Gröbner degenerations of Grassmannains and cluster algebras

Lara Bossinger

Universidad Nacional Autónoma de México, Oaxaca

Combinatorics on Flag Varieties and Related Topics 2021

Overview

Cluster algebras

- Motivation: $Gr_2(\mathbb{C}^n)$
- Quivers, seeds, mutation
- Oluster algebras: structure and classification results
- Grassmannian cluster algebra
- O Principal and universal coefficients
- ② Gröbner degenerations

Motivation: Grassmannian $Gr_2(\mathbb{C}^5)$

The homogeneous coordinate ring of $Gr_2(\mathbb{C}^5)$ with its Plücker embedding:

$$A_{2,5} := \mathbb{C}[p_{ij} : 1 \le i < j \le 5] / (p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk})_{1 \le i < j < k < l \le 5}$$

can be constructed recursively from triangulations of a 5-gon:

Quivers and mutation

A *quiver* Q is a directed graph, consisting of a finite set of vertices and arrows between them.

Technical assumption: Q does not have any loops or 2-cycles.

We split the vertex set into *mutable vertices* $\{1, \ldots, n\}$ and *frozen vertices* $\{n+1, \ldots, m\}$, e.g. $1 \rightrightarrows 2 \rightarrow 3$.

Definition (Quiver mutation)

Given a quiver Q and a mutable vertex k, the *mutation in direction* k $\mu_k(Q)$ is a quiver obtained from Q in three steps:

- for every path $i \rightarrow k \rightarrow j$ add an arrow $i \rightarrow j$;
- 2 invert every arrow incident to k;
- I remove a maximal set of 2-cycles.

Exercise: Quiver mutation is an *involution*: $\mu_k(\mu_k(Q)) = Q$.

Example: quiver mutation

is invariant under mutation/isomorphism.

Seeds and mutation

A seed s is a pair (x, Q), where $x = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})$ is a collection of variables called a *cluster* and Q a quiver with n mutable and m frozen vertices.

Definition (Seed mutation)

Given a seed s = (x, Q) and a mutable vertex k of Q, the *mutation in direction* $k \ \mu_k(s)$ is the pair $(\mu_k(x), \mu_k(Q))$, where $\mu_k(x) = x \setminus \{x_k\} \cup \{x'_k\}$ and

$$x'_{k} := \frac{\prod_{i \to k \in Q} x_{i} + \prod_{k \to j \in Q} x_{j}}{x_{k}}.$$
(0.1)

The equation (0.1) is called en *exchange relation*.

Exercise: Seed mutation is an *involution*: $\mu_k(\mu_k(s)) = s$.

Notation:
$$s = (\{x_1, x_2\}, 1 \rightarrow 2) = (x_1 \rightarrow x_2).$$

Example: seed mutation

Cluster algebra

Let $\mathcal{F} = \mathbb{C}(x_1, \ldots, x_{n+m})$ be the field of rational functions in the variables x_1, \ldots, x_{n+m} .

If s = (x, Q) is a seed with $x = (x_1, \ldots, x_{n+m})$ and s' = (x', Q') a seed obtained from s by a sequence of mutations, then the cluster $x' = (x'_1, \ldots, x'_n, x'_{n+1}, \ldots, x'_{n+m})$ satisfies

$$\mathbb{C}(x'_1,\ldots,x'_n,x'_{n+1},\ldots,x'_{n+m})=\mathcal{F}.$$

Definition

The *cluster algebra* defined by the initial seed s is the \mathbb{C} -subalgebra

$$A_s := \langle \bigcup_{s'=(\mathbf{x}',Q')\sim s} \mathbf{x}' \rangle \subset \mathcal{F}.$$

Theorem (Fomin–Zelevinsky 2001)

The cluster algebra A_s only depends on the mutation class of Q.

