Newton-Okounkov bodies for cluster varieties

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

Universidad Nacional Autónoma de México, IM-Oaxaca

Online Representation Theory Seminar, June 18 2021

Let $X = G/P \hookrightarrow \mathbb{P}(V_{\lambda})$ a flag variety and $R = \bigoplus_{\ell \ge 0} V_{\ell\lambda}^*$ its homogeneous coordinate ring.

Let $X = G/P \hookrightarrow \mathbb{P}(V_{\lambda})$ a flag variety and $R = \bigoplus_{\ell \ge 0} V_{\ell\lambda}^*$ its homogeneous coordinate ring.

Given a valuation $\nu : R \to \mathbb{Z}^{\dim X+1}$ with finitely generated image of rank dim X + 1 and its *Newton–Okounkov polytope*

$$\Delta(\nu, R) := \overline{\operatorname{conv} \bigcup_{i \ge 1} \left\{ \frac{\nu(f)}{\ell} : f \in V_{\ell\lambda}^* \right\}}$$

we get a *toric degeneration* of X to X_{Δ} .

Let $X = G/P \hookrightarrow \mathbb{P}(V_{\lambda})$ a flag variety and $R = \bigoplus_{\ell \ge 0} V_{\ell\lambda}^*$ its homogeneous coordinate ring.

Given a valuation $\nu : R \to \mathbb{Z}^{\dim X+1}$ with finitely generated image of rank dim X + 1 and its *Newton–Okounkov polytope*

$$\Delta(
u, R) := \overline{\operatorname{conv} igcup_{i \geq 1} \left\{ rac{
u(f)}{\ell} : f \in V^*_{\ell\lambda}
ight\}}$$

we get a *toric degeneration* of X to X_{Δ} .

Many polytopes parametrizing bases of representations arise this way, like Gelfand–Zetlin polytope, string polytopes, FFLV polytopes, ...

Further, many of the mentioned polytopes are isomorphic to polytopes arising from *tropicalized potentials* on cluster varieties contained in *X*.

Let $X = G/P \hookrightarrow \mathbb{P}(V_{\lambda})$ a flag variety and $R = \bigoplus_{\ell \ge 0} V_{\ell\lambda}^*$ its homogeneous coordinate ring.

Given a valuation $\nu : R \to \mathbb{Z}^{\dim X+1}$ with finitely generated image of rank dim X + 1 and its *Newton–Okounkov polytope*

$$\Delta(
u, R) := \overline{\operatorname{conv} igcup_{i \geq 1} \left\{ rac{
u(f)}{\ell} : f \in V^*_{\ell\lambda}
ight\}}$$

we get a *toric degeneration* of X to X_{Δ} .

Many polytopes parametrizing bases of representations arise this way, like Gelfand–Zetlin polytope, string polytopes, FFLV polytopes, ...

Further, many of the mentioned polytopes are isomorphic to polytopes arising from *tropicalized potentials* on cluster varieties contained in *X*.

<u>Aim</u>: Develop the framework of Newton–Okounkov bodies for cluster varieties that includes all the representation theoretic examples.

Overview

Cluster varieties

- Tropicalization
- Fock–Goncharov conjecture
- Wall and chamber structure

Ompactifications

- Potentials
- Intrinsic Newton–Okounkov bodies
 - Broken line convexity
- Grassmannians

Part I: Cluster varieties

 $N \cong \mathbb{Z}^n$ lattice, $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$ skew-symmetric bilinear form, $M = N^*$

$$\mu_{(n,m)}: T_N := N \otimes_{\mathbb{Z}} \mathbb{C}^* \dashrightarrow T_N$$
 called *mutation*
 $\mu_{(n,m)}^*(z^{m'}) = z^{m'}(1+z^m)^{m'(n)}.$

Part I: Cluster varieties

 $N \cong \mathbb{Z}^n$ lattice, $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$ skew-symmetric bilinear form, $M = N^*$

$$\begin{array}{rcl} \mu_{(n,m)}: \ T_N := N \otimes_{\mathbb{Z}} \mathbb{C}^* & \dashrightarrow & T_N & \text{called mutation} \\ \mu_{(n,m)}^*(z^{m'}) & = & z^{m'}(1+z^m)^{m'(n)}. \end{array}$$

Let $s_0 = \{e_1, \ldots, e_n\}$ basis of N (called a *seed*) and $v_i := \{e_i, \cdot\} \in M$ <u>Exercise</u>: Tropicalization of $\mu_{(-e_k,v_k)}$ to $\mu_k^{\mathsf{T}} : \mathcal{T}_N(\mathbb{Z}^{\mathsf{T}}) = N \to N$ is a pseudoreflection and $\mu_k^{\mathsf{T}}(s_0)$ is a new seed.

Part I: Cluster varieties

 $N \cong \mathbb{Z}^n$ lattice, $\{\cdot, \cdot\} : N \times N \to \mathbb{Z}$ skew-symmetric bilinear form, $M = N^*$

$$\mu_{(n,m)}: T_N := N \otimes_{\mathbb{Z}} \mathbb{C}^* \dashrightarrow T_N$$
 called *mutation*
 $\mu_{(n,m)}^*(z^{m'}) = z^{m'}(1+z^m)^{m'(n)}.$

Let $s_0 = \{e_1, \ldots, e_n\}$ basis of N (called a *seed*) and $v_i := \{e_i, \cdot\} \in M$ <u>Exercise</u>: Tropicalization of $\mu_{(-e_k,v_k)}$ to $\mu_k^{\mathsf{T}} : T_N(\mathbb{Z}^{\mathsf{T}}) = N \to N$ is a pseudoreflection and $\mu_k^{\mathsf{T}}(s_0)$ is a new seed.

