Families of Gröbner degenerations

Lara Bossinger

Universidad Nacional Autónoma de México, Oaxaca

joint work in progress with F. Mohammadi and A. Nájera Chávez

May 28th 2020

Overview

- O Motivation
- 2 Review on Gröbner theory
- Construction and Main Theorem
- Application I: universal coefficients for cluster algebras
- O Application II: Toric families

Motivation

Understand how different toric degenerations of a projective variety are related.

Slogan: Knowing all possible toric degenerations of a variety is equivalent to knowing its mirror dual variety.

Today: understand those toric degenerations of a polarized projective variety that *"share a common basis"*.

Initial ideals

Let
$$f = \sum_{\alpha_1} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}[x_1, \dots, x_n]$$
 with $c_{\alpha} \in \mathbb{C}$, $\alpha \in \mathbb{Z}_{\geq 0}^n$ and $\mathbf{x}^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

For $w \in \mathbb{R}^n$ we define its *initial form with respect to w* as

$$\operatorname{in}_w(f) := \sum_{w \cdot eta = \min_{c lpha
eq 0} \{w \cdot lpha\}} c_eta \mathbf{x}^eta.$$

For $J \subset \mathbb{C}[x_1, \ldots, x_n]$ an ideal we define its *initial ideal with* respect to w as $in_w(J) := \langle in_w(f) : f \in J \rangle$.

Example

For
$$f = x_1 x_2^2 + x_1^2 + x_2 \in \mathbb{C}[x_1, x_2]$$
 and $w = (1, 0)$ we compute
in $_w(f) = x_2$.

Families of Gröbner degenerations

Gröbner fan and Gröbner degenerations

Definition

For an ideal $J \subset \mathbb{C}[x_1, \ldots, x_n]$ its *Gröbner fan* GF(J) is \mathbb{R}^n with fan structure defined by

$$v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(J) = \operatorname{in}_{w}(J).$$

<u>Notation</u>: $in_C(J) := in_w(J)$ for any $w \in C^\circ$.

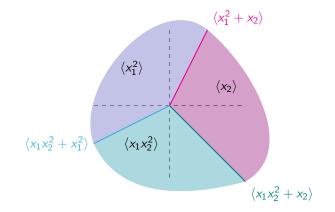
Every open cone $C^{\circ} \in GF(J)$ defines a *Gröbner degeneration*

$$\pi:\mathcal{V}\to\mathbb{A}^1$$

with
$$\pi^{-1}(t) \cong V(J)$$
 for $t \neq 0$ and $\pi^{-1}(0) = V(\operatorname{in}_{\mathcal{C}}(J))$.

Example

Take $I = \langle x_1 x_2^2 + x_1^2 + x_2 \rangle \subset \mathbb{C}[x_1, x_2]$. Then GF(I) is \mathbb{R}^2 with the fan structure:



Let
$$A := \mathbb{C}[x_1, \ldots, x_n]/J$$
 and $A_{\tau} := \mathbb{C}[x_1, \ldots, x_n]/in_{\tau}(J)$ for $\tau \in GF(J)$.

Fix a maximal cone $C \in GF(J)$, then the ideal $in_C(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \operatorname{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial basis*.

In particular, $\mathbb{B}_{\mathcal{C}} := \mathbb{B}_{\mathcal{C},\{0\}}$ is a vector space basis for $\mathcal{A} = \mathcal{A}_{\{0\}}$.

Let
$$A := \mathbb{C}[x_1, \ldots, x_n]/J$$
 and $A_{\tau} := \mathbb{C}[x_1, \ldots, x_n]/in_{\tau}(J)$ for $\tau \in GF(J)$.

Fix a maximal cone $C \in GF(J)$, then the ideal $in_C(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \operatorname{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial basis*.

In particular, $\mathbb{B}_{\mathcal{C}} := \mathbb{B}_{\mathcal{C},\{0\}}$ is a vector space basis for $\mathcal{A} = \mathcal{A}_{\{0\}}$.

Let
$$A := \mathbb{C}[x_1, \ldots, x_n]/J$$
 and $A_{\tau} := \mathbb{C}[x_1, \ldots, x_n]/in_{\tau}(J)$ for $\tau \in GF(J)$.

Fix a maximal cone $C \in GF(J)$, then the ideal $in_C(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \operatorname{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial basis*.

