Newton-Okounkov bodies for cluster varieties

Lara Bossinger

Universidad Nacional Autónoma de México, Oaxaca

NOB and Fanosearch October 5-8 2021

Valuations

 $A=\bigoplus_{i\geq 0}A_i$ a graded k-algebra and domain. A map $\nu:A\setminus\{0\}\to(\mathbb{Z}^d,<)$ is a *(Krull) valuation* if

$$\nu(fg) = \nu(f) + \nu(g), \quad \nu(cf) = \nu(f), \quad \nu(f+g) \ge \min_{\,<\,} \{\nu(f), \nu(g)\}$$

for all $f, g \in R \setminus \{0\}$ and $c \in k$.

- **1** $S(A, \nu) := im(\nu)$ is the *value semigroup*.
- ② ν induces a filtration on A, for $m \in \mathbb{Z}^d$

$$F_m := \{ f \in A : \nu(f) \le m \} \text{ and } F_{\le m} := \{ f \in A : \nu(f) < m \}.$$

- **3** \mathbb{B} vector space basis of A is adapted to ν if $\mathbb{B} \cap F_m$ is a vector space basis for all m.

¹e.g. if ν is full-rank, i.e. rank $(S(A, \nu)) = \dim_{Krull}(A)$ by Abhyankar's inequality

Toric degenerations and the Newton-Okounkov polytope

Theorem (Anderson 2013)

Let $\nu: A \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank valuation with $S(A, \nu)$ finitely generated. Then there exists a toric degeneration of X = Proj(A) to the (not necessarily normal) toric variety $X_0 = Proj(k[S(A, \nu)])$.

 X_0 is toric and projective, its normalization \bar{X}_0 is defined by the Newton–Okounkov body² of ν

$$\Delta(A, \nu) := \operatorname{conv}\left(\bigcup_{i>0} \left\{\frac{\nu(f)}{i} : f \in A_i\right\}\right) \subset \mathbb{R}^d.$$

Question: How can we compute $\Delta(A, \nu)$? What are its vertices?

²in this case a rational polytope

Grassmannian $Gr_2(\mathbb{C}^5)$

The homogeneous coordinate ring of $Gr_2(\mathbb{C}^5)$ with its Plücker embedding:

$$A_{2,5} := \mathbb{C}[p_{ij} : 1 \le i < j \le 5]/(p_{ij}p_{kl} - p_{ik}p_{jl} + p_{il}p_{jk})_{1 \le i < j < k < l \le 5}$$

can be constructed recursively from triangulations of a 5-gon (seeds):

Cluster variety inside $Gr_2(\mathbb{C}^5)$

For every seed we get a torus chart: $(\mathbb{C}^*)^7_{p_{13},p_{14},p_{12},p_{15},p_{23},p_{34},p_{45}} \hookrightarrow Gr_2(\mathbb{C}^5)$ and they glue along mutations:

$$(\mathbb{C}^*)^7_{p_{13},p_{14},p_{12},\ldots,p_{45}} \bigcup_{\substack{\mu^*(p_{24}) = \frac{p_{12}p_{34} + p_{23}p_{14}}{p_{13}}}} (\mathbb{C}^*)^7_{p_{24},p_{14},p_{12},\ldots,p_{45}}$$

Recursively we obtain a *cluster variety*

$$\mathcal{A}_{2,5} := \bigcup_{\text{s triang. of 5-gon}} (\mathbb{C}^*)^7_{p_{ij} : \overline{ij} \in s} \hookrightarrow \widetilde{\mathsf{Gr}_2(\mathbb{C}^5)}$$

Consider the partial compactification $\overline{\mathcal{A}}_{2,5} := \mathcal{A}_{2,5} \cup \bigcup_{i \in \mathbb{Z}_5} \{p_{i,i+1} = 0\}.$ Then:

$$\mathcal{O}(\overline{\mathcal{A}}_{2,5}) = \mathcal{A}_{2,5} \subset \mathbb{C}[p_{ij}^{\pm 1} : \overline{ij} \in s] \ \forall s \text{ triang. of 5-gon.}$$

Grassmannian $Gr_k(\mathbb{C}^n)$

Triangulations and *flips* generalize to quivers and *quiver mutation*:

For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ seeds are represented by quivers: e.g. $s=(Q,\mathbb{Z})$ with $\mathbb{Z}=(x_{i\times j})_{i,j}$ where $x_{i\times j}:=p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and quiver Q:

Exercise: for k = 2

Q corresponds to

g-vectors for cluster algebras

Theorem (Fomin-Zelevinsky 2005)

Given an initial seed $s = (Q, (p_{i \times j})_{i \in [n-k], j \in [k]})$ of $A_{k,n}$ there exists a corresponding cluster algebra with principal coefficients

 $A_{k,n}^{prin, s} \subset \mathbb{C}[t_{i \times j}][p_{i \times j}^{\pm 1}]_{i \in [n-k], j \in [k]}$ at s.