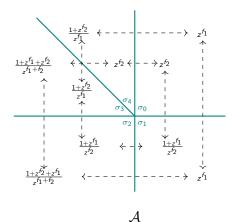
A-cluster varieties are the schemes

$$\begin{array}{lll} \mathcal{A} & := & \bigcup_{s \sim s_0} T_{N,s} & \text{glued by mutations } \mu_{(-e_k,v_k)} \\ \\ \mathcal{X} & := & \bigcup_{s \sim s_0} T_{M,s} & \text{glued by mutations } \mu_{(v_k,e_k)} \end{array}$$

 \rightsquigarrow dual cluster varieties \mathcal{A} and \mathcal{X} generalize dual tori T_N and T_M .

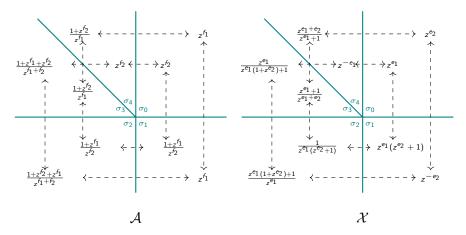
Example: \mathcal{A} and \mathcal{X} in case A_2

 $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $\{e_1, e_2\}$. Then \mathcal{A} and \mathcal{X} are glued from 5 tori each with local coordinates:



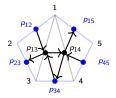
Example: \mathcal{A} and \mathcal{X} in case A_2

 $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $\{e_1, e_2\}$. Then \mathcal{A} and \mathcal{X} are glued from 5 tori each with local coordinates:



Example: cluster variety inside $Gr_{2,n}$

Let $N = \mathbb{Z}^{2(n-2)+1}$ with seed basis $\{e_{12}, \ldots, e_{1n}, e_{23}, e_{34}, \ldots, e_{n-1,n}\}$ and all $e_{i,i+1}$ frozen. The form $\{\cdot, \cdot\}$ is given by



If we identify $z^{f_{ij}} = p_{ij}$ then $\mathcal{A} \subset Gr_2(\mathbb{C}^n)$. More precisely,

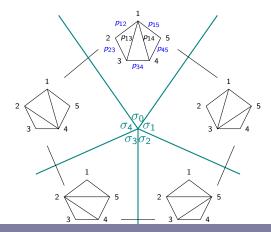
$$\mathcal{A} = \widetilde{\operatorname{Gr}_2(\mathbb{C}^n)} \setminus \bigcup_{i=1}^{n-1} \{ p_{i,i+1} = 0 \}.$$

Example: cluster variety inside Gr_{2,5}

In this case, we have a bijection between

seeds \leftrightarrow triangulations of an *n*-gon

The cluster variables $z^{f_{ij}}$ are Plücker coordinates and the pull-back of the A-cluster mutation on those corresponds to three-term Plücker relations.



Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

Tropicalizing cluster varieties

<u>Notice</u>: Mutation $\mu^*_{(n,m)}(z^{m'}) = z^{m'}(1+z^m)^{m'(n)}$ is substraction-free \Rightarrow may consider cluster varieties over *semifields*.

For \mathbb{P} a semifield we have $T_N(\mathbb{P}) = N \otimes_{\mathbb{Z}} \mathbb{P}$.

Tropicalizing cluster varieties

<u>Notice</u>: Mutation $\mu^*_{(n,m)}(z^{m'}) = z^{m'}(1+z^m)^{m'(n)}$ is substraction-free \Rightarrow may consider cluster varieties over *semifields*.

For \mathbb{P} a semifield we have $T_N(\mathbb{P}) = N \otimes_{\mathbb{Z}} \mathbb{P}$.

 \Rightarrow every seed s gives non-canonical identifications

 $\mathcal{A}(\mathbb{P})|_{\mathcal{T}_{N,s}} \equiv N \otimes_{\mathbb{Z}} \mathbb{P} \quad \text{and} \quad \mathcal{X}(\mathbb{P})|_{\mathcal{T}_{M,s}} \equiv M \otimes_{\mathbb{Z}} \mathbb{P}$

Tropicalizing cluster varieties

<u>Notice</u>: Mutation $\mu^*_{(n,m)}(z^{m'}) = z^{m'}(1+z^m)^{m'(n)}$ is substraction-free \Rightarrow may consider cluster varieties over *semifields*.

For \mathbb{P} a semifield we have $T_N(\mathbb{P}) = N \otimes_{\mathbb{Z}} \mathbb{P}$.

 \Rightarrow every seed s gives non-canonical identifications

$$\mathcal{A}(\mathbb{P})|_{\mathcal{T}_{N,s}} \equiv N \otimes_{\mathbb{Z}} \mathbb{P} \quad \text{and} \quad \mathcal{X}(\mathbb{P})|_{\mathcal{T}_{M,s}} \equiv M \otimes_{\mathbb{Z}} \mathbb{P}$$

Definition

The (integer/rational/real) tropicalization of a cluster variety is

$$\mathcal{A}(\mathbb{Z}^{T})/\mathcal{A}(\mathbb{Q}^{T})/\mathcal{A}(\mathbb{R}^{T})$$
 resp. $\mathcal{X}(\mathbb{Z}^{T})/\mathcal{X}(\mathbb{Q}^{T})/\mathcal{X}(\mathbb{R}^{T}),$

where $\mathbb{Z}^{\mathcal{T}} = (\mathbb{Z}, \max, +)/\mathbb{Q}^{\mathcal{T}} = (\mathbb{Q}, \max, +)/\mathbb{R}^{\mathcal{T}} = (\mathbb{R}, \max, +).$

Cluster duality and the Fock–Goncharov conjecture

<u>Recall</u>: T_N has dual torus T_M and $T_M(\mathbb{Z}^T) = M \otimes_{\mathbb{Z}} \mathbb{Z} = M$ parametrizes a basis of regular functions $\Gamma(T_N, \mathcal{O}_{T_N}) \rightsquigarrow$ characters of T_N

Cluster duality and the Fock–Goncharov conjecture

<u>Recall</u>: T_N has dual torus T_M and $T_M(\mathbb{Z}^T) = M \otimes_{\mathbb{Z}} \mathbb{Z} = M$ parametrizes a basis of regular functions $\Gamma(T_N, \mathcal{O}_{T_N}) \longrightarrow$ characters of T_N

Fock–Goncharov conjecture

The tropical cluster variety $\mathcal{X}(\mathbb{Z}^T)$, respectively $\mathcal{A}(\mathbb{Z}^T)$, parametrizes a basis for $\Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$, respectively $\Gamma(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$.