In particular, $\mathbb{B}_{\mathcal{C}} := \mathbb{B}_{\mathcal{C},\{0\}}$ is a vector space basis for $\mathcal{A} = \mathcal{A}_{\{0\}}$.

Let
$$A := \mathbb{C}[x_1, \ldots, x_n]/J$$
 and $A_{\tau} := \mathbb{C}[x_1, \ldots, x_n]/in_{\tau}(J)$ for $\tau \in GF(J)$.

Fix a maximal cone $C \in GF(J)$, then the ideal $in_C(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \operatorname{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial basis*.

In particular, $\mathbb{B}_{\mathcal{C}} := \mathbb{B}_{\mathcal{C},\{0\}}$ is a vector space basis for $\mathcal{A} = \mathcal{A}_{\{0\}}$.

Let
$$A := \mathbb{C}[x_1, \ldots, x_n]/J$$
 and $A_{\tau} := \mathbb{C}[x_1, \ldots, x_n]/in_{\tau}(J)$ for $\tau \in GF(J)$.

Fix a maximal cone $C \in GF(J)$, then the ideal in_C(J) is generated by monomials. For every face $\tau \subseteq C$ we define

$$\mathbb{B}_{C,\tau} := \{ \bar{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \mathrm{in}_{C}(J) \}.$$

Then $\mathbb{B}_{C,\tau}$ is a vector space basis for A_{τ} called *standard monomial* basis¹.

In particular, $\mathbb{B}_C := \mathbb{B}_{C,\{0\}}$ is a vector space basis for $A = A_{\{0\}}$.

 \rightsquigarrow All degenerations $\{V(in_{\tau}(J)) : \tau \subseteq C\}$ share one standard monomial basis!

¹Due to Lakshmibai–Seshadri, generalized by Sturmfels–White

Families of Gröbner degenerations

Family of ideals

Let $C \in GF(J)$ be a maximal cone and choose r_1, \ldots, r_m ray generators of C. Let **r** be the matrix with rows r_1, \ldots, r_m . Define for $f = \sum_{\alpha \in \mathbb{Z}_{>0}^n} c_{\alpha} \mathbf{x}^{\alpha} \in J$ its *lift*

$$\tilde{f} := f(\mathbf{t}^{\mathbf{r}\cdot\mathbf{e}_1}x_1,\ldots,\mathbf{t}^{\mathbf{r}\cdot\mathbf{e}_n}x_n)\prod_{i=1}^m t_i^{-\min\{r_i\cdot\alpha|c_\alpha\neq 0\}}.$$

Definition/Proposition

We define the *lifted ideal*

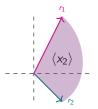
$$J_{\mathcal{C}}(\mathbf{t}) := \langle \tilde{g}_1, \ldots, \tilde{g}_s \rangle \subset \mathbb{C}[t_1, \ldots, t_m][x_1, \ldots, x_n]$$

where $\{g_1, \ldots, g_s\}$ is a reduced Gröbner basis for J and C.

Example

Take $f = x_1x_2^2 + x_1^2 + x_2 \in \mathbb{C}[x_1, x_2]$ and consider in $GF(\langle f \rangle)$ the maximal cone *C* spanned by $r_1 := (1 \ 2)$ and $r_2 := (1 \ -1)$. We compute

$$\begin{split} \tilde{f}(t_1,t_2) &= f(t_1t_2x_1,t_1^2t_2^{-1}x_2)t_1^{-2}t_2^1 \\ &= t_1^3x_1x_2^2 + t_2^3x_1^2 + x_2 \end{split}$$



•
$$\tilde{f}(0,0) = x_2 = in_C(f)$$
,
• $\tilde{f}(1,0) = x_1x_2^2 + x_2 = in_{r_1}(f)$,
• $\tilde{f}(0,1) = x_1^2 + x_2 = in_{r_2}(f)$,
• $\tilde{f}(1,1) = f$.

Main result

Let
$$\mathcal{A}_C := \mathbb{C}[t_1, \ldots, t_m][x_1, \ldots, x_n]/J_C(\mathbf{t}).$$

Theorem (B.–Mohammadi–Nájera Chávez)

The algebra \mathcal{A}_{C} is a flat $\mathbb{C}[t_{1}, \ldots, t_{m}]$ -module. Moreover,

 $\pi_{\mathcal{C}}: Spec(\mathcal{A}_{\mathcal{C}}) \to \mathbb{A}^m$

is a flat family with generic fiber V(J) and special fibers isomorphic to $V(in_{\tau}(J))$ for every face $\tau \subseteq C$.

