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Valuations

A= EBizo A; a graded k-algebra and domain. A map
v: A\ {0} = (29,<) is a (Krull) valuation if
v(fg) = v(f) +v(g), wvlcf)=w(f), v(f+g)=min{v(f) v(g)}

forall f,g € R\ {0} and ¢ € k.
Q S(A,v) :=im(v) is the value semigroup.

@ v induces a filtration on A, for m € Z¢
Fn:={f€eA:v(f)<m} and F.,:={feA:v(f)<m}

Q dim(Fn/Fem) <1Ym ! = gr (R) = k[S(R, V)]
@ B vector space basis of A is adapted to v if BN F, is a vector space
basis for all m.

Ye.g. if v is full-rank, i.e. rank(S(A,v)) = dimkwi(A) by Abhyankar's inequality
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Toric degenerations and the Newton—Okounkov polytope

Theorem (Anderson 2013)

Let v: A\ {0} — Z9 be a full-rank valuation with S(A,v) finitely
generated. Then there exists a toric degeneration of X = Proj(A) to the
(not necessarily normal) toric variety Xo = Proj(k[S(A,v)]).

Xp is toric and projective, its normalization Xj is defined by the
Newton—Okounkov body? of v

A(A,v) := conv (L>Jo {@ fe A,-}) c RC.

Question: How can we compute A(A,r)? What are its vertices?

Zin this case a rational polytope

Combinatorics on Flag Varieties 2021 Lara Bossinger



Grassmannian Gry(C>)
The homogeneous coordinate ring of Grp(C®) with its Pliicker embedding:

Az = Clpj : 1 < i <j <5]/(piipki — PikPji + PitPjk)1<i<j<k<i<5
can be constructed recursively from triangulations of a 5-gon (seeds):
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Cluster variety inside Gry(C?)

—_——

. *\7 5
For every seed we get a torus chart: (C*) 5., ora.pio.pis.pos.psepes < Gr2(C°)
and they glue along mutations:
*\7 *\7
(C P13,P14,P12,---,P45 U (C P24,P14,P12,.-,P45
* — P12P341+P23P14
w*(p2a)= P13

Recursively we obtain a cluster variety

A = U (@)

Pij ZEE s

< Gra(C")

s triang. of 5-gon

Consider the partial compactification Az 5 := Az s U Uiez {pii+1 = 0}.
Then:
O(Azs) = Axs C C[p;El . ij € s] Vs triang. of 5-gon.
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Grassmannian Gr,(C")
Triangulations and flips generalize to quivers and quiver mutation:

1

IRYAVERR. S

For a general Grassmannian Gr,(C") seeds are represented by quivers: e.g.

s = (Q,X) with X = (Xix;)ij where Xjx; := p[1 k—jjujk—j+it+1,k+i] @and
quiver Q:

\
1x1 $1x2 . 1xk Exercise: for k =2
JX' ‘\\2*1'2\ _\“k Q corresponds to
(nfk)><1 (n—k)x2 . (n— k) x k
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g-vectors for cluster algebras

Theorem (Fomin—Zelevinsky 2005)

Given an initial seed s = (Q, (Pix;)ic[n—k]je[k]) Of Ak,n there exists a
corresponding cluster algebra with principal coefficients

Al;:fl,'?' e C[tixj][Pilj‘]ie[n—k]Je[k] ats.

AR is Ms-graded, where M = ZK"=1 with basis {fix;}ie[n—k]jelk]

gs(pixj) = fixj, and gs(tixj): Z#{I X j =i % Moy

Every cluster variable x is homogeneous and its degree called g-vector.

Example:

1 1

P12 P15 Poa = % p12 P15
2 p 5 _— 2 p 5
P23 Pas P23 Pas
3 4 3

4
34 P34
13, t1a, gz ----- ty5
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Cluster variety with principal coefficients for Gry(C®)

Geometrically we obtain a degeneration to a torus

A2,5;> Ag’rén’s = Us(C*)Z X AZ13,t14,t12,...,t45 <—)(C*)7

| l |

{1)¢ AT {0}

Theorem (Gross-Hacking-Keel-Kontsevich)

The cluster variety Airi,n’s with principal coefficients at a seed s induces a
toric degeneration of the Grassmannian Gr,(C"). Moreover,

Fomin—Zelevinsky's g-vectors are characters of the torus in the central
fibre.

Holds more generally for partial compactifications of cluster varieties that
satisfy the full Fock—Goncharov conjecture.

