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Definition

Definition

Let X be a projective variety. A toric degeneration of X is a flat morphism
ξ : X→ A1 with generic fibre isomorphic to X and special fibre ξ−1(0) a
toric variety.

Examples:

1 an abstract degeneration, e.g. a toric scheme over A1 = Spec(k[t]);

2 an embedded degeneration, e.g. X = V (xy − x2 + ty2) ⊂ P1
x :y × A1

t ;

3 a toric degeneration admits a projection if it is an embedded toric
degeneration with a projection ξ−1(1)� ξ−1(0).
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From abstract to embedded toric degenerations

Idea: If the toric fibre ξ−1(0) has a very ample line bundle, can we extend
this embedding to all of the family?

Conjecture (Takuya Murata)

If a toric degenerations ξ : X→ A1 is proper and L is an invertible flat
OX-module such that L|ξ−1(0) is very ample, then ξ it is an embedded

degeneration; i.e. there exists an embedding X ↪→ PN × A1 such that

X PN × A1

A1
ξ

is a commutative diagram.
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Embedded toric degenerations

Given an embedded toric degeneration

X PN × A1

A1
ξ

we have X = Proj(R) for some Noetherian k[t]-algebra R. Then the
generic fibre is

ξ−1(1) = X = Proj(R)

where R := R/(t − 1)R. Similarly, the special fibre is
ξ−1(0) = X0 = Proj(R0) where R0 := R/tR.

Assumption: X and X0 are irreducible, so R is a positively graded domains
and R0 is a finitely generated algebra of a graded semigroup with identity.

[KM19]/[Mur20]: May assume R is the Rees algebra of a valuation on R.
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Toric degenerations from valuations
Let R =

⊕
i≥0 Ri be a graded k-algebra and domain. A valuation on R is

a map ν : R \ {0} → (Zd , <) such that for all f , g ∈ R \ {0} and c ∈ k

ν(fg) = ν(f ) + ν(g), ν(cf ) = ν(f ), ν(f + g) ≥ min<{ν(f ), ν(g)}

Notice: S := im(ν) is a semigroup.

Moreover, ν induces a filtration on R: for every m ∈ Zd

Fm := {f ∈ R : ν(f ) ≤ m} and F<m := {f ∈ R : ν(f ) < m}.

Proposition

If Fm/F<m is at most one-dimensional for all m ∈ Zd (for example if
rank(S) = dim(R), i.e. ν is full-rank) then

grν(R) ∼= k[S ].

A vector space basis B of R is adapted to ν if B ∩ Fm is a vector space
basis for all m.
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Toric degenerations from valuations

Theorem (David Anderson)

Let ν : R \ {0} → Zd be a full-rank valuation with finitely generated value
semigroup S . Then there exists a toric degeneration of X = Proj(R) with
special fibre X0 = Proj(k[S ]) defined by the Rees algebra of ν:

R =
⊕

i≥0t
iF≤i ,

where F≤i = ∪π(m)≤iFm for a suitable projection π : Zd → Z.

R is a flat k[t]-algebra with

R/(t − 1)R = R and R/tR = grν(R).
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Equations for embedded toric degenerations

The polytope defining the (normalization of the) toric variety Proj(k[S ]) is
the Newton–Okounkov polytope

∆(R, ν) := conv

(⋃
i>0

{
ν(f )

i
: f ∈ Ri

})
⊂ Rd .

Hence, we can compute equations for X∆(R,ν) = X̄0 from ∆(R, ν).

(proper) abstract
toric degeneration

 
(embedded)

toric degeneration
by a valuation

 
equations for the

normalization of X0

Question: How about equations for X and the family X?
 can be obtained using Gröbner theory.
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Gröbner degenerations

Let k = k̄ with char(k) = 0 and R = k[x1, . . . , xn]/I for I homogeneous.

For every w ∈ Rn we have the initial ideal inw (I ) := (inw (f ) : f ∈ I ), for
example in(1,1)(xy − x2 + y) = xy − x2, and a flat family

ξw : X→ A1

with generic fibre Proj(R) and special fibre Proj(Rw ), where
Rw := k[x1, . . . , xn]/inw (I ).