Example

$$\mathcal{A}_{C} = \mathbb{C}[t_{1}, t_{2}][x_{1}, x_{2}]/\langle t_{1}^{3}x_{1}x_{2}^{2} + t_{2}^{3}x_{1}^{2} + x_{2}\rangle.$$

GF(J) contains a subfan of dimension dim_{Krull} A called the *tropicalization of J*

 $\operatorname{Trop}(J) := \{ w \in \mathbb{R}^n \mid \operatorname{in}_w(J) \not\supseteq \operatorname{monomials} \}.$

Corollary (B.–Mohammadi–Nájera Chávez)

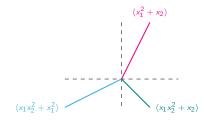
Consider the fan $\Sigma := C \cap Trop(J)$. If there exists $\tau \in \Sigma$ with $in_{\tau}(J)$ binomial and prime, then the family

 $\pi_{\mathcal{C}}: Spec(\mathcal{A}_{\mathcal{C}}) \to \mathbb{A}^m$

contains toric fibers isomorphic to $V(in_{\tau}(J))$.

Example

For $J = \langle x_1 x_2^2 + x_1^2 + x_2 \rangle \subset \mathbb{C}[x_1, x_2]$ the tropicalization Trop(*J*) consists of three one-dimensional cones:



For $C = \langle r_1, r_2 \rangle$ we have $\Sigma = \langle r_1 \rangle \cup \langle r_2 \rangle$ and $V(in_{\langle r_1 \rangle}(J))$ is toric.

Application I: universal coefficients for cluster algebras

A cluster algebra² $A \subset \mathbb{C}(x_1, \ldots, x_n)$ is a commutative ring defined recursively by

 seeds: maximal sets of algebraically independent algebra generators,
 its alements are called *cluster variables*;

its elements are called *cluster variables*;

Implication: an operation to create a new seed from a given one by replacing one element.

²Defined by Fomin–Zelevinsky.

Consider the Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ with Plücker embedding³. Then its homogeneous coordinate ring

$$A_{k,n} = \mathbb{C}\left[p_J \mid J = \{j_1, \ldots, j_k\} \subset [n]\right] / I_{k,n}$$

is a cluster algebra [Scott06].

 $k \leq 2$ Plücker coordinates = cluster variables.

 $k \geq 3$ Plücker coordinates \subsetneq cluster variables.

k = 2 or $k = 3, n \in \{6, 7, 8\}$ finitely many seeds;

otherwise infinitely many seeds.

³Assume
$$k \leq \lfloor \frac{n}{2} \rfloor$$

Families of Gröbner degenerations

Application I: toric degenerations

Fix a seed *s*, then *A* can be endowed with *principal coefficients at the seed s*

$$A_s^{\mathrm{prin}} \subset \mathbb{C}[t_1,\ldots,t_n](x_1,\ldots,x_n).$$

Under some technical assumptions:

- A^{prin}_s has a C[t₁,..., t_n]-basis called θ-basis⁴, which is independent of s;
- if A is the homogeneous coordinate ring of a projective variety X then A_s^{prin} defines a toric degeneration of X to X_{s,0}.

 \rightsquigarrow all these degenerations share the ϑ -basis!

⁴Due to Gross–Hacking–Keel–Kontsevich.

Now assume A has finitely many seeds.

Algebraically, we can endow A with *universal coefficients*:

$$A^{\mathrm{univ}} \subset \mathbb{C}[t_1,\ldots,t_{\#\mathrm{cv}}](x_1,\ldots,x_n),$$

where #cv is the number of cluster variables. Moreover, we have a unique *specialization map* for every seed *s*:

$$A^{\mathrm{univ}} \to A_s^{\mathrm{prin}}$$

Consider $Gr_k(\mathbb{C}^n)$ for $(k, n) \in \{(2, n), (3, 6)\}$. Then there exists a presentation

$$A_{k,n} \cong \mathbb{C}[\text{cluster variables}]/J_{k,n}.$$

$$\begin{aligned} & \operatorname{Gr}_2(\mathbb{C}^n) \colon \{ \operatorname{cluster variables} \} = \{ \operatorname{Plücker coordinates} \}, \\ & \operatorname{and} \ J_{2,n} = I_{2,n}; \\ & \operatorname{Gr}_3(\mathbb{C}^6) \colon \{ \operatorname{cluster variables} \} = \{ \operatorname{Plücker coordinates}, x, y \}, \\ & \operatorname{and eliminating} \ x \ \operatorname{and} \ y \ \operatorname{from} \ J_{3,6} \ \operatorname{gives} \ I_{3,6}. \end{aligned}$$

