# Toric degenerations with projections and standard monomials

Lara Bossinger (joint work in progress with Takuya Murata)



Universidad Nacional Autónoma de México, IM-Oaxaca

Oberseminar Algebra Köln 18. Mai 2021

## Toric degenerations

#### Definition

Let X be a projective variety. A *toric degeneration* of X is a flat morphism  $\xi: \mathfrak{X} \to \mathbb{A}^1$  with generic fibre isomorphic to X and special fibre  $\xi^{-1}(0)$  a toric variety.

#### Examples:

- **①** an *abstract* degeneration, *e.g.* a toric scheme over  $\mathbb{A}^1 = \operatorname{Spec}(k[t])$ ;
- ② an *embedded* degeneration, *e.g.*  $\mathfrak{X} = V(xy x^2 + ty^3) \subset \mathbb{P}^1_{x,y} \times \mathbb{A}^1_t$ ;
- **3** a toric degeneration admits a projection if it is an embedded toric degeneration with a projection  $\xi^{-1}(1) \rightarrow \xi^{-1}(0)$ .

## From abstract to embedded toric degenerations

Question: If the toric fibre  $\xi^{-1}(0)$  has a very ample line bundle, can we extend this embedding to all of the family?

## Conjecture (Takuya Murata)

If a toric degenerations  $\xi: \mathfrak{X} \to \mathbb{A}^1$  is proper and  $\mathcal{L}$  is an invertible flat  $\mathcal{O}_{\mathfrak{X}}$ -module such that  $\mathcal{L}|_{\xi^{-1}(0)}$  is very ample, then  $\xi$  it is an embedded degeneration; i.e. there exists an embedding  $\mathfrak{X} \hookrightarrow \mathbb{P}^{N} \times \mathbb{A}^{1}$  such that



is a commutative diagram.

## Embedded toric degenerations

Given an embedded toric degeneration



we have  $\mathfrak{X} = \text{Proj}(\mathfrak{R})$  for some flat Noetherian k[t]-algebra  $\mathfrak{R}$ . Then the generic fibre is

$$\xi^{-1}(1) = X = \operatorname{Proj}(R)$$

where  $R := \mathfrak{R}/(t-1)\mathfrak{R}$ . Similarly, the special fibre is  $\xi^{-1}(0) = X_0 = \operatorname{Proj}(R_0)$  where  $R_0 := \mathfrak{R}/t\mathfrak{R}$ .

Assumption: X and  $X_0$  are irreducible, so R is a positively graded domains and  $R_0$  is a finitely generated algebra of a graded semigroup with identity.

[KM19]/[Mur20]: May assume  $\mathfrak{R}$  is the *Rees algebra of a valuation* on R.

## Toric degenerations from valuations

Let  $R=\bigoplus_{i\geq 0}R_i$  be a graded k-algebra and domain. A *valuation* on R is a map  $\nu:R\setminus\{0\}\to(\mathbb{Z}^d,<)$  such that for all  $f,g\in R\setminus\{0\}$  and  $c\in k$ 

$$\nu(\mathit{fg}) = \nu(\mathit{f}) + \nu(\mathit{g}), \quad \nu(\mathit{cf}) = \nu(\mathit{f}), \quad \nu(\mathit{f} + \mathit{g}) \geq \min_{<} \{\nu(\mathit{f}), \nu(\mathit{g})\}$$

Notice:  $S := im(\nu)$  is a semigroup.

Moreover,  $\nu$  induces a filtration of R: for every  $m \in \mathbb{Z}^d$ 

$$F_m := \{f \in R : \nu(f) \leq m\} \quad \text{and} \quad F_{< m} := \{f \in R : \nu(f) < m\}.$$

#### Theorem (Anderson)

Let  $\nu: R \setminus \{0\} \to \mathbb{Z}^d$  be a full-rank valuation with finitely generated value semigroup S. Then there exists a toric degeneration of X = Proj(R) with special fibre  $X_0 = Proj(k[S])$  defined by the Rees algebra of  $\nu$ .

A vector space basis  $\mathbb B$  of R is adapted to  $\nu$  if  $\mathbb B \cap F_m$  is a vector space basis for all m.

