Toric degenerations with projections and standard monomials

Lara Bossinger (joint work in progress with Takuya Murata)

Universidad Nacional Autónoma de México, IM-Oaxaca
Oberseminar Algebra Köln 18. Mai 2021

Toric degenerations

Definition

Let X be a projective variety. A toric degeneration of X is a flat morphism $\xi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ with generic fibre isomorphic to X and special fibre $\xi^{-1}(0)$ a toric variety.

Examples:

(1) an abstract degeneration, e.g. a toric scheme over $\mathbb{A}^{1}=\operatorname{Spec}(k[t])$;
(2) an embedded degeneration, e.g. $\mathfrak{X}=V\left(x y-x^{2}+t y^{3}\right) \subset \mathbb{P}_{x, y}^{1} \times \mathbb{A}_{t}^{1}$;
(3) a toric degeneration admits a projection if it is an embedded toric degeneration with a projection $\xi^{-1}(1) \rightarrow \xi^{-1}(0)$.

From abstract to embedded toric degenerations

Question: If the toric fibre $\xi^{-1}(0)$ has a very ample line bundle, can we extend this embedding to all of the family?

Conjecture (Takuya Murata)

If a toric degenerations $\xi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ is proper and \mathcal{L} is an invertible flat $\mathcal{O}_{\mathfrak{X}}$-module such that $\left.\mathcal{L}\right|_{\xi^{-1}(0)}$ is very ample, then ξ it is an embedded degeneration; i.e. there exists an embedding $\mathfrak{X} \hookrightarrow \mathbb{P}^{N} \times \mathbb{A}^{1}$ such that

is a commutative diagram.

Embedded toric degenerations

Given an embedded toric degeneration

we have $\mathfrak{X}=\operatorname{Proj}(\mathfrak{R})$ for some flat Noetherian $k[t]$-algebra \mathfrak{R}. Then the generic fibre is

$$
\xi^{-1}(1)=X=\operatorname{Proj}(R)
$$

where $R:=\Re /(t-1) \Re$. Similarly, the special fibre is
$\xi^{-1}(0)=X_{0}=\operatorname{Proj}\left(R_{0}\right)$ where $R_{0}:=\mathfrak{R} / t \Re$.
Assumption: X and X_{0} are irreducible, so R is a positively graded domains and R_{0} is a finitely generated algebra of a graded semigroup with identity.
[KM19]/[Mur20]: May assume \mathfrak{R} is the Rees algebra of a valuation on R.

Toric degenerations from valuations

Let $R=\bigoplus_{i \geq 0} R_{i}$ be a graded k-algebra and domain. A valuation on R is a map $\nu: R \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ such that for all $f, g \in R \backslash\{0\}$ and $c \in k$

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

Notice: $S:=\operatorname{im}(\nu)$ is a semigroup.
Moreover, ν induces a filtration of R : for every $m \in \mathbb{Z}^{d}$

$$
F_{m}:=\{f \in R: \nu(f) \leq m\} \quad \text { and } \quad F_{<m}:=\{f \in R: \nu(f)<m\} .
$$

Theorem (Anderson)

Let $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank valuation with finitely generated value semigroup S. Then there exists a toric degeneration of $X=\operatorname{Proj}(R)$ with special fibre $X_{0}=\operatorname{Proj}(k[S])$ defined by the Rees algebra of ν.

A vector space basis \mathbb{B} of R is adapted to ν if $\mathbb{B} \cap F_{m}$ is a vector space basis for all m.

Equations for embedded toric degenerations

The polytope defining the (normalization of the) toric variety $\operatorname{Proj}(k[S])$ is the Newton-Okounkov polytope

$$
\Delta(R, \nu):=\overline{\operatorname{conv}\left(\bigcup_{i>0}\left\{\nu(f) / i: f \in R_{i}\right\}\right)}
$$

Hence, we can compute equations for $X_{\Delta(R, \nu)}=\bar{X}_{0}$ from $\Delta(R, \nu)$.
(proper) abstract

toric degeneration \rightsquigarrow\begin{tabular}{c}
(embedded)

toric degeneration

by valuation

\rightsquigarrow

equations for

normalization of X_{0}
\end{tabular}

Question: How about equations for X and the family \mathfrak{X} ?
\rightsquigarrow can be obtained using Gröbner theory.

Gröbner degenerations

Let $k=\bar{k}$ with $\operatorname{char}(k)=0$ and $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ for I homogeneous. For every $w \in \mathbb{R}^{n}$ we have the initial ideal $\mathrm{in}_{w}(I):=\left(\mathrm{in}_{w}(f): f \in I\right)$, for example $\mathrm{in}_{(1,1)}\left(x y-x^{2}+y\right)=x y-x^{2}$, and a flat family

$$
\xi_{w}: \mathfrak{X} \rightarrow \mathbb{A}^{1}
$$

with generic fibre $\operatorname{Proj}(R)$ and special fibre $\operatorname{Proj}\left(R_{w}\right)$, where $R_{w}:=k\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{w}(I)$.