Application I: connection to our work

Theorem (B.–Mohammadi–Nájera Chávez)

There exists a unique maximal cone C in the Gröbner fan of $J_{k,n}$ such that

- **()** we have a canonical isomorphism $\mathcal{A}_C \cong \mathcal{A}_{k,n}^{\text{univ}}$;
- **2** the standard monomial basis \mathbb{B}_{C} coincides with the ϑ -basis;
- for every maximal cone τ ∈ C ∩ Trop(J_{k,n}) the variety V(in_τ(J_{k,n})) is toric.

Application II: Toric families

Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be a homogeneous prime ideal. Assume there exits $\sigma_1, \ldots, \sigma_s$ maximal cones in Trop(*I*) with

• $in_{\sigma_i}(I)$ is toric for all *i*,

σ₁,...,σ_s are faces of one maximal cone C in GF(I).
 Denote by Σ the fan with maximal cones σ₁,...,σ_s.

Theorem (Kaveh–Manon)

There exists a toric family ψ_{Σ} : **Spec**(\mathcal{R}_{Σ}) \rightarrow $TV(\Sigma)$ with generic fiber V(I)and special fibers $V(in_{\sigma_i}(I))$ over every torus fixed point.

Here \mathcal{R}_{Σ} is a flat sheaf of Rees algebras on $TV(\Sigma)$ and $\mathbf{Spec}(\mathcal{R}_{\Sigma})$ a scheme glued from $\mathrm{Spec}(\mathcal{R}_{\Sigma}(U))$ for $U \subset TV(\Sigma)$ open.

Application II: Connection to our work

Can apply our construction to I and $C \rightsquigarrow \pi_C : \operatorname{Spec}(\mathcal{A}_C) \to \mathbb{A}^m$.

Corollary (B–Mohammadi–Nájera Chávez)

Let Σ be as above, then for every $p \in TV(\Sigma)$ there exists $a \in \mathbb{A}^m$ such that

$$\psi_{\Sigma}^{-1}(p) \cong \pi_{C}^{-1}(a) \cong V(in_{\tau}(I))$$

for some $\tau \in \Sigma \subset C \cap Trop(I)$. Moreover, if C is simplicial we have a natural inclusion $TV(\Sigma) \hookrightarrow \mathbb{A}^m$, so

$$\begin{array}{c} \operatorname{Spec}(\mathcal{R}_{\Sigma}) & \longleftrightarrow \psi_{\Sigma}^{-1}(p) \cong \pi_{C}^{-1}(\iota(p)) & \longleftrightarrow \operatorname{Spec}(\mathcal{A}_{C}) \\ & \psi_{\Sigma} \downarrow & & \downarrow \\ & & \downarrow \\ & \mathcal{T}V(\Sigma) & \longleftarrow & \mathbb{A}^{m} \end{array}$$

There are two flat families

 $\psi_{\Sigma} : \operatorname{Spec}(\mathcal{R}_{\Sigma}) \to TV(\Sigma) \quad \text{and} \quad \pi_{\mathcal{C}} : \operatorname{Spec}(\mathcal{A}_{\mathcal{C}}) \to \mathbb{A}^{m},$

both degenerate V(I) to toric varieties $V(in_{\sigma_i}(I))$ that "share a common basis".

- ψ_Σ has nice geometric properties (*T*-equivariant, reduced and irreducible fibers), *but* the construction is not very explicit;
- π_C does not have as nice geometric properties, *but* the construction is simple and well-adapted for computations.

Thank you!

References

- BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras in preparation, 2020.
- FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.
- FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143 (2007), no. 1, 112–164.
- GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.
 - KM19 Kiumars Kaveh and Christopher Manon. Toric bundles, valuations, and tropical geometry over semifield of piecewise linear functions. arXiv preprint arXiv:1907.00543 [math.AG], 2019.
 - Sco06 Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380.
 - Real4 Nathan Reading. Universal geometric cluster algebras. Math. Z. 277(1-2):499-547, 2014