Cluster duality and the Fock–Goncharov conjecture

<u>Recall</u>: T_N has dual torus T_M and $T_M(\mathbb{Z}^T) = M \otimes_{\mathbb{Z}} \mathbb{Z} = M$ parametrizes a basis of regular functions $\Gamma(T_N, \mathcal{O}_{T_N}) \longrightarrow$ characters of T_N

Fock–Goncharov conjecture

The tropical cluster variety $\mathcal{X}(\mathbb{Z}^T)$, respectively $\mathcal{A}(\mathbb{Z}^T)$, parametrizes a basis for $\Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$, respectively $\Gamma(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$.

false in general (counter examples due to Gross-Hacking-Keel), true in interesting examples like cluster varieties inside the Grassmannians, flag varieties, configuration space.

Assumption: the full Fock–Goncharov conjecture holds for \mathcal{A} , that is $\overline{\Theta} := \{\vartheta_m : m \in \mathcal{X}(\mathbb{Z}^T)\}$ is a basis for $\Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$, called *theta basis*.

Wall and chamber structure on $\mathcal{X}(\mathbb{R}^{T})$

<u>Fact</u>: for every seed $s' = (e'_1, \ldots, e'_n)$ with dual basis $f'_1, \ldots, f'_n \in M$ we have $z^{m_1 f'_1 + \cdots + m_n f'_n} \in \Theta$ with $m_i \in \mathbb{N}$ called *cluster monomials* and

$$g_{s'}(z^{m_1f'_1+\cdots+m_nf'_n})=m_1f'_1+\cdots+m_nf'_n$$

¹conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

Wall and chamber structure on $\mathcal{X}(\mathbb{R}^{T})$

<u>Fact</u>: for every seed $s' = (e'_1, \ldots, e'_n)$ with dual basis $f'_1, \ldots, f'_n \in M$ we have $z^{m_1 f'_1 + \cdots + m_n f'_n} \in \Theta$ with $m_i \in \mathbb{N}$ called *cluster monomials* and

$$g_{s'}(z^{m_1f'_1+\cdots+m_nf'_n})=m_1f'_1+\cdots+m_nf'_n$$

Let $\mathcal{G}_{s_0}(s') = \mu^*_{s_0,s'}(\langle f'_1, \dots, f'_n \rangle_{\geq 0})$ then $\bigcup_{s' \sim s_0} \mathcal{G}_{s_0}(s')$ is a simplicial fan¹

¹conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

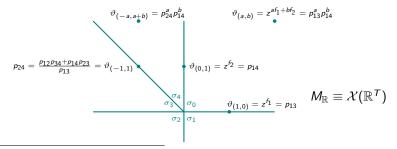
Wall and chamber structure on $\mathcal{X}(\mathbb{R}^{\,\prime})$

<u>Fact</u>: for every seed $s' = (e'_1, \ldots, e'_n)$ with dual basis $f'_1, \ldots, f'_n \in M$ we have $z^{m_1 f'_1 + \cdots + m_n f'_n} \in \Theta$ with $m_i \in \mathbb{N}$ called *cluster monomials* and

$$g_{s'}(z^{m_1f'_1+\cdots+m_nf'_n})=m_1f'_1+\cdots+m_nf'_n$$

Let $\mathcal{G}_{s_0}(s') = \mu^*_{s_0,s'}(\langle f'_1, \dots, f'_n \rangle_{\geq 0})$ then $\bigcup_{s' \sim s_0} \mathcal{G}_{s_0}(s')$ is a simplicial fan¹

Example: In case of $\mathcal{A} \subset \text{Gr}_2(\mathbb{C}^5)$, so $N = \mathbb{Z}^{\binom{5}{2}}$, consider a slice of M of points $af_{13} + bf_{14}$, $a, b \in \mathbb{Z}$:



¹conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

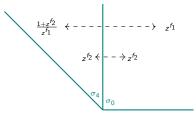
Part II: Compactifying A-cluster varieties

In the initial data $s_0 = \{e_1, \ldots, e_n\} \subset N$ declare e_k, \ldots, e_n frozen, i.e. never mutate at e_k, \ldots, e_n , then allow vanishing of z^{f_k}, \ldots, z^{f_n} .

Part II: Compactifying A-cluster varieties

In the initial data $s_0 = \{e_1, \ldots, e_n\} \subset N$ declare e_k, \ldots, e_n frozen, i.e. never mutate at e_k, \ldots, e_n , then allow vanishing of z^{f_k}, \ldots, z^{f_n} .

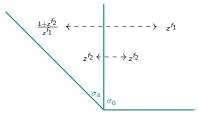
Example: $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $\{e_1, e_2\}$ and e_2 frozen. Then \mathcal{A} is glued from 2 tori each with local coordinates:



Part II: Compactifying A-cluster varieties

In the initial data $s_0 = \{e_1, \ldots, e_n\} \subset N$ declare e_k, \ldots, e_n frozen, i.e. never mutate at e_k, \ldots, e_n , then allow vanishing of z^{f_k}, \ldots, z^{f_n} .

Example: $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $\{e_1, e_2\}$ and e_2 frozen. Then \mathcal{A} is glued from 2 tori each with local coordinates:



The (partial) compactification $\overline{\mathcal{A}}$ is glued from two copies of $\mathbb{C}^* \times \mathbb{C}$ along the biggest open subset where mutation is still defined.

 $D := \overline{\mathcal{A}} \setminus \mathcal{A}$ is called the *boundary divisor*.