Combinatorics on Flag Varieties 2021

Example: cluster algebra

Structure Theorems

Theorem (Fomin-Zelevinsky 2001)

All cluster variables are Laurent polynomials in the cluster variables of the initial seed with integer coefficients. More precisely, they are contained in

 $\mathbb{Z}[x_1^{\pm},\ldots,x_n^{\pm},x_{n+1},\ldots,x_{n+m}].$

Positivity Conjecture (Fomin–Zelevinsky 2001)

All cluster variables are contained in $\mathbb{N}[x_1^{\pm}, \dots, x_n^{\pm}, x_{n+1}, \dots, x_{n+m}]$.

Theorem (Gross-Hacking-Keel-Kontsevich 2014)

The positivity conjecture is true.

Gross-Hacking-Keel-Kontsevich view cluster algebras as rings of functions on certain log Calabi-Yau varieties (cluster varieties) and use tools from birational geometry and mirror symmetry.

Finite type classification

Theorem (Fomin–Zelevinsky 2003)

A cluster algebra $A_{(x,Q)}$ is of finite type (i.e. the set of its cluster variables is finite) if and only if (the mutable part of) Q is mutation equivalent to an orientation of a type ADE Dynkin diagram:

Combinatorics on Flag Varieties 2021

Grassmannian $Gr_2(\mathbb{C}^n)$

Recall the $\binom{n}{2}$ Plücker coordinates p_{ij} for $\operatorname{Gr}_2(\mathbb{C}^n)$. We can pass from a triangulation T to a quiver Q_T as follows:

- mutable vertices of $Q_T \leftrightarrow$ diagonals;
- 2 frozen vertices of $Q_T \leftrightarrow$ boundary edges;
- 3 add arrows inside every triangle:

- I forget arrows between frozen vertices.
- We have a bijection

 $\left\{ \begin{matrix} \text{triangulations } \mathcal{T} \\ \text{of an } n\text{-gon} \end{matrix} \right., \ \textit{flip} \right\} \stackrel{1-1}{\longleftrightarrow} \left\{ \begin{matrix} \text{seeds of the cluster} \\ \text{algebra } A_{\mathcal{T}} \end{matrix} , \ \textit{mutation} \right\}.$

Exercise: Verify that the *flip* translates to the *mutation*.

Grassmannian $Gr_k(\mathbb{C}^n)$

For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define a seed $s = (Q, \mathbb{X})$ with $\mathbb{X} = (x_{i \times j})_{i,j}$ where $x_{i \times j} := p_{[1,k-j] \cup [k-j+i+1,k+i]}$ and quiver Q:

Mutation at 4-valent vertices \leftrightarrow Plücker relations, e.g.

Theorem (Scott 2006)

The cluster algebra A_s is isomorphic to the homogeneous coordinate ring of the Grassmannian with respect to its Plücker embedding:

$$A_{s} \cong A_{k,n} = \mathbb{C}\left[p_{J}: J = \{j_{1}, \ldots, j_{k}\} \subset [n]\right] / I_{k,n}$$

- for $k \leq 2$ Plücker coordinates = cluster variables.
- for $k \ge 3$ Plücker coordinates \subsetneq cluster variables.
- if k = 2 (A_{n-3}) or $k = 3, n \in \{6, 7, 8\}$ (D₄, E₆, E₈) finitely many seeds and in all other cases there are infinitely many seeds.

Remark

Similar results hold for double Bruhat cells [Berenstein–Fomin–Zelevinksy 2005], (partial) flag varieties [Geiss–Leclerc–Schröer 2008], (open) Richardson varieties [Leclerc 2016] and Schubert varieties [Sherman-Bennett–Serhiyenko–Williams 2020].

Principal coefficients

Definition (Fomin-Zelevinsky 2005)

Given a cluster algebra A with initial seed s = (Q, x) we define the corresponding *cluster algebra with principal coefficients at s*, denoted A_s^{prin} , by the initial seed $\hat{s} := (\hat{Q}, \hat{x})$, where

• \hat{Q} has vertices v_1, \ldots, v_n (as Q) and frozen vertices v'_1, \ldots, v'_n and contains Q as a full subquiver, additionally there are arrows $v'_i \rightarrow v_i$ for all i;

•
$$\hat{\mathbf{x}} = (\mathbf{x}, \mathbf{t})$$
 where $\mathbf{t} = (t_1, \dots, t_n)$.