 $A_{k,n}^{prin,s}$ is M_s -graded, where $M_s = \mathbb{Z}^{k(n-k)+1}$ with basis $\{f_{i \times j}\}_{i \in [n-k], j \in [k]}$:

$$g_s(p_{i \times j}) = f_{i \times j}, \quad \text{and} \quad g_s(t_{i \times j}) := -\sum \#\{i \times j \to i' \times j'\} f_{i' \times j'}$$

Every cluster variable x is homogeneous and its degree called g-vector.

Example:

Cluster variety with principal coefficients for $Gr_2(\mathbb{C}^5)$

Geometrically we obtain a degeneration to a torus

$$\mathcal{A}_{2,5} \hookrightarrow \mathcal{A}_{2,5}^{\mathrm{prin,s}} = \bigcup_{s} (\mathbb{C}^*)_{s}^{7} \times \mathbb{A}_{t_{13},t_{14},t_{12},\ldots,t_{45}}^{7} \longleftrightarrow \bigcup_{\{1\}}^{7} \longleftrightarrow \mathbb{A}^{7} \longleftrightarrow \mathbb{A}^{7}$$

Theorem (Gross-Hacking-Keel-Kontsevich)

The cluster variety $\mathcal{A}_{k,n}^{\mathrm{prin},s}$ with principal coefficients at a seed s induces a toric degeneration of the Grassmannian $\mathrm{Gr}_k(\mathbb{C}^n)$. Moreover, Fomin–Zelevinsky's g-vectors are characters of the torus in the central fibre.

Holds more generally for partial compactifications of cluster varieties that satisfy the full Fock–Goncharov conjecture.

g-vector valuation

Proposition (GHKK, Fujita-Oya, B-Cheung-Magee-Nájera Chávez)

Let s be an arbitrary seed of $A_{k,n}$ and x denote any cluster variable, then $x \mapsto g_s(x)$ extends to a (full-rank homogeneous) valuation with finitely generated value semigroup:

$$g_s: A_{k,n} \setminus \{0\} \to M_s \cong \mathbb{Z}^{k(n-k)+1}$$
 with $x \mapsto g_s(x)$

that defines the $\mathcal{A}_{k,n}^{\text{prin},s}$ -toric degeneration of $\text{Gr}_k(\mathbb{C}^n)$. Moreover, $A_{k,n}$ has a \mathbb{C} -basis adapted to all $g_{s'}$ simultaneously called the ϑ -basis.

<u>Remark:</u> The Proposition holds more generally for any cluster algebra that satisfies the *full Fock–Goncharov conjecture*.

Newton-Okounkov bodies for Grassmannains

Proposition

For every seed s of $A_{2,n}$ the value semigroup $S(A_{2,n},g_s)$ is generated by the g-vectors of Plücker coordinates and its Newton–Okounkov body is

$$\Delta(A_{2,n}, g_s) = \operatorname{conv}(g_s(p_{ij}) : 1 \le i < j \le n).$$

Theorem (B.-Cheung-Magee-Nájera Chávez)

For arbitrary $Gr_k(\mathbb{C}^n)$ Rietsch–Williams define a valuation $v_s: A_{k,n} \to \mathbb{Z}^{k(n-k)}$ for every plabic graph s (or more generally for every seed s of $A_{k,n}$). We can show that

$$\Delta(A_{k,n},g_s)\cong\Delta(A_{k,n},v_s).$$

Connections to Gröbner theory

For $A_{2,n}$, $A_{3,6}$, $A_{3,7}$, $A_{3,8}$ the ϑ -basis consists of all monomials in cluster variables of the same seed, called *cluster monomials*.

Proposition (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in \{(2, n), (3, 6)\}$ the ϑ -basis of $A_{k,n}$ is a standard monomial basis associated to a maximal cone C in the Gröbner fan of an ideal $J_{k,n}$ representing $A_{k,n}$.

Moreover, every k(n-k)+1-dimensional face of C lies inside the tropicalization of $J_{k,n}$ and induces a toric degeneration of $\mathrm{Gr}_k(\mathbb{C}^n)$ whose central fibre is

$$TV(\Delta(A_{k,n},g_s)).$$

Tropical cluster dual \mathcal{X} -variety

There exists a tropical cluster variety $\mathcal{X}^{\mathsf{trop}}_{2,5}(\mathbb{Z}) := \bigcup_{s \; \mathsf{triang.} \; \mathsf{of} \; \mathsf{5}\text{-}\mathsf{gon}} M_s$ where $M_s = \mathbb{Z}^7$ with free generating set $\{f_{ij}, \overline{ij} \in s\}$ and glued along bijections defined by certain shearing:

$$M_{\{f_{13},f_{14},f_{12},\dots,f_{45}\}} \bigcup_{\substack{f_{24}=f_{23}+f_{14}-f_{13}\\T_{13}(m)=m+\max\{m_{13},0\}(f_{12}+f_{34}-f_{23}-f_{14})}} M_{\{f_{24},f_{14},f_{12},\dots,f_{45}\}}$$

For each s we may identify non-canonically $\mathcal{X}^{\mathsf{trop}}_{2,5}(\mathbb{Z}) \equiv_{s} M$.