In the spirit of mirror symmetry the compactification $\overline{\mathcal{A}}$ of \mathcal{A} should induce a *potential function* on the dual \mathcal{X} cluster variety

<u>Recall</u>: $D = D_k \cup \cdots \cup D_n$ with $D_i = \{z^{f_i} = 0\}$.

In the spirit of mirror symmetry the compactification $\overline{\mathcal{A}}$ of \mathcal{A} should induce a *potential function* on the dual \mathcal{X} cluster variety

Recall:
$$D = D_k \cup \cdots \cup D_n$$
 with $D_i = \{z^{f_i} = 0\}$.

Mild assumptions \Rightarrow may identify tropical points with divisorial discrete valuations:

$$\operatorname{ord}_{D_i} \longleftrightarrow n_i \in \mathcal{A}(\mathbb{Z}^T) \longleftrightarrow \vartheta_i : \mathcal{X} \to \mathbb{C}$$

Then the ϑ -potential is $W = \vartheta_k + \cdots + \vartheta_n : \mathcal{X} \to \mathbb{C}$.

In the spirit of mirror symmetry the compactification $\overline{\mathcal{A}}$ of \mathcal{A} should induce a *potential function* on the dual \mathcal{X} cluster variety

Recall:
$$D = D_k \cup \cdots \cup D_n$$
 with $D_i = \{z^{f_i} = 0\}$.

Mild assumptions \Rightarrow may identify tropical points with divisorial discrete valuations:

$$\operatorname{ord}_{D_i} \longleftrightarrow n_i \in \mathcal{A}(\mathbb{Z}^T) \longleftrightarrow \vartheta_i : \mathcal{X} \to \mathbb{C}$$

Then the ϑ -potential is $W = \vartheta_k + \cdots + \vartheta_n : \mathcal{X} \to \mathbb{C}$.

Combinatorial hypothesis \Rightarrow for every *i* there exists a seed $s' = (e'_1, \ldots, e'_n)$ and $\vartheta_i|_{T_M, s'} = z^{-e'_i}$.

In the spirit of mirror symmetry the compactification $\overline{\mathcal{A}}$ of \mathcal{A} should induce a *potential function* on the dual \mathcal{X} cluster variety

Recall:
$$D = D_k \cup \cdots \cup D_n$$
 with $D_i = \{z^{f_i} = 0\}$.

Mild assumptions \Rightarrow may identify tropical points with divisorial discrete valuations:

$$\operatorname{ord}_{D_i} \longleftrightarrow n_i \in \mathcal{A}(\mathbb{Z}^T) \longleftrightarrow \vartheta_i : \mathcal{X} \to \mathbb{C}$$

Then the ϑ -potential is $W = \vartheta_k + \cdots + \vartheta_n : \mathcal{X} \to \mathbb{C}$.

Combinatorial hypothesis \Rightarrow for every *i* there exists a seed $s' = (e'_1, \dots, e'_n)$ and $\vartheta_i|_{\mathcal{T}_M, s'} = z^{-e'_i}$. <u>Example:</u> $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $s_0 = \{e_1, e_2\}$ and e_2 frozen we have $D = \{z^{f_2} = 0\}$ and $W|_{\mathcal{T}_M, s_1} = \vartheta_1|_{\mathcal{T}_M, s_2} = z^{-e_2} + z^{-e_1-e_2}$.

In the spirit of mirror symmetry the compactification $\overline{\mathcal{A}}$ of \mathcal{A} should induce a *potential function* on the dual \mathcal{X} cluster variety

Recall:
$$D = D_k \cup \cdots \cup D_n$$
 with $D_i = \{z^{f_i} = 0\}$.

Mild assumptions \Rightarrow may identify tropical points with divisorial discrete valuations:

$$\operatorname{ord}_{D_i} \longleftrightarrow n_i \in \mathcal{A}(\mathbb{Z}^T) \longleftrightarrow \vartheta_i : \mathcal{X} \to \mathbb{C}$$

Then the ϑ -potential is $W = \vartheta_k + \cdots + \vartheta_n : \mathcal{X} \to \mathbb{C}$.

Combinatorial hypothesis \Rightarrow for every *i* there exists a seed $s' = (e'_1, \dots, e'_n)$ and $\vartheta_i|_{\mathcal{T}_M, s'} = z^{-e'_i}$. Example: $N = \mathbb{Z}^2$ with $\{\cdot, \cdot\}$ given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ for $s_0 = \{e_1, e_2\}$ and e_2 frozen we have $D = \{z^{f_2} = 0\}$ and $W|_{\mathcal{T}_{M, s_0}} = \vartheta_1|_{\mathcal{T}_{M, s_0}} = z^{-e_2} + z^{-e_1-e_2}$. Note: $\mathbf{V} = \{m \in M_{\mathbb{R}} : \langle m, -e_1 \rangle \leq 0, \langle m, -e_1 - e_2 \rangle \leq 0\}$.

Valuations for cluster varieties

<u>Recall</u>: $\mathcal{X}(\mathbb{Z}^T)|_{\mathcal{T}_{M,s}} \equiv M$ and the theta basis $\Theta = \{\vartheta_m : m \in \mathcal{X}(\mathbb{Z}^T)\}.$

Be $(\overline{\mathcal{A}}, D)$ a (partially) compactified cluster variety with theta potential $W : \mathcal{X} \to \mathbb{C}$ and its *tropicalization* $\Xi := \{m \in \mathcal{X}(\mathbb{Z}^T) : W^T(m) \leq 0\}.$

Valuations for cluster varieties

<u>Recall</u>: $\mathcal{X}(\mathbb{Z}^T)|_{\mathcal{T}_{M,s}} \equiv M$ and the theta basis $\Theta = \{\vartheta_m : m \in \mathcal{X}(\mathbb{Z}^T)\}.$