## Equations for embedded toric degenerations

The polytope defining the (normalization of the) toric variety Proj(k[S]) is the *Newton–Okounkov polytope* 

$$\Delta(R, \nu) := \overline{\mathsf{conv}\left(igcup_{i>0}\{\nu(f)/i: f \in R_i\}
ight)}.$$

Hence, we can compute equations for  $X_{\Delta(R,\nu)} = \bar{X}_0$  from  $\Delta(R,\nu)$ .

Question: How about equations for X and the family  $\mathfrak{X}$ ?  $\rightsquigarrow$  can be obtained using *Gröbner theory*.

## Gröbner degenerations

Let  $k = \bar{k}$  with char(k) = 0 and  $R = k[x_1, \dots, x_n]/I$  for I homogeneous.

For every  $w \in \mathbb{R}^n$  we have the *initial ideal*  $\operatorname{in}_w(I) := (\operatorname{in}_w(f) : f \in I)$ , for example  $\operatorname{in}_{(1,1)}(xy - x^2 + y) = xy - x^2$ , and a flat family

$$\xi_w:\mathfrak{X}\to\mathbb{A}^1$$

with generic fibre Proj(R) and special fibre  $Proj(R_w)$ , where  $R_w := k[x_1, \ldots, x_n]/in_w(I)$ .

#### Definition

The *Gröbner fan* GF(I) of I is  $\mathbb{R}^n$  with fan structure

$$v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(I) = \operatorname{in}_{w}(I)$$

The *tropicalization*  $\mathcal{T}(I)$  of I is the closed subfan of GF(I) consisting of those w for which  $in_w(I)$  contains no monomials.

## Correspondence Theorem and Corollary

## Theorem (L.B.'20, K.Kaveh-C.Manon '19)

Let R be a positively graded algebra and domain,  $\nu: R\setminus\{0\}\to\mathbb{Z}^d$  full-rank valuation with finitely generated value semigroup. Then there exists an isomorphism of graded algebras

$$k[x_1,\ldots,x_n]/I\cong R$$

such that Anderson's toric variety Proj(k[S]) is isomorphic to the toric variety of a Gröbner toric degeneration for some  $w \in \mathcal{T}(I)$ :

$$Proj(k[S]) \cong Proj(R_w).$$

#### Corollary

The value semigroup  $S \subset \mathbb{Z}^d$  is isomorphic to a semigroup  $S' \subset \mathbb{Z}^d_{\geq 0}$ .

## Example: projected toric degenerations

#### Example

Consider the toric degeneration

$$\mathfrak{X} = V(y^2z - x^3 - txz^2) \subset \mathbb{P}^2_{x:y:z} \times \mathbb{A}^1_t$$

of the elliptic curve  $X = V(y^2z - x^3 - xz^2)$  to the toric variety  $X_0 = V(y^2z - x^3)$ .

The projection  $X \to \mathbb{P}^1$  given by  $[x:y:z] \mapsto [y:z]$  composed with the normalization map  $\mathbb{P}^1 \to X_0$  defines a projection

$$X \rightarrow X_0$$
.

Algebraically, this correspond to an embedding of the semigroup algebra  $R_0 = k[x, y, z]/(y^2z - x^3)$  into  $R = k[x, y, z]/(y^2z - x^3 - xz^2)$ .

Question: Which (embedded) toric degenerations admit such a projection?

## Toric subalgebras

Let  $\nu: R\setminus\{0\}\to\mathbb{Z}^d$  be a full-rank valuation with finitely generated semigroup S.

Algebraically, we are looking for an embedding of k[S] as a *toric* subalgebra into R.

<u>Idea:</u> Map the generators of k[S] onto basis elements of R.

#### Example

In the above example, R has a k-basis  $\mathbb{B}=\{x^ay^bz^c:a<3\}$ . The semigroup S defining  $R_0$  is generated by  $(1,0),(1,1),(1,3)\subset\mathbb{N}\times\mathbb{Z}$ . So we may embed

$$k[S] \hookrightarrow R, \quad \chi^{(m,n)} \mapsto y^m z^n \in \mathbb{B}.$$

This map is neither graded nor finite, so it defines a dominant map

$$\operatorname{\mathsf{Spec}}(R) \to \operatorname{\mathsf{Spec}}(k[S])$$

→ these maps are not too hard to find, e.g. in cluster algebras.

## Example: cluster algebras

A cluster algebra A is a commutative algebra generated recursively by

- *seeds*: maximal algebraically independent sets whose elements are called *cluster variables*, that are related to each other via
- mutation: an operation that creates a new seed from a given one by replacing one cluster variable by a binomial with positive coefficients in the other cluster variables.