[GHKK]/[Marsh–Scott]/[Shen–Weng] Elements of the ϑ -basis for $A_{k,n}$ are indexed by points in a "cone" $\Xi \subset \mathcal{X}_{k,n}^{\operatorname{trop}}(\mathbb{Z})$:

$$\begin{array}{ccc} (\overline{\mathcal{A}}_{k,n},D) & (\mathcal{X}_{k,n},W:\mathcal{X}_{k,n}\to\mathbb{C}) \\ \vartheta\text{-basis of } A_{k,n} & \Xi:=\{W^{\operatorname{trop}}(x)\geq 0\}\subset \mathcal{X}_{k,n}^{\operatorname{trop}}(\mathbb{Z}) \end{array}$$

Wall&chamber structure and the g-fan

Pulling back the positive orthants of each copy of $M_{\mathbb{R}}$ along the shears T'_{ij} s yields a wall and chamber structure in $\mathcal{X}^{\mathrm{trop}}_{2,5}(\mathbb{R})$:

It contains a full-dimensional simplicial fan known as the *g-fan*:

maximal simplicial cones \leftrightarrow seeds primitive ray generators \leftrightarrow g-vectors of cluster variables

NO bodies for compactificatins of cluster varieties

Theorem (B.-Cheung-Magee-Nájera Chávez)

There exists a "convex" set $\Delta_{BL}(A_{k,n}) \subset \mathcal{X}_{k,n}^{trop}(\mathbb{R})$ independent of s:

$$\Delta_{BL}(A_{k,n}) \equiv_s \Delta(A_{k,n}, g_s).$$

Proposition (Escobar-Harada, B.-Mohammadi-Nájera Chávez)

The piecewise-linear maps between two Newton–Okounkov polytopes $\Delta(A_{2,n},g_s)$ and $\Delta(A_{2,n},g_{s'})$ coincide with Escobar–Harada's *algebraic wall-crossing* for Newton–Okounkov polytopes arising from adjacent maximal prime cones in the tropicalization of $\operatorname{Gr}_2(\mathbb{C}^n)$.

Broken line convexity

In $\mathcal{X}_{k,n}^{\mathrm{trop}}(\mathbb{R})$ we don't have straight lines, but piece-wise linear *broken lines*.

[Cheung–Magee–Nájera Chávez] introduce broken line convexity: a closed set $S \subset \mathcal{X}_{k,n}^{\mathrm{trop}}(\mathbb{R})$ is broken line convex iff $\forall a,b \in S$ and any broken line segment ℓ between a,b we have $\ell \subset S$.

Lemma (Cheung-Magee-Nájera Chávez)

Under the identification $\mathcal{X}_{k,n}^{trop}(\mathbb{R}) \equiv_s M_{\mathbb{R}}$ every broken line convex set is a convex set.

Intrinsic Newton-Okounkov body

For $f \in A_{k,n}$ we have $f = \sum c_m \vartheta_m$. Define

$$\mathsf{New}_{\vartheta}(f) := \mathsf{conv}_{BL}(m \in \mathcal{X}^{\mathsf{trop}}_{k,n}(\mathbb{Z}) : c_m \neq 0) \subset \mathcal{X}^{\mathsf{trop}}_{k,n}(\mathbb{R})$$

Then the intrinsic Newton-Okounkov body is

$$\Delta_{BL}(A_{k,n}) = \operatorname{conv}_{BL}\left(\bigcup_{i \geq 1} \frac{\operatorname{New}_{\vartheta}(f)}{i} : f \in (A_{k,n})_i\right).$$

Corollary (B.-Cheung-Magee-Nájera Chávez)

For every seed s we have

$$\Delta(A_{k,n},g_s)=\mathsf{conv}_{BL}\left(g_s(p_I):I\in{[n]\choose k}\right)$$

In particular, $\Delta(A_{k,n}, g_s)$ is a rational polytope with integral vertices of form $g_s(p_l)$, and (depending on s) additional rational vertices in walls.

References

- A D. Anderson. Okounkov bodies and toric degenerations. Math. Ann. 356, No. 3, 1183-1202 (2013).
- BCMN L. Bossinger, M. Cheung, T. Magee, A. Nájera Chávez. On cluster duality fo Grassmannians, in preparation (2021)
 - BMN L. Bossinger, F. Mohammadi, A. Nájera Chávez, Gröbner degenerations of Grassmannians and universal cluster algebras. SIGMA 17, 059 (2021)
 - CMN M. Cheung, T. Magee, A. Nájera Chávez. Compactifications of cluster varieties and convexity. Int. Mat. Res. Not., rnab030 (2021)
 - EH L. Escobar, M. Harada. Wall-crossing for Newton-Okounkov bodies and the tropical Grass- mannian. Int. Math. Research Notices. rnaa230 (2020)
- GHKK M. Gross, P. Hacking, S. Keel, M. Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc. 31, 2 497-608 (2018)
 - KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292-336 (2019)
 - MS B. Marsh, J. Scott. Twists of Plucker Coordinates as Dimer Partition Functions. Commun. Math. Phys. 341, 821-884 (2016)
 - Scott J. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380.
 - SW L. Shen, D. Weng. Cyclic Sieving and Cluster Duality of Grassmannian SIGMA 16, 067 (2020)