Be $(\overline{\mathcal{A}}, D)$ a (partially) compactified cluster variety with theta potential $W : \mathcal{X} \to \mathbb{C}$ and its *tropicalization* $\Xi := \{m \in \mathcal{X}(\mathbb{Z}^T) : W^T(m) \le 0\}$. Given the combinatorial and mild assumptions, we have

 $\overline{\Theta} := \{ \vartheta_m : m \in \Xi \} \text{ is a basis for } \Gamma(\overline{\mathcal{A}}, \mathcal{O}_{\overline{\mathcal{A}}}).$

Let $\Xi_s := \operatorname{Cone}(\Xi \cap \mathcal{X}(\mathbb{Z}^T)|_{T_{M,s}}) \subset M_{\mathbb{R}}.$

Valuations for cluster varieties

<u>Recall</u>: $\mathcal{X}(\mathbb{Z}^T)|_{\mathcal{T}_{M,s}} \equiv M$ and the theta basis $\Theta = \{\vartheta_m : m \in \mathcal{X}(\mathbb{Z}^T)\}.$

Be $(\overline{\mathcal{A}}, D)$ a (partially) compactified cluster variety with theta potential $W : \mathcal{X} \to \mathbb{C}$ and its *tropicalization* $\Xi := \{m \in \mathcal{X}(\mathbb{Z}^T) : W^T(m) \le 0\}$. Given the combinatorial and mild assumptions, we have

$$\overline{\Theta} := \{ \vartheta_m : m \in \Xi \}$$
 is a basis for $\Gamma(\overline{\mathcal{A}}, \mathcal{O}_{\overline{\mathcal{A}}}).$

Let
$$\Xi_s := \operatorname{Cone}(\Xi \cap \mathcal{X}(\mathbb{Z}^T)|_{\mathcal{T}_{M,s}}) \subset M_{\mathbb{R}}.$$

Proposition (B.-Cheung-Magee-Nájera Chávez)

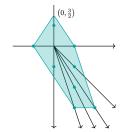
Given the above assumptions the assignment $\vartheta_m \mapsto m \in \Xi_s$ for $m \in \Xi_s \cap M$ extends to a valuation

$$\mathsf{g}_{s}: \mathsf{\Gamma}(\overline{\mathcal{A}}, \mathcal{O}_{\overline{\mathcal{A}}}) \setminus \{0\} \to M$$

whose *Newton–Okounkov cone* is Ξ_s .

Part III: Broken line convexity $\mathcal{X}(\mathbb{Z}^{T})|_{T_{M,s}} \equiv M$ is non-canonical as $\mathcal{X}(\mathbb{Z}^{T})$ is not a lattice.

But $\mathcal{X}(\mathbb{R}^T)$ has a wall and chamber structure and notion of broken lines².

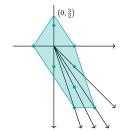


 $^{^{2}\}mbox{combinatorial gadgets replacing pseudoholomorphic disks, their counts give the structure constants for the theta basis$

Part III: Broken line convexity $\mathcal{X}(\mathbb{Z}^{T})|_{T_{M,s}} \equiv M$ is non-canonical as $\mathcal{X}(\mathbb{Z}^{T})$ is not a lattice.

But $\mathcal{X}(\mathbb{R}^T)$ has a wall and chamber structure and notion of broken lines².

[Cheung–Magee–Nájera Chávez] introduce broken line convexity: a closed set $S \subset \mathcal{X}(\mathbb{R}^T)$ is broken line convex iff $\forall a, b \in S$ and any broken line segment ℓ between a, b we have $\ell \subset S$.

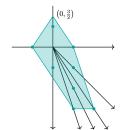


 $^{^{2}\}mbox{combinatorial gadgets replacing pseudoholomorphic disks, their counts give the structure constants for the theta basis$

Part III: Broken line convexity $\mathcal{X}(\mathbb{Z}^{T})|_{T_{M,s}} \equiv M$ is non-canonical as $\mathcal{X}(\mathbb{Z}^{T})$ is not a lattice.

But $\mathcal{X}(\mathbb{R}^T)$ has a wall and chamber structure and notion of broken lines².

[Cheung–Magee–Nájera Chávez] introduce broken line convexity: a closed set $S \subset \mathcal{X}(\mathbb{R}^T)$ is broken line convex iff $\forall a, b \in S$ and any broken line segment ℓ between a, b we have $\ell \subset S$.



Theorem (Cheung–Magee–Nájera Chávez)

A compact set $S \subset \mathcal{X}(\mathbb{R}^T)$ that is broken line convex defines a projective compactification of an \mathcal{A} -cluster variety whose graded ring has a theta basis.

 $^{2}\mbox{combinatorial gadgets replacing pseudoholomorphic disks, their counts give the structure constants for the theta basis$

Intrinsic Newton-Okounkov body

Assuming the full Fock–Goncharov conjecture holds, for $f \in \Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$ we have $f = \sum_{m \in \mathcal{X}(\mathbb{Z}^T)} c_m \vartheta_m$ and define its ϑ -Newton polytope:

$$\operatorname{New}_{\vartheta}(f) := \operatorname{conv}_{BL}\left(m \in \mathcal{X}(\mathbb{Z}^T) : c_m \neq 0\right) \subset \mathcal{X}(\mathbb{R}^T).$$

Intrinsic Newton-Okounkov body

Assuming the full Fock–Goncharov conjecture holds, for $f \in \Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$ we have $f = \sum_{m \in \mathcal{X}(\mathbb{Z}^T)} c_m \vartheta_m$ and define its ϑ -Newton polytope:

$$\operatorname{New}_{\vartheta}(f) := \operatorname{conv}_{BL} \left(m \in \mathcal{X}(\mathbb{Z}^T) : c_m \neq 0 \right) \subset \mathcal{X}(\mathbb{R}^T).$$