Definition

The Gröbner fan $\mathrm{GF}(I)$ of I is \mathbb{R}^{n} with fan structure

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(I)=\operatorname{in}_{w}(I)
$$

The tropicalization $\mathcal{T}(I)$ of I is the closed subfan of GF(I) consisting of those w for which $\mathrm{in}_{w}(I)$ contains no monomials.

Correspondence Theorem and Corollary

Theorem (L.B.' ${ }^{\prime 20}$, K.Kaveh-C.Manon '19)

Let R be a positively graded algebra and domain, $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ full-rank valuation with finitely generated value semigroup. Then there exists an isomorphism of graded algebras

$$
k\left[x_{1}, \ldots, x_{n}\right] / I \cong R
$$

such that Anderson's toric variety $\operatorname{Proj}(k[S])$ is isomorphic to the toric variety of a Gröbner toric degeneration for some $w \in \mathcal{T}(I)$:

$$
\operatorname{Proj}(k[S]) \cong \operatorname{Proj}\left(R_{w}\right) .
$$

Corollary

The value semigroup $S \subset \mathbb{Z}^{d}$ is isomorphic to a semigroup $S^{\prime} \subset \mathbb{Z}_{\geq 0}^{d}$.

Example: projected toric degenerations

Example

Consider the toric degeneration

$$
\mathfrak{X}=V\left(y^{2} z-x^{3}-t x z^{2}\right) \subset \mathbb{P}_{x: y: z}^{2} \times \mathbb{A}_{t}^{1}
$$

of the elliptic curve $X=V\left(y^{2} z-x^{3}-x z^{2}\right)$ to the toric variety $X_{0}=V\left(y^{2} z-x^{3}\right)$.
The projection $X \rightarrow \mathbb{P}^{1}$ given by $[x: y: z] \mapsto[y: z]$ composed with the normalization map $\mathbb{P}^{1} \rightarrow X_{0}$ defines a projection

$$
X \rightarrow X_{0}
$$

Algebraically, this correspond to an embedding of the semigroup algebra $R_{0}=k[x, y, z] /\left(y^{2} z-x^{3}\right)$ into $R=k[x, y, z] /\left(y^{2} z-x^{3}-x z^{2}\right)$.

Question: Which (embedded) toric degenerations admit such a projection?

Toric subalgebras

Let $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank valuation with finitely generated semigroup S.
Algebraically, we are looking for an embedding of $k[S]$ as a toric subalgebra into R.
Idea: Map the generators of $k[S]$ onto basis elements of R.

Example

In the above example, R has a k-basis $\mathbb{B}=\left\{x^{a} y^{b} z^{c}: a<3\right\}$. The semigroup S defining R_{0} is generated by $(1,0),(1,1),(1,3) \subset \mathbb{N} \times \mathbb{Z}$. So we may embed

$$
k[S] \hookrightarrow R, \quad \chi^{(m, n)} \mapsto y^{m} z^{n} \in \mathbb{B} .
$$

This map is neither graded nor finite, so it defines a dominant map

$$
\operatorname{Spec}(R) \rightarrow \operatorname{Spec}(k[S])
$$

\rightsquigarrow these maps are not too hard to find, e.g. in cluster algebras.

Example: cluster algebras

A cluster algebra A is a commutative algebra generated recursively by

- seeds: maximal algebraically independent sets whose elements are called cluster variables, that are related to each other via
- mutation: an operation that creates a new seed from a given one by replacing one cluster variable by a binomial with positive coefficients in the other cluster variables.
The monomials in cluster variables of one seed are called cluster monomials and they are linearly independent in A.

Cluster algebras and valuations

Proposition (L.B.-M.Cheung-T.Magee-A.Nájera Chávez, H.Oya-N.Fujita)

Let A be a (graded) cluster algebra that satisfies the full Fock-Goncharov conjecture. For every seed s there exists a full-rank valuation

$$
g_{s}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}
$$

with finitely generated semigroup. The associated Newton-Okounkov polytope $\Delta\left(A, g_{s}\right)$ is the tropicalization of Gross-Hacking-Keel-Kontsevich's superpotential for the associated cluster variety.