Example: principal coefficients

$$\Rightarrow A_{x_1 \to x_2}^{\text{prin}} = \left\langle x_1, x_2, \frac{t_1 + x_2}{x_1}, \frac{t_1 + t_1 t_2 x_1 + x_2}{x_1 x_2}, \frac{1 + x_1 t_2}{x_2} \right\rangle$$

Observations:

- A_s and A_s^{prin} have the same seed pattern;
 A_s^{prin} ⊂ ℤ[t₁, t₂][x₁^{±1}, x₂^{±1}];
- for $(1,0) := \deg(x_1) := -\deg(t_2)$ and $(0,1) := \deg(x_2) := \deg(t_1)$ all cluster variables are homogeneous, so A_s^{prin} is \mathbb{Z}^2 -graded:

$$deg(\frac{t_1+x_2}{x_1}) = (-1,1), \quad deg(\frac{t_1+t_1t_2x_1+x_2}{x_1x_2}) = (-1,0), \quad deg(\frac{1+x_1t_2}{x_2}) = (0,-1).$$

Theorem (Fomin–Zelevinsky 2005)

Given a cluster algebra A_s with initial seed $s = (Q, \varkappa)$ and the corresponding cluster algebra with principal coefficients A_s^{prin} at s, then

1
$$A_s^{prin}$$
 has the same seed pattern as A_s ,

$$a A_s^{prin} \subset \mathbb{Z}[t_1,\ldots,t_n][x_1^{\pm 1},\ldots,x_n^{\pm 1}],$$

A^{prin}_s is graded with grading induced by deg(x_i) = e_i ∈ Zⁿ and deg(t_i) := -∑ⁿ_{j=1} #{i → j}e_j; every cluster variable x is a homogeneous elements and its degree called g-vector.

Example: *g*-vectors for $Gr_2(\mathbb{C}^n)$

Consider the triangulation of a seed s of $A_{2,n}$:

To compute $g_s(p_{ij}) = \sum_{p_{ab} \in s} c_{ab} e_{ab}$ take the path ρ_{ij} from *i* to *j* in the tree T_s . The coefficients can be read from ρ_{ij} :

$$\Rightarrow g_s(p_{25}) = e_{12} - e_{14} + e_{45}$$

Combinatorics on Flag Varieties 2021

g-vector valuation

Proposition (GHKK, Fujita–Oya, B–Cheung–Magee–Nájera Chávez)

Let s' be an arbitrary seed of $A_s = A_{k,n}$ and x denote any cluster variable, then

$$g_{s'}: \mathcal{A}_{k,n} \setminus \{0\}
ightarrow \mathbb{Z}^{k(n-k)+1}$$
 with $x \mapsto g_s(x)$

is a (full-rank homogeneous) valuation with finitely generated value semigroup. As such it defines a toric degeneration of $Spec(A_{k,n})$, the affine cone of $Gr_k(\mathbb{C}^n)$. Moreover, g_s has a $\mathbb{C}[t_{i\times j}:i,j]$ -basis (adapted to g_s) called the ϑ -basis that is independent of s.

<u>Remark</u>: The Proposition holds more generally for any cluster algebra that satisfies the *full Fock–Goncharov conjecture*.

