Toric degenerations: embeddings and projections

Lara Bossinger (joint work in progress with Takuya Murata)

Universidad Nacional Autónoma de México, IM-Oaxaca

FU Berlin Seminar Algebraische Geometrie 17. Mai 2021

Definition

Definition

Let X be a projective variety. A *toric degeneration* of X is a flat morphism $\xi : \mathfrak{X} \to \mathbb{A}^1$ with generic fibre isomorphic to X and special fibre $\xi^{-1}(0)$ a toric variety.

Examples:

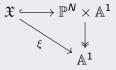
- **(**) an *abstract* degeneration, *e.g.* a toric scheme over $\mathbb{A}^1 = \operatorname{Spec}(k[t])$;
- (2) an *embedded* degeneration, *e.g.* $\mathfrak{X} = V(xy x^2 + ty^2) \subset \mathbb{P}^1_{x:y} \times \mathbb{A}^1_t$;
- ③ a toric degeneration admits a projection if it is an embedded toric degeneration with a projection ξ⁻¹(1) → ξ⁻¹(0).

From abstract to embedded toric degenerations

<u>Idea</u>: If the toric fibre $\xi^{-1}(0)$ has a very ample line bundle, can we extend this embedding to all of the family?

Conjecture (Takuya Murata)

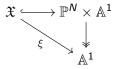
If a toric degenerations $\xi : \mathfrak{X} \to \mathbb{A}^1$ is proper and \mathcal{L} is an invertible flat $\mathcal{O}_{\mathfrak{X}}$ -module such that $\mathcal{L}|_{\xi^{-1}(0)}$ is very ample, then ξ it is an embedded degeneration; i.e. there exists an embedding $\mathfrak{X} \hookrightarrow \mathbb{P}^N \times \mathbb{A}^1$ such that



is a commutative diagram.

Embedded toric degenerations

Given an embedded toric degeneration



we have $\mathfrak{X} = \operatorname{Proj}(\mathfrak{R})$ for some Noetherian k[t]-algebra \mathfrak{R} . Then the generic fibre is

$$\xi^{-1}(1) = X = \operatorname{Proj}(R)$$

where $R := \Re/(t-1)\Re$. Similarly, the special fibre is $\xi^{-1}(0) = X_0 = \operatorname{Proj}(R_0)$ where $R_0 := \Re/t\Re$.

Assumption: X and X_0 are irreducible, so R is a positively graded domains and R_0 is a finitely generated algebra of a graded semigroup with identity. [KM19]/[Mur20]: May assume \mathfrak{R} is the *Rees algebra of a valuation* on R.

Toric degenerations from valuations

Let $R = \bigoplus_{i \ge 0} R_i$ be a graded *k*-algebra and domain. A *valuation* on *R* is a map $\nu : R \setminus \{0\} \to (\mathbb{Z}^d, <)$ such that for all $f, g \in R \setminus \{0\}$ and $c \in k$

$$u(fg) = \nu(f) + \nu(g), \quad \nu(cf) = \nu(f), \quad \nu(f+g) \ge \min_{\langle} \{\nu(f), \nu(g)\}$$

<u>Notice</u>: $S := im(\nu)$ is a semigroup.

Moreover, ν induces a filtration on R: for every $m \in \mathbb{Z}^d$

$$F_m := \{f \in R : \nu(f) \leq m\}$$
 and $F_{\leq m} := \{f \in R : \nu(f) < m\}.$

Proposition

If $F_m/F_{\leq m}$ is at most one-dimensional for all $m \in \mathbb{Z}^d$ (for example if rank(S) = dim(R), *i.e.* ν is *full-rank*) then

$$\operatorname{\mathsf{gr}}_{\nu}(R)\cong k[S].$$

A vector space basis \mathbb{B} of R is *adapted to* ν if $\mathbb{B} \cap F_m$ is a vector space basis for all m.

Toric degenerations from valuations

Theorem (David Anderson)

Let $\nu : R \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank valuation with finitely generated value semigroup S. Then there exists a toric degeneration of $X = \operatorname{Proj}(R)$ with special fibre $X_0 = \operatorname{Proj}(k[S])$ defined by the Rees algebra of ν :

$$\mathfrak{R}=\bigoplus_{i\geq 0}t^{i}F_{\leq i},$$

where $F_{\leq i} = \bigcup_{\pi(m) \leq i} F_m$ for a suitable projection $\pi : \mathbb{Z}^d \to \mathbb{Z}$.