For \mathcal{L} and line bundle on $\overline{\mathcal{A}}$ and $R(\mathcal{L}) = \bigoplus_{j \ge 0} R_j(\mathcal{L})$ its section ring we define the *intrinsic Newton–Okounkov body*

$$\Delta_{BL}(\mathcal{L}) := \overline{\operatorname{conv}_{BL}\left(\bigcup_{j \ge 1} \left(\bigcup_{f \in R_j(\mathcal{L})} \left\{\frac{1}{j} \operatorname{New}_{\vartheta}(f)\right\}\right)\right)} \subset \mathcal{X}(\mathbb{R}^T)$$

Intrinsic Newton-Okounkov body

Assuming the full Fock–Goncharov conjecture holds, for $f \in \Gamma(\mathcal{A}, \mathcal{O}_{\mathcal{A}})$ we have $f = \sum_{m \in \mathcal{X}(\mathbb{Z}^T)} c_m \vartheta_m$ and define its ϑ -Newton polytope:

$$\operatorname{New}_{\vartheta}(f) := \operatorname{conv}_{BL} \left(m \in \mathcal{X}(\mathbb{Z}^T) : c_m \neq 0 \right) \subset \mathcal{X}(\mathbb{R}^T).$$

For \mathcal{L} and line bundle on $\overline{\mathcal{A}}$ and $R(\mathcal{L}) = \bigoplus_{j \ge 0} R_j(\mathcal{L})$ its section ring we define the *intrinsic Newton–Okounkov body*

$$\Delta_{BL}(\mathcal{L}) := \overline{\operatorname{conv}_{BL}\left(\bigcup_{j \ge 1} \left(\bigcup_{f \in R_j(\mathcal{L})} \left\{\frac{1}{j} \operatorname{New}_{\vartheta}(f)\right\}\right)\right)} \subset \mathcal{X}(\mathbb{R}^T)$$

Theorem (B.–Cheung–Magee–Nájera Chávez)

For a seed s and $g_s : R(\mathcal{L}) \setminus \{0\} \to M \equiv \mathcal{X}(\mathbb{Z}^T)|_{T_{M,s}}$ we have

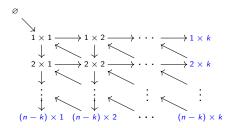
$$\Delta_{BL}(\mathcal{L})|_{\mathcal{T}_{M,s}} = \Delta(\mathsf{g}_s,\mathcal{L}) = \Xi_s \cap \mathcal{H}_{\mathcal{L}} \subset \mathcal{M}_{\mathbb{R}}$$

→ the broken line convex hull detects missing vertices.

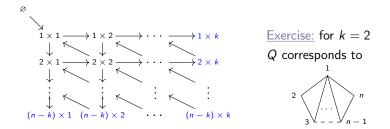
Lara Bossinger (jt. Cheung, Magee, Nájera Chávez)

For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define the initial seed s with basis $\{e_{i\times j}\}_{i,j}$ where $z^{f_{i\times j}} := p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and $\{\cdot,\cdot\}$ given by:

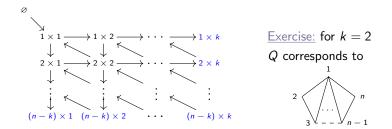
For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define the initial seed s with basis $\{e_{i\times j}\}_{i,j}$ where $z^{f_{i\times j}} := p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and $\{\cdot,\cdot\}$ given by:



For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define the initial seed s with basis $\{e_{i\times j}\}_{i,j}$ where $z^{f_{i\times j}} := p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and $\{\cdot,\cdot\}$ given by:

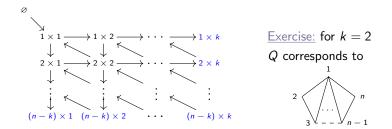


For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define the initial seed s with basis $\{e_{i\times j}\}_{i,j}$ where $z^{f_{i\times j}} := p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and $\{\cdot,\cdot\}$ given by:



Mutation at 4-valent vertices \leftrightarrow 3-term Plücker relations, e.g.

For a general Grassmannian $\operatorname{Gr}_k(\mathbb{C}^n)$ we define the initial seed s with basis $\{e_{i\times j}\}_{i,j}$ where $z^{f_{i\times j}} := p_{[1,k-j]\cup[k-j+i+1,k+i]}$ and $\{\cdot,\cdot\}$ given by:



Mutation at 4-valent vertices \leftrightarrow 3-term Plücker relations, e.g.

$$\begin{split} \mu_{1\times 1}(z^{f_1\times 1}) &= \frac{z^{f_1\times 2+f_2\times 1}+z^{f_\beta+f_2\times 2}}{z^{f_1\times 1}} \\ &= \frac{P_{[1,k-2]\cup[k,k+1]}P_{[1,k-2]\cup[k+1,k+2]}+P_{[1,k-1]\cup\{k+1\}}P_{[1,k]}}{P_{[1,k-1]\cup\{k+1\}}} &= P_{[1,k-2]\cup\{k,k+2\}} \cdot \end{split}$$

The *Grassmannian* $Gr_{k,n}$ is a compactification of a cluster variety [Scott]. More precisely, there exists (\overline{A}, D) satisfying all above conjectures and assumptions with $\Gamma(\overline{A}, \mathcal{O}_{\overline{A}}) \cong Cox(Gr_{k,n})$.

The *Grassmannian* $Gr_{k,n}$ is a compactification of a cluster variety [Scott]. More precisely, there exists (\overline{A}, D) satisfying all above conjectures and assumptions with $\Gamma(\overline{A}, \mathcal{O}_{\overline{A}}) \cong Cox(Gr_{k,n})$.

The cluster dual \mathcal{X}^{\vee} can be embedded into the dual Grassmannian $\operatorname{Gr}_{n-k,n}$.

The *Grassmannian* $Gr_{k,n}$ is a compactification of a cluster variety [Scott]. More precisely, there exists (\overline{A}, D) satisfying all above conjectures and assumptions with $\Gamma(\overline{A}, \mathcal{O}_{\overline{A}}) \cong Cox(Gr_{k,n})$.