Definition

The Gröbner fan GF(I ) of I is Rn with fan structure

v ,w ∈ C ◦ ⇔ inv (I ) = inw (I )

The tropicalization T (I ) of I is the closed subfan of GF(I ) consisting of
those w for which inw (I ) contains no monomials.
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Example

Take I = (x3 + xz2 − y2z) ⊂ C[x , y , z ]. Then GF (I ) is R3 with the fan
structure below and T (I ) is its 1-skeleton.

w1

w2

w3 = 0

×L = 〈(1, 1, 1)〉

(y2z)

(x3)

(xz2)(xz2 − y2z)

(x3 + xz2)

(x3 − y2z)
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Correspondence Theorem and Corollary

Theorem (L.B.’20, K.Kaveh–C.Manon ’19)

Let R be a positively graded algebra and domain, ν : R \ {0} → Zd

full-rank valuation with finitely generated value semigroup. Then there
exists an isomorphism of graded algebras

k[x1, . . . , xn]/I ∼= R

such that Anderson’s toric variety Proj(k[S ]) is isomorphic to the toric
variety of a Gröbner toric degeneration for some w ∈ T (I ) ⊂ Rn:

Proj(k[S ]) ∼= Proj(Rw ).

Corollary

The value semigroup S ⊂ Zd is isomorphic to a semigroup S ′ ⊂ Zd
≥0.
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Example: projected toric degenerations

Example

Consider the toric degeneration

X = V (y2z − x3 − txz2) ⊂ P2
x :y :z × A1

t

of the elliptic curve X = V (y2z − x3 − xz2) to the toric variety
X0 = V (y2z − x3). The projection X → P1 given by [x : y : z ] 7→ [y : z ]
composed with the normalization map P1 → X0 defines a projection

X � X0.

Algebraically, this corresponds to an embedding of the semigroup algebra
R0 = k[x , y , z ]/(y2z − x3) into R = k[x , y , z ]/(y2z − x3 − xz2).

Question: Which (embedded) toric degenerations admit such a projection?
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Toric subalgebras
Let ν : R \ {0} → Zd be a full-rank valuation with finitely generated
semigroup S .

Algebraically, we are looking for an embedding of k[S ] as a toric
subalgebra into R.

Idea: Map the basis S of k[S ] onto basis elements of R.

Example

In the above example, R has a k-basis B = {xaybzc : a < 3}. The
semigroup S defining R0 is generated by (1, 0), (1, 1), (1, 3) ⊂ N× Z. So
we may embed

k[S ] ↪→ R, χ(m,n) 7→ ymzn ∈ B.

This map is neither graded nor finite, but it defines a dominant map

Spec(R)→ Spec(k[S ])

 these maps are not too hard to find, e.g. in cluster algebras.
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Example: cluster algebras

A cluster algebra A is a commutative algebra generated recursively by

seeds: maximal algebraically independent sets whose elements are
called cluster variables, that are related to each other via

mutation: an operation that creates a new seed from a given one by
replacing one cluster variable by a binomial with positive coefficients
in the other cluster variables.

The monomials in cluster variables of one seed are called cluster
monomials and they are linearly independent in A.
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Cluster algebras and valuations

Proposition (L.B.–M.Cheung–T.Magee–A.Nájera Chávez)

Let A be a cluster algebra that satisfies the full Fock–Goncharov
conjecture. For every seed s there exists a full-rank valuation

gs : A \ {0} → Zd

with finitely generated semigroup. The associated Newton–Okounkov
polytope ∆(A, gs) is the tropicalization of
Gross–Hacking–Keel–Kontsevich’s superpotential for the associated cluster
variety.

The Proposition applies to, for example, Grassmannians, flag varieties,
configuration spaces, the del Pezzo surface of degree 5 ...
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Cluster algebras and toric degenerations

Corollary (L.B.–Takuya Murata)

The toric degeneration of Spec(A) induced by gs : A \ {0} → Zd admits a
dominant map

Spec(A)→ X̃∆(A,gs).

Idea of Proof: Consider the cluster variables x1, . . . , xd of the seed s. They
form a maximal algebraically independent set and all monomials in these
variables are part of a k-basis B for A,  cluster monomials.

