cluster ideal: there exists an ideal $J_{4} \subset \mathbb{C}\left[x, p_{1}, \ldots, p_{234}\right]$ with

$$
A_{4} \cong \mathbb{C}\left[x, p_{1}, \ldots, p_{234}\right] / J_{4}
$$

[^0]
Example: $\mathcal{F} \ell_{4}$

$\operatorname{Trop}\left(J_{4}\right)$ is 6 -dimensional fan in $\mathbb{R}^{15} / \mathbb{R}^{3}$ with 105 maximal cones:

- 99 maximal cones have binomial and prime initial ideals,
- 6 maximal cones have binomial but not prime initial ideals. $\rightsquigarrow V\left(J_{4}\right)$ is still not well-poised.
$\operatorname{Trop}^{+}\left(J_{4}\right) \subset \operatorname{Trop}\left(J_{4}\right)$ has 14 maximal cones and
- 14 maximal cones have binomial and prime initial ideals. $\rightsquigarrow V\left(J_{4}\right)$ is positively well-poised!

Can identify maximal cones in $\operatorname{Trop}^{+}\left(J_{4}\right)$ with seeds in A_{4} such that the associated toric degenerations coincide!

Example: Fl_{4}

The ideals are minimally generated as follows

$$
\begin{array}{cc}
I_{4} & J_{4} \\
p_{3} p_{24}-p_{4} p_{23}-p_{2} p_{34}, & p_{3} p_{24}-p_{4} p_{23}-p_{2} p_{34}, \\
p_{3} p_{14}-p_{4} p_{13}-p_{1} p_{34}, & p_{3} p_{14}-p_{4} p_{13}-p_{1} p_{34}, \\
p_{2} p_{14}-p_{4} p_{12}-p_{1} p_{24}, & p_{2} p_{14}-p_{4} p_{12}-p_{1} p_{24}, \\
p_{2} p_{13}-p_{3} p_{12}-p_{1} p_{23}, & p_{2} p_{13}-p_{3} p_{12}-p_{1} p_{23}, \\
p_{24} p_{134}-p_{34} p_{124}-p_{14} p_{234}, & p_{24} p_{134}-p_{34} p_{124}-p_{14} p_{234}, \\
p_{23} p_{134}-p_{34} p_{123}-p_{13} p_{234}, & p_{23} p_{134}-p_{34} p_{123}-p_{13} p_{234}, \\
p_{23} p_{124}-p_{24} p_{123}-p_{12} p_{234}, & p_{23} p_{124}-p_{24} p_{123}-p_{12} p_{234}, \\
p_{13} p_{124}-p_{14} p_{123}-p_{12} p_{134}, & p_{13} p_{124}-p_{14} p_{123}-p_{12} p_{134}, \\
p_{13} p_{24}-p_{14} p_{23}-p_{12} p_{34}, & p_{13} p_{24}-p_{14} p_{23}-p_{12} p_{34}, \\
p_{4} p_{123}-p_{3} p_{124}+p_{2} p_{134}-p_{1} p_{234}, & p_{3} p_{124}-x-p_{123}, \\
& p_{2} p_{134}-x-p_{1} p_{234}
\end{array}
$$

Both are prime ideals and $V\left(I_{4}\right) \cong V\left(J_{4}\right) \cong \mathcal{F} \ell_{4}$.

Thank you!

References

B Lara Bossinger. Computational data on the totally positive tropical flag variety. available upon request.
BFZ05 Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky. Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126, no. 1, 1-52, 2005.
BLMM17 Lara Bossinger, Sara Lamboglia, Kalina Mincheva, and Fatemeh Mohammadi. Computing toric degenerations of flag varieties. In Combinatorial algebraic geometry, volume 80 of Fields Inst. Commun., pages 247-281. Fields Inst. Res. Math. Sci., Toronto, ON, 2017.
FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497-529, 2002.
GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497-608, 2018.
IM19 Nathan IIten and Christopher Manon. Rational complexity-one T-varieties are well-poised. Int. Math. Res. Not. IMRN no. 13, 4198-4232, 2019.

MS15 Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2015.
Sco06 Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92, no. 2, 345-380, 2006.

SS04 David Speyer and Bernd Sturmfels. The tropical Grassmannian. Advances in Geometry, 4(3):389-411, 2004.

SW05 David Speyer and Lauren Williams. The tropical totally positive Grassmannian. J. Algebraic Combin. 22, no. 2, 189-210, 2005.

[^0]: ${ }^{3}$ Compare to Speyer-Williams tropical totally positive $\operatorname{Gr}(2, n)$.