The cluster dual \mathcal{X}^{\vee} can be embedded into the dual Grassmannian $\operatorname{Gr}_{n-k,n}$.

[Marsh-Rietsch] prove a mirror symmetry conjecture for $\operatorname{Gr}_{k,n}$ using their *Plücker potential* $P : \operatorname{Gr}_{n-k,n}^{\circ} \to \mathbb{C}$.

The *Grassmannian* $Gr_{k,n}$ is a compactification of a cluster variety [Scott]. More precisely, there exists (\overline{A}, D) satisfying all above conjectures and assumptions with $\Gamma(\overline{A}, \mathcal{O}_{\overline{A}}) \cong Cox(Gr_{k,n})$.

The cluster dual \mathcal{X}^{\vee} can be embedded into the dual Grassmannian $\operatorname{Gr}_{n-k,n}$.

[Marsh-Rietsch] prove a mirror symmetry conjecture for $\operatorname{Gr}_{k,n}$ using their *Plücker potential* $P : \operatorname{Gr}_{n-k,n}^{\circ} \to \mathbb{C}$.

[Rietsch–Williams] use the cluster structure to define full rank valuations $val_s : Cox(Gr_{k,n}) \setminus \{0\} \to N$ and Newton–Okounkov polytopes $\Delta(val_s)$ for every seed s. They show

$$\Delta(\mathsf{val}_s) \cong \Gamma_s(P)$$

where $\Gamma_s(P) \subset N \otimes_{\mathbb{Z}} \mathbb{R}$ is the tropicalization of $P|_{T_N}$.

Example: $Gr_2(\mathbb{C}^5)$

In the initial chart $P: \operatorname{Gr}_{3,5}^{\circ} \to \mathbb{C}$ is given by

$$P = \frac{p_{235}}{p_{234}} + \frac{p_{134}}{p_{345}} + \frac{p_{245}}{p_{145}} + \frac{p_{135}}{p_{125}} + \frac{p_{124}}{p_{123}}.$$

In this case,

$$\operatorname{conv}({\operatorname{val}}_{s}(p_{ij}))_{i,j}) = \Delta(\operatorname{val}_{s}) = \Gamma_{s}(P)$$

is the *Gelfand–Zetlin polytope* for SL_5 and weight ω_2 .

Table 2. The valuations $val_G(P_J)$ of the Plücker coordinates.

Plücker	⊞	⊞	8		Β	
P _{1,2}	0	0	0	0	0	0
P _{1,3}	1	0	0	0	0	0
$P_{1,4}$	1	1	0	0	0	0
P _{1,5}	1	1	1	0	0	0
P _{2,3}	1	0	0	1	0	0
P _{2,4}	1	1	0	1	0	0
P _{2,5}	1	1	1	1	0	0
P _{3,4}	2	1	0	1	1	0
P _{3,5}	2	1	1	1	1	0
P _{4,5}	2	2	1	1	1	1

Example: $Gr_2(\mathbb{C}^5)$

In the initial chart $P: \operatorname{Gr}_{3,5}^{\circ} \to \mathbb{C}$ is given by

$$P = \frac{p_{235}}{p_{234}} + \frac{p_{134}}{p_{345}} + \frac{p_{245}}{p_{145}} + \frac{p_{135}}{p_{125}} + \frac{p_{124}}{p_{123}}.$$

In this case,

$$\operatorname{conv}({\operatorname{val}}_{s}(p_{ij}))_{i,j}) = \Delta(\operatorname{val}_{s}) = \Gamma_{s}(P)$$

is the *Gelfand–Zetlin polytope* for SL_5 and weight ω_2 .

Recall, $N = \mathbb{Z}^7$ with basis $\{e_{12}, e_{13}, e_{14}, e_{15}, e_{23}, e_{34}, e_{45}\}$ and $z^{f_{ij}} = p_{ij}$. For the same initial seed we have $W : \tilde{X} \to \mathbb{C}$ given by

$$z^{-e_{15}}+z^{-e_{23}}+z^{-e_{12}}(1+z^{-e_{13}})+z^{-e_{45}}(1+z^{-e_{14}})+z^{-e_{34}}(1+z^{-e_{13}}(1+z^{-e_{14}})).$$

And $\Xi_s \cap (f_{12} + f_{13} + f_{14} + f_{15} + f_{23} + f_{34} + f_{45})^{\perp} \cong \Gamma_s(P).$

Table 2. The valuations $val_G(P_J)$ of the Plücker coordinates.

Plücker	⊞	⊞	8		Β	
P _{1,2}	0	0	0	0	0	0
P _{1,3}	1	0	0	0	0	0
P _{1,4}	1	1	0	0	0	0
P _{1,5}	1	1	1	0	0	0
P _{2,3}	1	0	0	1	0	0
P _{2,4}	1	1	0	1	0	0
P _{2,5}	1	1	1	1	0	0
P _{3,4}	2	1	0	1	1	0
P _{3,5}	2	1	1	1	1	0
P _{4,5}	2	2	1	1	1	1

<u>Remark</u>: The equality $conv(\{val_s(p_{ij})\}_{i,j}) = \Delta(val_s)$ is *false* in general (counterexamples for $Gr_{3,6}$ and larger). In general it is a hard (nonetheless desirable) to find vertices of a Newton–Okounkov polytope, but broken line convexity helps to do exactly this.

<u>Remark</u>: The equality $conv(\{val_s(p_{ij})\}_{i,j}) = \Delta(val_s)$ is *false* in general (counterexamples for $Gr_{3,6}$ and larger). In general it is a hard (nonetheless desirable) to find vertices of a Newton–Okounkov polytope, but broken line convexity helps to do exactly this.