Newton-Okounkov bodies for Grassmannains

Proposition

For every seed s of $A_{2,n}$ the value semigroup $im(g_s)$ is generated by the g-vectors of Plücker coordinates. Moreover, the Newton-Okounkov body of g_s is the convex hull

$$\Delta(A_{2,n}, g_s) = conv\{g_s(p_{ij}) : 1 \le i < j \le n\}.$$

Remark (B.–Cheung–Magee–Nájera Chávez)

For arbitrary $Gr_k(\mathbb{C}^n)$ Rietsch–Williams define a valuation $v_s : A_{k,n} \to \mathbb{Z}^{k(n-k)}$ for every plabic graph *s* (or more generally for every seed *s* of $A_{k,n}$). We can show that

$$\Delta(A_{k,n},g_s)\cong\Delta(A_{k,n},v_s).$$

Moreover, the Newton–Okounkov cone of g_s is the polyhedral cone obtained from tropicalizing GHKK's superpotential.

Universal coefficients

Definition (Fomin-Zelevinsky 2005, Reading 2014)

Given a cluster algebra A_s of finite type with initial seed s = (Q, x). Let $\{x_1, \ldots, x_N\}$ be the set of *all* cluster variables. Then the corresponding *cluster algebra with universal coefficients* A_s^{univ} has initial seed $s^{\text{univ}} = (Q^{\text{univ}}, x^{\text{univ}})$, where

Q^{univ} has vertices v₁,..., v_n (as Q) and frozen vertices v'₁,..., v'_N and contains Q as a full subquiver, additionally there are arrows defined as follows: let g_{s^{op}}(x_i) ∈ Zⁿ be the g-vector of x_i for 1 ≤ i ≤ N with respect to the opposed quiver Q^{op}, then^a

$$\#\{v'_i \to v_j\} - \#\{v_j \to v'_i\} := g_{s^{op}}(x_i)_j.$$

•
$$\mathbb{x}^{\text{univ}} = (\mathbb{x}, \mathbb{t}^{\text{univ}})$$
 where $\mathbb{t}^{\text{univ}} = (t_1, \dots, t_N)$.

^aRemember that our quivers are not allowed to have 2-cycles.

$$A_{x_1 \to x_2} = \left\langle x_1, x_2, x_3 := \frac{1 + x_2}{x_1}, x_4 := \frac{1 + x_1 + x_2}{x_1 x_2}, x_5 := \frac{1 + x_1}{x_2} \right\rangle$$

$$g_i := g_{x_1 \leftarrow x_2}(x_i)$$

Theorem (Fomin–Zelevinsky 2005)

Let A be a cluster algebra of finite type and A^{univ} the cluster algebra with universal coefficients, then

- $A^{univ} \subset \mathbb{C}[t_1, \ldots, t_N][x_1^{\pm 1}, \ldots, x_n^{\pm 1}];$
- A^{univ} is independent of the initial seed;
- If or every seed s there exists a unique map A^{univ} → A^{prin}_s sending cluster variables to cluster variables.

Overview

Cluster algebras

Gröbner degenerations

- Initial ideals, Gröbner fan and degenerations
- A family of Gröbner degenerations
- Oric degenerations, from valuation to tropicalization
- g-vector valuation of finite type
- Oniversal coefficients and a Gröbner cone

Initial ideals

Let $f = \sum_{\alpha \in \mathcal{X}} c_{\alpha} \mathbb{X}^{\alpha} \in \mathbb{C}[x_1, \ldots, x_n]$ with $c_{\alpha} \in \mathbb{C}$, $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $\mathbb{X}^{\alpha} := x_1^{\alpha_1} \cdot \cdots \cdot x_n^{\alpha_n}$.

For $w \in \mathbb{R}^n$ we define its *initial form with respect to w* as

$$\operatorname{in}_w(f) := \sum_{eta: w \cdot eta = \min_{c lpha
eq 0} \{ w \cdot lpha \}} c_eta \mathbb{X}^eta.$$

For $J \subset \mathbb{C}[x_1, \ldots, x_n]$ an ideal we define its *initial ideal with respect to w* as $in_w(J) := (in_w(f) : f \in J)$.

Example

For
$$f = x_1^2 x_2^2 + x_1^4 + x_2 x_3^3 \in \mathbb{C}[x_1, x_2, x_3]$$
 and $w = (1, 0, 0)$ we compute
in_w $(f) = x_2 x_3^3$.