The monomials in cluster variables of one seed are called *cluster* monomials and they are linearly independent in A.

## Cluster algebras and valuations

Proposition (L.B.–M.Cheung–T.Magee–A.Nájera Chávez, H.Oya–N.Fujita)

Let A be a (graded) cluster algebra that satisfies the *full Fock–Goncharov* conjecture. For every seed s there exists a full-rank valuation

$$g_s: A \setminus \{0\} \to \mathbb{Z}^d$$

with finitely generated semigroup. The associated Newton–Okounkov polytope  $\Delta(A,g_s)$  is the tropicalization of Gross–Hacking–Keel–Kontsevich's superpotential for the associated cluster variety.

The Proposition applies to, for example, Grassmannians, flag varieties, configuration spaces, the del Pezzo surface of degree 5 ...

## Cluster algebras and toric degenerations

#### Corollary (L.B.–T.Murata)

The toric degeneration of Spec(A) to the affine toric variety  $\tilde{X}_{\Delta(A,g_s)}$  induced by  $g_s: A \setminus \{0\} \to \mathbb{Z}^d$  admits a dominant map

$$Spec(A) \rightarrow \tilde{X}_{\Delta(A,g_s)}.$$

#### Strategy of Proof:

- **1** By the *Correspondence Corollary S* is isomorphic to a monoid  $S' \subset \mathbb{Z}_{\geq 0}^d$ .
- ② Consider the cluster variables  $x_1, ..., x_d$  of the seed s, so all monomials in  $x_1, ..., x_d$  are *cluster monomials*.
- **o** Define  $k[S] \cong k[S'] \hookrightarrow A$  by  $\chi^m \mapsto \chi^{m'} \mapsto \chi_1^{m'_1} \cdots \chi_d^{m'_d}$ .

#### Standard monomial bases from the Gröbner fan

Take  $I=(x^3+xz^2-y^2z)\subset \mathbb{C}[x,y,z]$ . Then GF(I) is  $\mathbb{R}^3$  with the fan structure below and  $\mathcal{T}(I)$  is its 1-skeleton.



It is not hard to see in general that maximal cones  $C \in GF(I)$  have monomial initial ideals in C(I) and define standard monomial basis for R

$$\mathbb{B}_C := \{\bar{\mathsf{x}}^m \in R : \mathsf{x}^m \not\in \mathsf{in}_C(I)\}.$$

## Standard monomial bases for the elliptic curve

Example 
$$(I = (x^3 + xz^2 - y^2z))$$



For  $R_0 = k[x, y, z]/(x^3 - yz^2)$  we have two adapted bases  $\mathbb{B}_{(x^3)}$  and  $\mathbb{B}_{(yz^2)}$ . For every choice of maximal algebraically independent set of generators in  $R_0$  its monomials are standard in  $\mathbb{B}_{(x^3)}$  or  $\mathbb{B}_{(yz^2)}$ :

$$\begin{cases} \{x,y\} & \rightsquigarrow & x^a y^b \in \mathbb{B}_{(y^2 z)} \quad \text{as } c < 1, \\ \{x,z\} & \rightsquigarrow & x^a z^c \in \mathbb{B}_{(y^2 z)} \quad \text{as } b < 2, \\ \{y,z\} & \rightsquigarrow & y^b z^c \in \mathbb{B}_{(x^3)} \quad \text{as } a < 3. \end{cases}$$

# Standard monomial bases for $Gr_2(\mathbb{C}^n)$

For the Plücker ideal of  $Gr_2(\mathbb{C}^n)$  we have a correspondence:

labelling 
$$(i_1,\ldots,i_n)$$
 standard monomials of the vertices of the  $n$ -gon have "non-crossing" support

Example: For  $(p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23})$  defining  $Gr_2(\mathbb{C}^4)$  we have three standard monomial bases:

gives 
$$\mathbb{B} = \{p^m : p_{13}p_{24} \not \mid p^m\}$$
 $\Rightarrow cluster monomials$ 

gives  $\mathbb{B} = \{p^m : p_{14}p_{23} \not \mid p^m\}$ 
 $\Rightarrow Young's standard monomials$ 

gives  $\mathbb{B} = \{p^m : p_{14}p_{23} \not \mid p^m\}$ 
 $\Rightarrow Young's p_{12}p_{34} \not \mid p^m\}$ 