Fact: For all A- and \mathcal{X} -cluster varieties there exists a family of *cluster* ensemble maps $p : A \to \mathcal{X}$ given by $p_s^* : N \to M$ for every seed s.

$$\begin{array}{ccc} \widetilde{\mathrm{Gr}_{k,n}} \supset \widetilde{\mathcal{A}} & \stackrel{\widetilde{p}}{\longrightarrow} \widetilde{\mathcal{X}} \subset \widetilde{\mathrm{Gr}_{k,n}} & & \widetilde{\mathrm{Gr}_{n-k,n}} \supset \widetilde{\mathcal{A}}^{\vee} & \stackrel{\widetilde{p}^{\vee}}{\longrightarrow} \widetilde{\mathcal{X}}^{\vee} \subset \widetilde{\mathrm{Gr}_{n-k,n}} \\ & \downarrow & & \downarrow & \\ & & \downarrow & & \downarrow \\ & & & \mathsf{Gr}_{k,n} \supset \mathcal{A} \stackrel{p}{\longrightarrow} \mathcal{X} \subset \mathrm{Gr}_{k,n} & & & & & & \\ \end{array}$$

We have theta potentials $W : \widetilde{\mathcal{X}} \to \mathbb{C}$ and $W^{\vee} : \widetilde{\mathcal{X}}^{\vee} \to \mathbb{C}$ and Plücker potentials $P : \mathcal{A}^{\vee} \to \mathbb{C}$ and $P^{\vee} : \mathcal{A} \to \mathbb{C}$.

Theorem (B.-Cheung-Magee-Nájera Chávez)

For $\widetilde{\mathcal{A}} \subset \widetilde{\operatorname{Gr}_{k,n}}$ there exists a unique *cluster ensemble map* $p : \widetilde{\mathcal{A}} \to \widetilde{\mathcal{X}}$ that pulls back the theta to the Plücker potential $p^*(W) = \widetilde{P}^{\vee}$.

Theorem (B.-Cheung-Magee-Nájera Chávez)

For $\widetilde{\mathcal{A}} \subset \widetilde{\text{Gr}_{k,n}}$ there exists a unique *cluster ensemble map* $p : \widetilde{\mathcal{A}} \to \widetilde{\mathcal{X}}$ that pulls back the theta to the Plücker potential $p^*(W) = \widetilde{P}^{\vee}$. Moreover, the dual map $(p^*)_{\mathfrak{s}}^{\vee} : N \to M$ satisfies for Plücker coordinates p_I

 $(p^*)^{\vee}_s(\nu_s(p_I)) = g_s(p_I) + c,$

Theorem (B.-Cheung-Magee-Nájera Chávez)

For $\widetilde{\mathcal{A}} \subset \widetilde{\text{Gr}_{k,n}}$ there exists a unique *cluster ensemble map* $p : \widetilde{\mathcal{A}} \to \widetilde{\mathcal{X}}$ that pulls back the theta to the Plücker potential $p^*(W) = \widetilde{P}^{\vee}$. Moreover, the dual map $(p^*)_{\mathfrak{s}}^{\vee} : N \to M$ satisfies for Plücker coordinates p_I

$$(p^*)^{\vee}_s(\nu_s(p_I)) = g_s(p_I) + c,$$

and for all seeds s the Newton–Okounkov body $\Delta(g_s)$ is

$$\Delta(g_s) = \operatorname{conv}_{BL}\left(\mathsf{g}_s(p_I) : I \in \binom{[n]}{k} \right) \Big|_{\mathcal{T}_M, s} \subset M_{\mathbb{R}}.$$

 $\underline{\text{Corollary:}} (p^*)_s^{\vee}(\Gamma_s) = \Xi_s \cap H = \Delta(g_s) = (p^*)_s^{\vee}(\Delta(\nu_s)), \text{ so } \Gamma_s = \Delta(\nu_s).$

References

- BCMN L. Bossinger, M. Cheung, T. Magee, A. Nájera Chávez. On cluster duality for Grassmannians. in preparation.
 - BF L. Bossinger, G. Fourier. String cone and Superpotential combinatorics for flag and Schubert varieties in type A. J. Combin. Theory Ser. A. 167 (2019)
- BFMN L. Bossinger, B. Frías-Medina, T. Magee, A. Nájera Chávez. Toric degenerations of cluster varieties and cluster duality. Compos. Math. 156 (2020)
- BCKvS V. Batyrev, I. Ciocan-Fontanine, B. Kim, D. van Straten. Mirror symmetry and toric degenerations of partial flag manifolds. Acta Math. 184 (2000)
- CKLP G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso, P. Plamondon. Linear independence of cluster monomials for skew-symmetric cluster algebras. *Compos. Math.* 149, (2013)
 - FG V. Fock and A. Goncharov. Cluster ensembles, quantization and the dilogarithm. Ann. Éc. Norm. Sup. (2009)
 - FO N. Fujita, H. Oya. Newton-Okounkov polytopes of Schubert varieties arising from cluster structures. arXiv:2002.09912
- FZ02 S.Fomin and A. Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2) (2002)
- FZ07 S. Fomin and A. Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143 (2007)
 - Giv A. Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. (1997)
- GHKK M. Gross, P. Hacking, S. Keel, and M. Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc. (2018)
- GKS V. Genz, G. Koshevoy, B. Schumann. Polyhedral parametrizations of canonical bases & cluster duality. Adv. Math. (2020)
- GLS C. Geiss, B. Leclerc, J. Schröer. Partial flag varieties and preprojective algebras. Ann. Inst. Fourier 58(3) (2008)
- Magee T. Magee. Littlewood-Richardson coefficients via mirror symmetry for cluster varieties. Proc.Lond.Math.Soc.(2020)
 - MR B.R. Marsh, K. Rietsch. The B-model connection and mirror symmetry for Grassmannians. Adv. Math. 366 (2020)
- Rietsch K. Rietsch. A mirror symmetric construction of qHT(G/P)(q). Adv. Math. 217 (2008)
 - RW K. Rietsch, L. Williams. Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians. Duke Math. J. 168 (2019)
 - Scott J. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. 3 (2006)