Gröbner fan and Gröbner degenerations

Definition/Proposition (Mora–Robbiano 1988)

For a homogeneous ideal $J \subset \mathbb{C}[x_1, \ldots, x_n]$ its *Gröbner fan* GF(J) is \mathbb{R}^n with fan structure defined by

$$v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(J) = \operatorname{in}_{w}(J).$$

<u>Notation</u>: $in_{\mathcal{C}}(J) := in_{w}(J)$ for any $w \in \mathcal{C}^{\circ}$.

Every open cone $C^{\circ} \in GF(J)$ defines a *Gröbner degeneration*

$$\pi:\mathcal{V}\to\mathbb{A}^1$$

with $\pi^{-1}(t) \cong V(J)$ for $t \neq 0$ and $\pi^{-1}(0) = V(\operatorname{in}_{C}(J))$.

Example

Take $I = (x_1^2 x_2^2 + x_1^4 + x_2 x_3^3) \subset \mathbb{C}[x_1, x_2, x_3]$. Then *GF*(*I*) is \mathbb{R}^3 with the fan structure:

Standard monomial basis

Let
$$A := \mathbb{C}[x_1, \dots, x_n]/J$$
 and $A_{ au} := \mathbb{C}[x_1, \dots, x_n]/\mathsf{in}_{ au}(J)$ for $au \in \mathit{GF}(J).$

Fix a maximal cone $C \in GF(J)$, then the ideal in_C(J) is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \mathrm{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial basis*. In particular, $\mathbb{B}_C := \mathbb{B}_{C,\{0\}}$ is a vector space basis for $A = A_{\{0\}}$.

 \rightsquigarrow All degenerations $\{A_{\tau} : \tau \subseteq C\}$ have a basis indexed by $\mathbb{x}^{\alpha} \notin in_{\mathcal{C}}(J)$.

Family of ideals

Let $C \in GF(J)$ be a maximal cone and choose r_1, \ldots, r_m representatives of primitive ray generators of $\overline{C} \in GF(J)/\mathcal{L}$. Let r be the matrix with rows r_1, \ldots, r_m . Define for $f = \sum c_{\alpha} \mathbb{X}^{\alpha} \in J \subset \mathbb{C}[x_1, \ldots, x_n]$

$$\mu(f) := \left(\min_{c_{\alpha} \neq 0} \{r_1 \cdot \alpha\}, \ldots, \min_{c_{\alpha} \neq 0} \{r_m \cdot \alpha\}\right) \in \mathbb{Z}^m.$$

In $\mathbb{C}[t_1,\ldots,t_m][x_1,\ldots,x_n]$ we define the *lift* of *f*

$$\tilde{f} := f(\mathbb{t}^{r \cdot e_1} x_1, \dots, \mathbb{t}^{r \cdot e_n} x_n) \mathbb{t}^{-\mu(f)} = \sum c_{\alpha} \mathbb{z}^{\alpha} \mathbb{t}^{r \cdot \alpha - \mu(f)}$$

Definition/Proposition

The *lifted ideal* $\tilde{J} := (\tilde{f} : f \in J) \subset \mathbb{C}[t_1, \ldots, t_m][x_1, \ldots, x_n]$ is generated by $\{\tilde{g} : g \in \mathcal{G}\}$, where \mathcal{G} is a *Gröbner basis* for J and C.