Want to map the elements χm for m ∈ Zd of the semigroup S to
monomials xm1

1 · · · x
md
d . However, to do this we need m ∈ Zd

≥0. By the

Correspondence Corollary S is isomorphic to a monoid S ′ ⊂ Zd
≥0. So we

define

k[S ] ∼= k[S ′] ↪→ A, where χm 7→ χm′ 7→ x
m′1
1 · · · x

m′d
d ∈ B. �
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Standard monomial bases

More generally we may replace cluster monomials by standard monomials.

Definition

Let < be a monomial term order on k[x1, . . . , xn], i.e. is a total order on
the monomials in k[x1, . . . , xn] with xa < xb implies xa+c < xb+c for all
a, b, c ∈ Zn

≥0. Then for an ideal I ⊂ k[x1, . . . , xn] its initial ideal with
respect to < is in<(I ) := (in<(f ) : f ∈ F ) where in<(f ) is the <-maximal
term in f .

It is not hard to see that in<(I ) is a monomial ideal. It defines a standard
monomial basis for R

B< := {x̄m ∈ R : xm 6∈ in<(I )}.

In fact, the maximal cones in the Gröbner fan GF(I ) correspond to
monomial initial ideals of form in<(I ).
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Standard monomial bases for the elliptic curve

Example (I = (x3 + xz2 − y 2z))

B(y2z) = {xaybzc : b < 2 or c < 1}
B(x3) = {xaybzc : a < 3}

B(xz2) = {xaybzc : a < 1 or c < 2}

(x3 − y2z)

For R0 = k[x , y , z ]/(x3 − yz2) we have two adapted bases B(x3) and
B(yz2). For every choice of maximal algebraically independent set of
generators in R0 its monomials are standard in B(x3) or B(yz2):

{x , y}  xayb ∈ B(y2z) as c < 1,

{x , z}  xazc ∈ B(y2z) as b < 2,

{y , z}  ybzc ∈ B(x3) as a < 3.
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From embedded toric degenerations to projections

Conjecture (L.B.–Takuya Murata)

Given an embedded toric degeneration X→ A1 determined by a full-rank
valuation ν : R \ {0} → Zd with finitely generated semigroup S there
exists an embedding k[S ] ↪→ R inducing a projection

Proj(R)� Proj(k[S ]).

Strategy of proof:

1 Use the Correspondence Theorem, so that R = k[x1, . . . , xn]/I and
there is a cone τ ∈ T (I ) with k[S ] = k[x1, . . . , xn]/inτ (I );

2 fix a maximal algebraically independent set s = {xi1 , . . . , xid} in k[S ];

3 refine τ by a term order such that monomials in s are standard;

4 adjust the grading of S and map S onto standard monomials;

5 check that a suitable localization (k[S ]f )0 ↪→ Rf is finite.
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Adjusting the grading of S

Example

Recall S = 〈(1, 0), (1, 1), (1, 3)〉≥0 is graded by deg(a, b) = a, but in R
monomials yazb have degree total a + b. Se we embed S into a semigroup
S ′ graded by total degree:

S

1

1

2

3

x x

x

x

o ( 3 1
0 1 )

1 2 3

1

2

3

x x

x

x

o

o o

o o

o

(
1 −1
0 1

)
1 2 3

1

2

3

x x

x

xo

o

o o

o

o

S ′

y

z

Recall that yazb ∈ R are standard monomials. So we may embed

k[S ] ↪→ R by (1, 0) 7→ y3, (1, 1) 7→ y2z and (1, 3) 7→ z3.
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Proof of the Correspondence Theorem

We call a set of algebra generators b1, . . . , bn of R a Khovanskii basis for
ν if ν(b1), . . . , ν(bn) generate S .

Idea of Proof: Choose a finite Khovanskii basis b1, . . . , bn ∈ R. Take

π : k[x1, . . . , xn]→ R, xi 7→ bi

and I := ker(π). Then by [B, Main Theorem] exits w ∈ T (I ) such that

inw (I ) is toric ⇔ S is finitely generated.

Moreover, k[S ] ∼= k[x1, . . . , xn]/inw (I ). �

Algorithm for w : Input: Khovanskii basis for ν; Output: w

1 compute ν(bi ) for all i ;

2 for a suitable projection π : Zd → Z compute
w = (π(ν(b1)), . . . π(ν(bn)) ∈ Rn.
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