The Proposition applies to, for example, Grassmannians, flag varieties, configuration spaces, the del Pezzo surface of degree $5 \ldots$

Cluster algebras and toric degenerations

Corollary (L.B.-T.Murata)

The toric degeneration of $\operatorname{Spec}(A)$ to the affine toric variety $\tilde{X}_{\Delta\left(A, g_{s}\right)}$ induced by $g_{s}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ admits a dominant map

$$
\operatorname{Spec}(A) \rightarrow \tilde{X}_{\Delta\left(A, g_{s}\right)}
$$

Strategy of Proof:

(1) By the Correspondence Corollary S is isomorphic to a monoid $S^{\prime} \subset \mathbb{Z}_{\geq 0}^{d}$.
(2) Consider the cluster variables x_{1}, \ldots, x_{d} of the seed s, so all monomials in x_{1}, \ldots, x_{d} are cluster monomials.
(3) Define $k[S] \cong k\left[S^{\prime}\right] \hookrightarrow A$ by $\chi^{m} \mapsto \chi^{m^{\prime}} \mapsto x_{1}^{m_{1}^{\prime}} \cdots x_{d}^{m_{d}^{\prime}}$.

Standard monomial bases from the Gröbner fan

Take $I=\left(x^{3}+x z^{2}-y^{2} z\right) \subset \mathbb{C}[x, y, z]$. Then $G F(I)$ is \mathbb{R}^{3} with the fan structure below and $\mathcal{T}(I)$ is its 1 -skeleton.

$$
\left(x z^{2}-y^{2} z\right)<\left(x z^{2}\right) w_{\left(x^{3}+x z^{2}\right)}^{w_{3}}
$$

It is not hard to see in general that maximal cones $C \in G F(I)$ have monomial initial ideals $\mathrm{in}_{C}(I)$ and define standard monomial basis for R

$$
\mathbb{B}_{C}:=\left\{\overline{\mathrm{x}}^{m} \in R: \mathrm{x}^{m} \notin \operatorname{in}_{C}(I)\right\} .
$$

Standard monomial bases for the elliptic curve

Example $\left(I=\left(x^{3}+x z^{2}-y^{2} z\right)\right)$

For $R_{0}=k[x, y, z] /\left(x^{3}-y z^{2}\right)$ we have two adapted bases $\mathbb{B}_{\left(x^{3}\right)}$ and $\mathbb{B}_{\left(y z^{2}\right)}$. For every choice of maximal algebraically independent set of generators in R_{0} its monomials are standard in $\mathbb{B}_{\left(x^{3}\right)}$ or $\mathbb{B}_{\left(y z^{2}\right)}$:

$$
\begin{array}{lll}
\{x, y\} \rightsquigarrow x^{a} y^{b} \in \mathbb{B}_{\left(y^{2} z\right)} & \text { as } c<1, \\
\{x, z\} \rightsquigarrow x^{a} z^{c} \in \mathbb{B}_{\left(y^{2} z\right)} & \text { as } b<2, \\
\{y, z\} \rightsquigarrow y^{b} z^{c} \in \mathbb{B}_{\left(x^{3}\right)} & \text { as } a<3 .
\end{array}
$$

Standard monomial bases for $\mathrm{Gr}_{2}\left(\mathbb{C}^{n}\right)$

For the Plücker ideal of $\mathrm{Gr}_{2}\left(\mathbb{C}^{n}\right)$ we have a correspondence:
labelling $\left(i_{1}, \ldots, i_{n}\right)$
standard monomials
of the vertices of the n-gon \rightsquigarrow have "non-crossing" support
Example: For $\left(p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{23}\right)$ defining $\operatorname{Gr}_{2}\left(\mathbb{C}^{4}\right)$ we have three standard monomial bases:

$$
\text { gives } \quad \mathbb{B}=\left\{\mathrm{p}^{m}: p_{13} p_{24} \backslash \mathrm{p}^{m}\right\}
$$

\rightsquigarrow cluster monomials

$$
\begin{aligned}
\text { gives } & \mathbb{B}=\left\{\mathrm{p}^{m}: p_{14} p_{23} \not \backslash \mathrm{p}^{m}\right\} \\
& \rightsquigarrow \text { Young's standard monomials }
\end{aligned}
$$

$$
\text { gives } \mathbb{B}=\left\{\mathrm{p}^{m}: p_{12} p_{34} \backslash \mathrm{p}^{m}\right\}
$$

Standard monomials and cluster monomials

Theorem (L.B.-F.Mohammadi-A.Nájera Chávez)

(1) The basis of cluster monomials for $\mathrm{Gr}_{2}\left(\mathbb{C}^{n}\right)$ is the standard monomial basis arising from the cyclic labelling of the vertices of the n-gon.
(2) The basis of cluster monomials for $\operatorname{Gr}_{3}\left(\mathbb{C}^{6}\right)$ is a standard monomial basis of the ideal defining ${G r_{3}\left(\mathbb{C}^{6}\right) \text { in its cluster embedding: }}_{\text {: }}$

$$
J \subset k\left[p_{123}, \ldots, p_{456}, X, Y\right]
$$

where X, Y are cluster variables of degree 2 in Plücker coordinates and $J \cap k\left[p_{123}, \ldots, p_{456}\right]$ is the Plücker ideal.
\rightsquigarrow All cluster monomials are non-standard in the sense of Young's standard monomials.