Example

Take $f = x_1^2 x_2^2 + x_1^4 + x_2 x_3^3 \in \mathbb{C}[x_1, x_2, x_3]$ and consider in GF((f)) the maximal cone *C* spanned by the rows of $r := \begin{pmatrix} 1 & 4 & 0 \\ 1 & -2 & 0 \end{pmatrix}$ and \mathcal{L} . We compute

$$\begin{split} &(t_1, t_2) = f(t_1 t_2 x_1, t_1^4 t_2^{-2} x_2, x_3) t_1^{-4} t_2^2 \\ &= t_1^6 x_1^2 x_2^2 + t_2^6 x_1^4 + x_2 x_3^3 \\ &\bullet \ \tilde{f}(0, 0) = x_2 x_3^3 = \operatorname{in}_C(f), \\ &\bullet \ \tilde{f}(0, 1) = x_1^4 + x_2 x_3^3 = \operatorname{in}_{r_1}(f), \\ &\bullet \ \tilde{f}(1, 0) = x_1^2 x_2^2 + x_2 x_3^3 = \operatorname{in}_{r_2}(f), \\ &\bullet \ \tilde{f}(1, 1) = f. \end{split}$$

A family of Gröbner degenerations

Let
$$\tilde{A} := \mathbb{C}[t_1, \ldots, t_m][x_1, \ldots, x_n]/\tilde{J}$$
, $A_{\tau} = \mathbb{C}[x_1, \ldots, x_n]/\mathsf{in}_{\tau}(J)$.

Theorem (B.–Mohammadi–Nájera Chávez)

 \tilde{A} is a free $\mathbb{C}[t_1, \ldots, t_m]$ -module with standard monomial basis \mathbb{B}_C and so the morphism

 $\pi: Spec(\tilde{A}) \to \mathbb{A}^m$

is free. In particular, π defines a flat family with generic fiber Spec(A) and for every face $\tau \subseteq C$ there exists $a_{\tau} \in \mathbb{A}^m$ and a special fiber $\pi^{-1}(a_{\tau}) \cong Spec(A_{\tau})$.

Example

$$\tilde{A} = \mathbb{C}[t_1, t_2][x_1, x_2, x_3] / (t_1^6 x_1^2 x_2^2 + t_2^6 x_1^4 + x_2 x_3^3).$$

Toric degenerations

GF(J) contains a subfan of dimension dim_{Krull} A called the *tropicalization* of J

$$\mathsf{Trop}(J) := \{ w \in \mathbb{R}^n : \mathsf{in}_w(J) \not\supseteq \mathsf{monomials} \}.$$

Corollary (B.-Mohammadi-Nájera Chávez)

Consider the fan $\Sigma := C \cap Trop(J)$. If there exists $\tau \in \Sigma$ with $in_{\tau}(J)$ binomial and prime, then the family

$$\pi: Spec(\tilde{A}) \to \mathbb{A}^m$$

contains toric fibers isomorphic to $Spec(A_{\tau})$ (affine toric scheme).

Remark

The degenerations $\text{Spec}(A_{\tau})$ can be obtained from valuations and Newton–Okounkov bodies [Kaveh–Manon 2019].

Example: tropical Grassmannian $Gr_2(\mathbb{C}^5)$

For n = 5, the tropical Grassmannian Trop $(I_{2,5})$ is a 7-dimensional fan in \mathbb{R}^{10} with a 5-dimensional linear subspace \mathcal{L} .

As a complex it coincides with the Peterson graph:

The 15 maximal cones are in bijection with trivalent trees with 5 leaves.

Combinatorics on Flag Varieties 2021

From valuation to tropicalization

Theorem (B. 2020, Kaveh-Manon 2019)

Let A be an algebra and domain of Krull dimension d and $v : A \setminus \{0\} \to \mathbb{Z}^d$ a full-rank valuation with finitely generated value semigroup:^a

$$im(v) = \langle v(b_1), \ldots, v(b_N) \rangle^b.$$

Consider $\pi : \mathbb{C}[x_1, \ldots, x_N] \to A$ with $\pi(x_i) = b_i$ and set $J := \ker(\pi)$. Then $A \cong \mathbb{C}[x_1, \ldots, x_N]/J$ and there exists a maximal cone $\tau \subset \operatorname{Trop}(J)$:

 $A_{\tau} \cong \mathbb{C}[im(v)].$

^a[Anderson] So the semigroup algebra $\mathbb{C}[im(v)]$ is toric and $Spec(\mathbb{C}[im(v)])$ is a toric degeneration of Spec(A).