 \mathfrak{R} is a flat k[t]-algebra with

$$\mathfrak{R}/(t-1)\mathfrak{R}=R$$
 and $\mathfrak{R}/t\mathfrak{R}=\mathsf{gr}_{\nu}(R).$

Equations for embedded toric degenerations

The polytope defining the (normalization of the) toric variety Proj(k[S]) is the *Newton–Okounkov polytope*

$$\Delta(R,
u) := \overline{\operatorname{conv}\left(igcup_{i>0}\left\{rac{
u(f)}{i}: f\in R_i
ight\}
ight)} \subset \mathbb{R}^d.$$

Hence, we can compute equations for $X_{\Delta(R,\nu)} = \bar{X}_0$ from $\Delta(R,\nu)$.

<u>Question:</u> How about equations for X and the family \mathfrak{X} ? \rightsquigarrow can be obtained using *Gröbner theory*.

Gröbner degenerations

Let $k = \overline{k}$ with char(k) = 0 and $R = k[x_1, \dots, x_n]/I$ for I homogeneous.

For every $w \in \mathbb{R}^n$ we have the *initial ideal* $in_w(I) := (in_w(f) : f \in I)$, for example $in_{(1,1)}(xy - x^2 + y) = xy - x^2$, and a flat family

$$\xi_{w}:\mathfrak{X}\to\mathbb{A}^{1}$$

with generic fibre Proj(R) and special fibre $Proj(R_w)$, where $R_w := k[x_1, \ldots, x_n]/in_w(I)$.

Definition

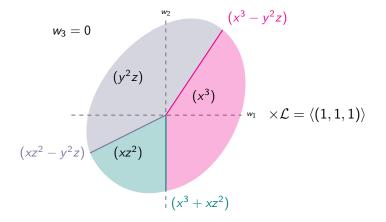
The *Gröbner fan* GF(*I*) of *I* is \mathbb{R}^n with fan structure

$$v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(I) = \operatorname{in}_{w}(I)$$

The *tropicalization* $\mathcal{T}(I)$ of I is the closed subfan of GF(I) consisting of those w for which $in_w(I)$ contains no monomials.

Example

Take $I = (x^3 + xz^2 - y^2z) \subset \mathbb{C}[x, y, z]$. Then GF(I) is \mathbb{R}^3 with the fan structure below and $\mathcal{T}(I)$ is its 1-skeleton.



Correspondence Theorem and Corollary

Theorem (L.B.'20, K.Kaveh–C.Manon '19)

Let R be a positively graded algebra and domain, $\nu : R \setminus \{0\} \to \mathbb{Z}^d$ full-rank valuation with finitely generated value semigroup. Then there exists an isomorphism of graded algebras

 $k[x_1,\ldots,x_n]/I \cong R$

such that Anderson's toric variety Proj(k[S]) is isomorphic to the toric variety of a Gröbner toric degeneration for some $w \in \mathcal{T}(I) \subset \mathbb{R}^n$:

 $Proj(k[S]) \cong Proj(R_w).$

Corollary

The value semigroup $S \subset \mathbb{Z}^d$ is isomorphic to a semigroup $S' \subset \mathbb{Z}^d_{\geq 0}$.

Example: projected toric degenerations

Example

Consider the toric degeneration

$$\mathfrak{X} = V(y^2z - x^3 - txz^2) \subset \mathbb{P}^2_{x:y:z} \times \mathbb{A}^1_t$$

of the elliptic curve $X = V(y^2z - x^3 - xz^2)$ to the toric variety $X_0 = V(y^2z - x^3)$. The projection $X \to \mathbb{P}^1$ given by $[x : y : z] \mapsto [y : z]$ composed with the normalization map $\mathbb{P}^1 \to X_0$ defines a projection

$$X \twoheadrightarrow X_0$$

Algebraically, this corresponds to an embedding of the semigroup algebra $R_0 = k[x, y, z]/(y^2z - x^3)$ into $R = k[x, y, z]/(y^2z - x^3 - xz^2)$.

Question: Which (embedded) toric degenerations admit such a projection?

Toric subalgebras

Let $\nu : R \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank valuation with finitely generated semigroup *S*.

Algebraically, we are looking for an embedding of k[S] as a *toric* subalgebra into R.

Idea: Map the basis S of k[S] onto basis elements of R.

Example

In the above example, R has a k-basis $\mathbb{B} = \{x^a y^b z^c : a < 3\}$. The semigroup S defining R_0 is generated by $(1,0), (1,1), (1,3) \subset \mathbb{N} \times \mathbb{Z}$. So we may embed

$$k[S] \hookrightarrow R, \quad \chi^{(m,n)} \mapsto y^m z^n \in \mathbb{B}.$$

This map is neither graded nor finite, but it defines a dominant map

$$\operatorname{Spec}(R) \to \operatorname{Spec}(k[S])$$

 \rightsquigarrow these maps are not too hard to find, e.g. in cluster algebras.