From embedded toric degenerations to projections

Conjecture (L.B.-T.Murata)

Given an embedded toric degeneration $\mathfrak{X} \rightarrow \mathbb{A}^{1}$ determined by a full-rank valuation $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ with finitely generated semigroup S there exists an embedding $k[S] \hookrightarrow R$ inducing a projection

$$
\operatorname{Proj}(R) \rightarrow \operatorname{Proj}(k[S]) .
$$

Strategy of proof:

(1) Use the Correspondence Theorem, so that $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ and there is a cone $\tau \in \mathcal{T}(I)$ with $k[S]=k\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{\tau}(I)$;
(2) fix a maximal algebraically independent set $s=\left\{x_{i_{1}}, \ldots, x_{i_{d}}\right\}$ in $k[S]$;
(3) refine τ by a term order such that monomials in s are standard;
(1) adjust the grading of S and map S onto standard monomials;
(0) check that a suitable localization $\left(k[S]_{f}\right)_{0} \hookrightarrow R_{f}$ is finite.

Adjusting the grading of S

Example

Recall $S=\langle(1,0),(1,1),(1,3)\rangle \geq 0$ is graded by $\operatorname{deg}(a, b)=a$, but in R monomials $y^{a} z^{b}$ have degree total $a+b$. Se we embed S into a semigroup S^{\prime} graded by total degree:

Adjusting the grading of S

Example

Recall $S=\langle(1,0),(1,1),(1,3)\rangle \geq 0$ is graded by $\operatorname{deg}(a, b)=a$, but in R monomials $y^{a} z^{b}$ have degree total $a+b$. Se we embed S into a semigroup S^{\prime} graded by total degree:

Adjusting the grading of S

Example

Recall $S=\langle(1,0),(1,1),(1,3)\rangle \geq 0$ is graded by $\operatorname{deg}(a, b)=a$, but in R monomials $y^{a} z^{b}$ have degree total $a+b$. Se we embed S into a semigroup S^{\prime} graded by total degree:

$$
S \text { 2 }
$$

Adjusting the grading of S

Example

Recall $S=\langle(1,0),(1,1),(1,3)\rangle \geq 0$ is graded by $\operatorname{deg}(a, b)=a$, but in R monomials $y^{a} z^{b}$ have degree total $a+b$. Se we embed S into a semigroup S^{\prime} graded by total degree:

Adjusting the grading of S

Example

Recall $S=\langle(1,0),(1,1),(1,3)\rangle \geq 0$ is graded by $\operatorname{deg}(a, b)=a$, but in R monomials $y^{a} z^{b}$ have degree total $a+b$. Se we embed S into a semigroup S^{\prime} graded by total degree:

Recall that $y^{a} z^{b} \in R$ are standard monomials. So we may embed

$$
k[S] \hookrightarrow R \quad \text { by } \quad(1,0) \mapsto y^{3}, \quad(1,1) \mapsto y^{2} z \quad \text { and } \quad(1,3) \mapsto z^{3} .
$$

References

BM Lara Bossinger, Takuya Murata. Embeddings of toric degenerations (working title). in preparation. (2021)
BCMN Lara Bossinger, Mandy Cheung, Timothy Magee, Alfredo Nájera Chávez. On cluster duality for Grassmannians. in preparation. (2021)
BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras. arxiv preprint arXiv:2007.14972 [math.AG] (2020)
B Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. Int. Math. Res. Not. rnaa071 (2020)
FZ Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497-529, 2002.
GHKK Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497-608 (2018)
KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292-336 (2019)
Murata Takuya Murata. Toric degenerations of projective varieties with an application to equivariant Hilbert functions. PhD Thesis University of Pittsburgh (2020)
Scott Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345-380.

Proof of the Correspondence Theorem

We call a set of algebra generators b_{1}, \ldots, b_{n} of R a Khovanskii basis for ν if $\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)$ generate S.

Idea of Proof: Choose a finite Khovanskii basis $b_{1}, \ldots, b_{n} \in R$. Take

$$
\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R, \quad x_{i} \mapsto b_{i}
$$

and $I:=\operatorname{ker}(\pi)$. Then by $[B$, Main Theorem $]$ exits $w \in \mathcal{T}(I)$ such that $i n_{w}(I)$ is toric $\Leftrightarrow S$ is finitely generated.

Moreover, $k[S] \cong k\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(I)$.