^bIn this case $\{b_1, \ldots, b_N\}$ is called a Khovanskii basis for A and v.

We call the ideal J and the presentation $A \cong \mathbb{C}[x_1, \ldots, x_N]/J$ adapted to the valuation v.

From g-vector valuation to tropicalization

Recall the *g*-vector valuation on the Grassmannian cluster algebra $A_{k,n}$. For every seed *s* we have

$$g_s: A_{k,n} \setminus \{0\} \to \mathbb{Z}^{k(n-k)+1}$$

[GHKK]: The value semigroup $im(g_s)$ is finitely generated for all s. Questions:

- **(**) How do we find an ideal adapted to a g-vector valuation g_s ?
- Ooes there exist an ideal adapted to gs for all s simultaneously?
- If so, is there a relation to the cluster algebra with universal coefficients?

g-vectors for finite type cluster algebras

Theorem (Fomin–Zelevinsky 2005, Cerulli Irelli–Keller–Labardini–Plamondon 2013, GHKK 2018)

Let A be a cluster algebra of finite type and s any seed. Then

- the cluster monomials^a are a \mathbb{C} -basis for A, A_s^{prin} and A^{univ} ;
- the g-vectors form a complete simplicial fan, called the g-fan, whose maximal cones correspond to seeds.

^aMonomials in cluster variables of the same seed.

For $\{x_1, \ldots, x_N\}$ cluster variables of A set

$$\pi: \mathbb{C}[y_1,\ldots,y_N] \to A, \quad \pi(y_i) = x_i.$$

Then $J = \ker(\pi)$ is adapted to g_s for all seeds s. \Rightarrow this answer questions 1 and 2 for finite type cluster algebras.

Finite type Grassmannains $Gr_3(\mathbb{C}^6)$ and $Gr_2(\mathbb{C}^n)$

 $Gr_2(\mathbb{C}^n)$: cluster variables = Plücker coordinates $\Rightarrow J = I_{2,n}$ is generated by all exchange relations (= Plücker relations).

 $\underline{\mathsf{Gr}_3(\mathbb{C}^6)}: \text{ cluster variables} = \{\bar{p}_{123}, \dots, \bar{p}_{456}\} \cup \{\bar{X}, \bar{Y}\}$

 $\pi: \mathbb{C}[p_{123}, \ldots, p_{456}, X, Y] \to A_{3,6} \quad \pi(p_{ijk}) = \bar{p}_{ijk}, \pi(X) = \bar{X}, \pi(Y) = \bar{Y},$

so $J = \text{ker}(\pi)$ is generated by all exchange relations and one 4-term Plücker relation.

Remark

The Plücker ideal $I_{3,6}$ for $Gr_3(\mathbb{C}^6)$ can be obtained from J by eliminating X, Y. However, $I_{3,6}$ is *not* adapted to g_s for all seeds s.

Theorem (B.–Mohammadi–Nájera Chávez 2020)

Let A be $A_{2,n}$ or $A_{3,6}$ and J the ideal adapted to the g-vector valuation g_s for all seeds s. Then there exists a unique maximal simplicial cone $C \subset GF(J)$ such that

• the fan $\Sigma = C \cap Trop(J)$ is combinatorially isomorphic to the g-fan:

 $\{ \text{rays of } C \} \iff \{ \text{cluster variables of } A \}$ $\begin{cases} \text{maximal cones} \\ \tau_s \in C \cap \text{Trop}(J) \end{cases} \iff \{ \text{seeds s of } A \}$

and $\mathbb{C}[im(g_s)] \cong \mathbb{C}[x_1, \ldots, x_N]/in_{\tau_s}(J)$.

- we have a canonical isomorphism $\tilde{A} \cong A^{univ}$ identifying universal coefficients with rays of C;
- the standard monomial basis B_C for A (and Ã) coincides with the basis of cluster monomials for A (and A^{univ});
- the Stanley-Reisner ideal of the g-fan is the initial ideal in_C(J).