#### Standard monomials and cluster monomials

#### Theorem (L.B.-F.Mohammadi-A.Nájera Chávez)

- The basis of cluster monomials for  $Gr_2(\mathbb{C}^n)$  is the standard monomial basis arising from the cyclic labelling of the vertices of the n-gon.
- ② The basis of cluster monomials for  $Gr_3(\mathbb{C}^6)$  is a standard monomial basis of the ideal defining  $Gr_3(\mathbb{C}^6)$  in its cluster embedding:

$$J\subset k[p_{123},\ldots,p_{456},X,Y]$$

where X, Y are cluster variables of degree 2 in Plücker coordinates and  $J \cap k[p_{123}, \dots, p_{456}]$  is the Plücker ideal.

All cluster monomials are *non-standard* in the sense of Young's standard monomials.

## From embedded toric degenerations to projections

### Conjecture (L.B.-T.Murata)

Given an embedded toric degeneration  $\mathfrak{X} \to \mathbb{A}^1$  determined by a full-rank valuation  $\nu: R \setminus \{0\} \to \mathbb{Z}^d$  with finitely generated semigroup S there exists an embedding  $k[S] \hookrightarrow R$  inducing a projection

$$Proj(R) \rightarrow Proj(k[S]).$$

#### Strategy of proof:

- ① Use the *Correspondence Theorem*, so that  $R = k[x_1, ..., x_n]/I$  and there is a cone  $\tau \in \mathcal{T}(I)$  with  $k[S] = k[x_1, ..., x_n]/\text{in}_{\tau}(I)$ ;
- ② fix a maximal algebraically independent set  $s = \{x_{i_1}, \dots, x_{i_d}\}$  in k[S];
- **1** refine  $\tau$  by a term order such that monomials in s are standard;
- lacktriangle adjust the grading of S and map S onto standard monomials;
- **o** check that a suitable localization  $(k[S]_f)_0 \hookrightarrow R_f$  is finite.

#### Example

#### Example



#### Example



#### Example



#### Example

Recall  $S = \langle (1,0), (1,1), (1,3) \rangle_{\geq 0}$  is graded by  $\deg(a,b) = a$ , but in R monomials  $y^a z^b$  have degree total a+b. Se we embed S into a semigroup S' graded by total degree:



Recall that  $y^a z^b \in R$  are standard monomials. So we may embed

$$k[S] \hookrightarrow R$$
 by  $(1,0) \mapsto y^3$ ,  $(1,1) \mapsto y^2z$  and  $(1,3) \mapsto z^3$ .

#### References

- BM Lara Bossinger, Takuya Murata. Embeddings of toric degenerations (working title). *in preparation*. (2021)
- BCMN Lara Bossinger, Mandy Cheung, Timothy Magee, Alfredo Nájera Chávez. On cluster duality for Grassmannians. *in preparation*. (2021)
  - BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras. arxiv preprint arXiv:2007.14972 [math.AG] (2020)
    - B Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. *Int. Math. Res. Not.* rnaa071 (2020)
    - FZ Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. *J. Amer. Math. Soc.*, 15(2):497–529, 2002.
- GHKK Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. *J. Amer. Math. Soc.*, 31(2):497–608 (2018)
  - KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. *SIAM J.Appl. Algebra Geom.*, 3(2):292–336 (2019)
- Murata Takuya Murata. Toric degenerations of projective varieties with an application to equivariant Hilbert functions. *PhD Thesis University of Pittsburgh* (2020)
  - Scott Joshua S. Scott. Grassmannians and cluster algebras. *Proc. London Math. Soc.* (3) 92 (2006), no. 2, 345–380.

## Proof of the Correspondence Theorem

We call a set of algebra generators  $b_1, \ldots, b_n$  of R a *Khovanskii basis* for  $\nu$  if  $\nu(b_1), \ldots, \nu(b_n)$  generate S.

<u>Idea of Proof:</u> Choose a finite Khovanskii basis  $b_1, \ldots, b_n \in R$ . Take

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

and  $I := \ker(\pi)$ . Then by [B, Main Theorem] exits  $w \in \mathcal{T}(I)$  such that

 $in_w(I)$  is toric  $\Leftrightarrow$  S is finitely generated.

Moreover,  $k[S] \cong k[x_1, \ldots, x_n]/in_w(I)$ .