Lara Bossinger
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g-vector valuation

Proposition (GHKK, Fujita—Oya, B-Cheung—Magee—Nd&jera Chévez)

Let s be an arbitrary seed of Ay , and x denote any cluster variable, then
x — gs(x) extends to a (full-rank homogeneous) valuation with finitely
generated value semigroup:

g A\ {0} = Mg = ZK=RFL with x5 gy(x)

that defines the .Ap"n S_toric degeneration of Gri(C™). Moreover, Ak,n has
a C-basis adapted to all g simultaneously called the 1-basis.

v

Remark: The Proposition holds more generally for any cluster algebra that
satisfies the full Fock—Goncharov conjecture.
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Newton—Okounkov bodies for Grassmannains

Proposition

For every seed s of Ay , the value semigroup S(A,n, gs) is generated by
the g-vectors of Pliicker coordinates and its Newton—Okounkov body is

A(Az n, gs) = conv(gs(pjj) : 1 <i<j<n).

Theorem (B.—Cheung—-Magee—Ndgjera Chévez)

For arbitrary Gri(C") Rietsch-Williams define a valuation
Vs 1 Akn — ZK(n=k) for every plabic graph s (or more generally for every
seed s of Ay ). We can show that

A(Ak,nags) = A(Ak,m Vs)-
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Connections to Grobner theory

For Az, Az, As.7, A3 g the ¥-basis consists of all monomials in cluster
variables of the same seed, called cluster monomials.

Proposition (B.-Mohammadi—N&jera Chévez)

For (k,n) € {(2,n),(3,6)} the ¥-basis of Ay , is a standard monomial
basis associated to a maximal cone C in the Grobner fan of an ideal Jy ,
representing Ay ,.

Moreover, every k(n — k) + 1-dimensional face of C lies inside the
tropicalization of Ji , and induces a toric degeneration of Gr,(C") whose

central fibre is
TV(A(Ak.n, 85))-
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Tropical cluster dual X'-variety

There exists a tropical cluster variety 255" (Z) := Us triang. of 5-gon Ms

where Ms = Z7 with free generating set {fj, ij € s} and glued along
bijections defined by certain shearing:

M{fl37f—147fl27“'7ﬂ5} U

fos=f3+fs—f3
T1z(m)=m-+max{m13,0}(fi2+fH4—fz—fi4)

M{toq fia ... s}

For each s we may identify non-canonically X;TEP(Z) = M.

[GHKK]/[Marsh-Scott|/[Shen-Weng]| Elements of the ¥-basis for Ay , are
indexed by points in a “cone” = C X;fzp(Z):

(Zk,m D)

ka, W ka — C)
U-basis of Ax

(
T 2= (WR(x) > 0} € AP(2)
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Wall&chamber structure and the g-fan

Pulling back the positive orthants of each copy of MR along the shears
Tis yields a wall and chamber structure in X3P (R):

fog = —fiz+ fio + f34

A

N

fia

fi3

fos = —fia + fio + fas

5 X(fi2,..., fas)>0

fis = f13 — f1a + fa5

It contains a full-dimensional simplicial fan known as the g-fan:

maximal simplicial cones

< seeds

primitive ray generators <> g-vectors of cluster variables
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NO bodies for compactificatins of cluster varieties
Theorem (B.—Cheung—Magee—Ndgjera Chévez)

There exists a “convex” set Api(Ak.n) C X °P(R) independent of s:

A (Akn) =s A(Akn, &s)-

Api(Akn)

piece-wise lineas

A(Ak,na gs) A(Ak,m gs’)

“wall-crossing”

Proposition (Escobar-Harada, B.-Mohammadi-N&jera Chavez)

The piecewise-linear maps between two Newton—Okounkov polytopes
A(A2 5, 8s) and A(Az,n, g+) coincide with Escobar-Harada's algebraic
wall-crossing for Newton—Okounkov polytopes arising from adjacent
maximal prime cones in the tropicalization of Grp(C").
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Broken line convexity

In XP(R) we don't
have straight lines, but piece-wise linear broken lines.

[Cheung—Magee—Najera Chavez] introduce /
broken line convexity: a closed set S C X,"°P(R)
is broken line convex iff Va, b € S and any

broken line segment ¢ between a, b we have £ C S.

Lemma (Cheung—Magee—Ngjera Chavez)

Under the identification X;"P(R) =s Mg every broken line convex set is a
convex set.
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Intrinsic Newton—Okounkov body
For f € Axn we have f =) cpUm. Define

Newy(f) := convg (m € XZEP(Z) Cem £0) C X/ETZP(R)

Then the intrinsic Newton—Okounkov body is

Newy(f
AB[_(A;Q,,) = convpgy U ¢ f e (Ak,n)i
i>1

Corollary (B.—Cheung—Magee—Najera Chavez)

For every seed s we have

In particular, A(Ak n,&s) is a rational polytope with integral vertices of
form gs(ps), and (depending on s) additional rational vertices in walls.
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