Stanley–Reisner ideals and complexes

Let Δ be a simplicial complex with vertex set $V = \{x_1, \dots, x_n\}$. The *Stanley–Reisner ideal* of Δ is

$$I_{\Delta} := \langle x_{i_1} \cdots x_{i_s} : \{x_{i_1}, \dots, x_{i_s}\} \notin \Delta \rangle \subset \mathbb{C}[x_1, \dots, x_n].$$

Let $A_{\Delta} := \mathbb{C}[x_1, \ldots, x_n]/I_{\Delta}$, the *Stanley–Reisner scheme* is $Proj(A_{\Delta})$. Reversely, to every square-free monomial ideal one can associate its *Stanley–Reisner complex*, whose non-faces are defined by the monomials in the ideal.

[Ilten]: the type D_n associahedron is *unobstructed*, hence the corresponding Stanley–Reisner scheme is a smooth point in its Hilbert scheme.

Corollary

The Grassmannian $Gr_3(\mathbb{C}^6)$, a cone over $\mathbb{P}(D_4)$ (namely $Proj(A_C)$) and the toric schemes $Proj(A_{\tau_s})$ for all seeds s all lie on the same component of the Hilbert scheme.

References

- And13 Dave Anderson. Okounkov bodies and toric degenerations. Math. Ann., 356, no. 3, 1183-1202, 2013.
- BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras. arxiv preprint arXiv:2007.14972 [math.AG], 2020.
- BCMN Lara Bossinger, Man-Wai Cheung, Timothy Magee, Alfredo Nájera Chávez. On cluster duality for Grassmannians in preparation, 2021.
 - B20 Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. Int. Math. Res. Not. rnaa071, 2020.
- BFZ05 Arkady Berenstein, Sergey Fomin, Andrei Zelevinsky. Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126, no. 1, 1–52, 2005.
- CKLP13 Giovanni Cerulli Irelli, Bernhard Keller, Daniel Labardini-Fragoso, Pierre-Guy Plamondon. Linear independence of cluster monomials for skew-symmetric cluster algebras. Compos. Math., 149, no. 10, 1753–1764, 2013.
 - FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497-529, 2002.
 - FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143, no. 1, 112-164, 2007.
 - GLS08 Christof Geiss, Bernard Leclerc, Jan Schröer. Partial flag varieties and preprojective algebras. Ann. Inst. Fourier (Grenoble) 58, no. 3, 825–876, 2008.
- Gr(3,6) Lara Bossinger. Grassmannians and universal coefficients for cluster algebras: computational data for Gr(3,6). https://www.matem.unam.mx/~lara/clusterGr36
- GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.
 - Ilten Nathan Ilten. Type D Associahedra are Unobstructed. Slides of online talk 13/08/2020 http://magma.maths.usyd.edu.au/~kasprzyk/seminars/pdf/Ilten.pdf
 - KM19 Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292–336, 2019.
 - Lec16 Bernard Leclerc. Cluster structures on strata of flag varieties. Adv. Math. 300, 190-228, 2016.
 - MR88 Teo Mora, Lorenzo Robbiano. The Gröbner fan of an ideal. Computational aspects of commutative algebra. J. Symbolic Comput. 6, no. 2-3, 183–208, 1988.
- Reading Nathan Reading. Universal geometric cluster algebras. Math. Z. 277(1-2):499-547, 2014.
- RW2019 Konstanze Rietsch, Lauren Williams. Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians. Duke Math. J. 168, no. 18, 3437–3527, 2019.
- Sco06 Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92, no. 2, 345-380, 2006.

SSW20 Khrystyna Serhiyenko, Melissa Sherman-Bennett, Lauren William. Combinatorics of cluster structures in Schubert varieties. Sém. Lothar. Combin. 82B, Art. 8, 12 pp. 2020.