Example: cluster algebras

A cluster algebra A is a commutative algebra generated recursively by

- *seeds*: maximal algebraically independent sets whose elements are called *cluster variables*, that are related to each other via
- mutation: an operation that creates a new seed from a given one by replacing one cluster variable by a binomial with positive coefficients in the other cluster variables.

The monomials in cluster variables of one seed are called *cluster monomials* and they are linearly independent in *A*.

Cluster algebras and valuations

Proposition (L.B.-M.Cheung-T.Magee-A.Nájera Chávez)

Let A be a cluster algebra that satisfies the *full Fock–Goncharov conjecture*. For every seed *s* there exists a full-rank valuation

 $g_s: A \setminus \{0\} \to \mathbb{Z}^d$

with finitely generated semigroup. The associated Newton–Okounkov polytope $\Delta(A, g_s)$ is the tropicalization of *Gross–Hacking–Keel–Kontsevich's superpotential* for the associated cluster variety.

The Proposition applies to, for example, Grassmannians, flag varieties, configuration spaces, the del Pezzo surface of degree 5 ...

Cluster algebras and toric degenerations

Corollary (L.B.–Takuya Murata)

The toric degeneration of Spec(A) induced by $g_s : A \setminus \{0\} \to \mathbb{Z}^d$ admits a dominant map

$$Spec(A) o ilde{X}_{\Delta(A,g_s)}.$$

<u>Idea of Proof</u>: Consider the cluster variables x_1, \ldots, x_d of the seed s. They form a maximal algebraically independent set and all monomials in these variables are part of a k-basis \mathbb{B} for A, \rightsquigarrow cluster monomials.

Want to map the elements χ^m for $m \in \mathbb{Z}^d$ of the semigroup S to monomials $x_1^{m_1} \cdots x_d^{m_d}$. However, to do this we need $m \in \mathbb{Z}_{\geq 0}^d$. By the *Correspondence Corollary* S is isomorphic to a monoid $S' \subset \mathbb{Z}_{\geq 0}^d$. So we define

$$k[S] \cong k[S'] \hookrightarrow A$$
, where $\chi^m \mapsto \chi^{m'} \mapsto x_1^{m'_1} \cdots x_d^{m'_d} \in \mathbb{B}$.

Standard monomial bases

More generally we may replace *cluster monomials* by *standard monomials*.

Definition

Let < be a *monomial term order* on $k[x_1, ..., x_n]$, *i.e.* is a total order on the monomials in $k[x_1, ..., x_n]$ with $x^a < x^b$ implies $x^{a+c} < x^{b+c}$ for all $a, b, c \in \mathbb{Z}_{\geq 0}^n$. Then for an ideal $I \subset k[x_1, ..., x_n]$ its *initial ideal with respect to* < is in_<(I) := (in_<(f) : $f \in F$) where $in_<(f)$ is the <-maximal term in f.

It is not hard to see that $in_{<}(I)$ is a monomial ideal. It defines a *standard monomial basis* for R

$$\mathbb{B}_{<} := \{ \bar{\mathsf{x}}^m \in R : \mathsf{x}^m \notin \mathsf{in}_{<}(I) \}.$$

In fact, the maximal cones in the Gröbner fan GF(I) correspond to monomial initial ideals of form $in_{<}(I)$.

Standard monomial bases for the elliptic curve

Example $(I = (x^3 + xz^2 - y^2z))$ $\mathbb{B}_{(y^2z)} = \{x^a y^b z^c : b < 2 \text{ or } c < 1\}$ $\mathbb{B}_{(x^3)} = \{x^a y^b z^c : a < 1 \text{ or } c < 2\}$ $\mathbb{B}_{(x^2)} = \{x^a y^b z^c : a < 1 \text{ or } c < 2\}$

For $R_0 = k[x, y, z]/(x^3 - yz^2)$ we have two *adapted bases* $\mathbb{B}_{(x^3)}$ and $\mathbb{B}_{(yz^2)}$. For every choice of maximal algebraically independent set of generators in R_0 its monomials are standard in $\mathbb{B}_{(x^3)}$ or $\mathbb{B}_{(yz^2)}$:

$$\begin{split} & \{x,y\} & \rightsquigarrow & x^a y^b \in \mathbb{B}_{(y^2 z)} & \text{as } c < 1, \\ & \{x,z\} & \rightsquigarrow & x^a z^c \in \mathbb{B}_{(y^2 z)} & \text{as } b < 2, \\ & \{y,z\} & \rightsquigarrow & y^b z^c \in \mathbb{B}_{(x^3)} & \text{as } a < 3. \end{split}$$

Lara Bossinger (joint work in progress with Takuya Murata)

From embedded toric degenerations to projections

Conjecture (L.B.-Takuya Murata)

Given an embedded toric degeneration $\mathfrak{X} \to \mathbb{A}^1$ determined by a full-rank valuation $\nu : R \setminus \{0\} \to \mathbb{Z}^d$ with finitely generated semigroup S there exists an embedding $k[S] \hookrightarrow R$ inducing a projection

 $Proj(R) \rightarrow Proj(k[S]).$

Strategy of proof:

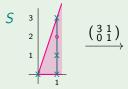
- Use the Correspondence Theorem, so that $R = k[x_1, ..., x_n]/I$ and there is a cone $\tau \in \mathcal{T}(I)$ with $k[S] = k[x_1, ..., x_n]/in_{\tau}(I)$;
- **2** fix a maximal algebraically independent set $s = \{x_{i_1}, \ldots, x_{i_d}\}$ in k[S];
- **③** refine τ by a term order such that monomials in s are standard;
- adjust the grading of S and map S onto standard monomials;
- **(**) check that a suitable localization $(k[S]_f)_0 \hookrightarrow R_f$ is finite.

Example

Recall $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$ is graded by deg(a, b) = a, but in R monomials $y^a z^b$ have degree total a + b. Se we embed S into a semigroup S' graded by total degree:

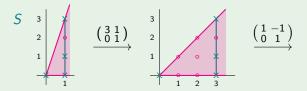
Example

Recall $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$ is graded by deg(a, b) = a, but in R monomials $y^a z^b$ have degree total a + b. Se we embed S into a semigroup S' graded by total degree:



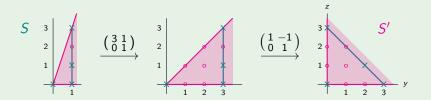
Example

Recall $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$ is graded by deg(a, b) = a, but in R monomials $y^a z^b$ have degree total a + b. Se we embed S into a semigroup S' graded by total degree:



Example

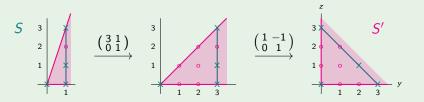
Recall $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$ is graded by deg(a, b) = a, but in R monomials $y^a z^b$ have degree total a + b. Se we embed S into a semigroup S' graded by total degree:



Lara Bossinger (joint work in progress with Takuya Murata)

Example

Recall $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$ is graded by deg(a, b) = a, but in R monomials $y^a z^b$ have degree total a + b. Se we embed S into a semigroup S' graded by total degree:



Recall that $y^a z^b \in R$ are standard monomials. So we may embed $k[S] \hookrightarrow R$ by $(1,0) \mapsto y^3$, $(1,1) \mapsto y^2 z$ and $(1,3) \mapsto z^3$.

References

- BM Lara Bossinger, Takuya Murata. Embeddings of toric degenerations (working title) *in preparation 2021*
- BCMN Lara Bossinger, Mandy Cheung, Timothy Magee, Alfredo Nájera Chávez. On cluster duality for Grassmannians *in preparation 2021*
 - BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras. arxiv preprint arXiv:2007.14972 [math.AG], (2020)
 - B Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. *Int. Math. Res. Not.* rnaa071 (2020)
 - FZ Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.
- GHKK Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608 (2018)
 - KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. *SIAM J.Appl. Algebra Geom.*, 3(2):292–336 (2019)
- Murata Takuya Murata. Toric degenerations of projective varieties with an application to equivariant Hilbert functions. *PhD Thesis University of Pittsburgh* (2020)
 - Scott Joshua S. Scott. Grassmannians and cluster algebras. *Proc. London Math. Soc.* (3) 92 (2006), no. 2, 345–380.

Proof of the Correspondence Theorem

We call a set of algebra generators b_1, \ldots, b_n of R a *Khovanskii basis* for ν if $\nu(b_1), \ldots, \nu(b_n)$ generate S.

<u>Idea of Proof</u>: Choose a finite Khovanskii basis $b_1, \ldots, b_n \in R$. Take

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

and $I := \ker(\pi)$. Then by [B, Main Theorem] exits $w \in \mathcal{T}(I)$ such that

 $in_w(I)$ is toric \Leftrightarrow S is finitely generated.

Moreover, $k[S] \cong k[x_1, \ldots, x_n]/in_w(I)$.

Algorithm for w: Input: Khovanskii basis for ν ; Output: w

• compute $\nu(b_i)$ for all *i*;

② for a suitable projection
$$\pi$$
 : \mathbb{Z}^d → \mathbb{Z} compute $w = (\pi(\nu(b_1)), \dots \pi(\nu(b_n)) \in \mathbb{R}^n$.