Newton—Okounkov bodies for cluster varieties

Lara Bossinger (jt. Cheung, Magee, N&jera Chéavez)

Universidad Nacional Auténoma de México, IM-Oaxaca

Online Representation Theory Seminar, June 18 2021

Lara Bossinger (jt. Cheung, Magee, N&jera Chavez)



Motivation
Let X = G/P < P(V)) a flag variety and R = B~ V/ its homogeneous
coordinate ring.
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Motivation
Let X = G/P < P(V,) a flag variety and R = - V) its homogeneous
coordinate ring.

Given a valuation v : R — Z4mX+1 with finitely generated image of rank
dim X + 1 and its Newton—Okounkov polytope

A(v, R) = coan{ Z) fe v;;}

i>1

we get a toric degeneration of X to Xa.

Many polytopes parametrizing bases of representations arise this way, like
Gelfand—Zetlin polytope, string polytopes, FFLV polytopes, ...

Further, many of the mentioned polytopes are isomorphic to polytopes
arising from tropicalized potentials on cluster varieties contained in X.

Aim: Develop the framework of Newton—Okounkov bodies for cluster
varieties that includes all the representation theoretic examples.
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Overview

@ Cluster varieties

» Tropicalization
» Fock—Goncharov conjecture
» Wall and chamber structure

@ Compactifications
» Potentials

© Intrinsic Newton—Okounkov bodies
» Broken line convexity

@ Grassmannians
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Part |: Cluster varieties
N = Z" lattice, {-,-} : N x N — Z skew-symmetric bilinear form, M = N*

tnm): Tn:=N®zC* —-» Ty called mutation
Hnm(@™) = 27 (14270
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Part |: Cluster varieties
N = Z" lattice, {-,-} : N x N — Z skew-symmetric bilinear form, M = N*

tnm): Tn:=N®zC* —-» Ty called mutation
Hinmy(Z™) = 27 (L4270,
Let sp = {e1,...,en} basis of N (called a seed) and v; ;== {e;,-} € M

Exercise: Tropicalization of (g, v, to pl Tn(ZT) =N — Nis a
pseudoreflection and 1] (so) is a new seed.
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Part I: Cluster varieties
N = Z" lattice, {-,-} : N x N — Z skew-symmetric bilinear form, M = N*

Pnmy: Tn:=N®zC* - Ty called mutation
Hinmy(Z™) = 27 (L4270,
Let sp = {e1,...,en} basis of N (called a seed) and v; ;== {e;,-} € M

Exercise: Tropicalization of (g, v, to pl Tn(ZT) =N — Nis a
pseudoreflection and 1] (so) is a new seed.

A-cluster varieties are the schemes

A = U Twn,s glued by mutations p(_e, v,)
s~s0

X = U Tm,s glued by mutations fi(y, e,)
s~s0

~ dual cluster varieties A and X generalize dual tori Ty and Tyy.
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Example: A and X in case A,

N = Z? with {-,-} given by ( % {) for {e1,e}. Then A and X are glued
from 5 tori each with local coordinates:

f;
HE2 fo e > 2
2% ~
|

ff : :
1+z714212 RN AP R e |
Atk | A~ |
A vf | |
! 1+2'2 | |

I 21 I
|
| ~ J4 | \
| | o3 o0 | X
: : oy |oy ! 1
! |

I < ~
| 121 s 112 |
[ 272 2P |

|

o M
1422421 B/ N -1
Jhth z




Example: A and X in case A,

N = Z? with {-,-} given by ( % {) for {e1,e}. Then A and X are glued
from 5 tori each with local coordinates:
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Example: cluster variety inside Gro ,

Let N = Z2(n=2)+1 \ith seed basis {e12,...,€1n, €3, €34,...,€n_1,n} and
all e j11 frozen. The form {-,-} is given by

If we identify zfi = pjj then A C Grp(C"). More precisely,

A= Gr2 \ U {P: i+1 = O}
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Example: cluster variety inside Gry s
In this case, we have a bijection between
seeds <> triangulations of an n-gon

The cluster variables zi are Pliicker coordinates and the pull-back of the
A-cluster mutation on those corresponds to three-term Pliicker relations.
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Tropicalizing cluster varieties

Notice: Mutation /j(kn,m)(zm/) =z"(1+ zm)m.'(”) is substraction-free
=- may consider cluster varieties over semifields.

For IP a semifield we have Ty(P) = N ®z P.
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Tropicalizing cluster varieties

Notice: Mutation /’L?n,m)(zm,) =z"(1+ zm)’".'(") is substraction-free
=- may consider cluster varieties over semifields.

For IP a semifield we have Ty(P) = N ®z P.

= every seed s gives non-canonical identifications

APy, =N@zP and X(P)|7,, =M P

Definition
The (integer/rational/real) tropicalization of a cluster variety is

AZT)JAQT)/ART) resp.  X(ZT)/X(QT)/X(RT),

where ZT = (Z, max, +)/Q" = (Q, max, +)/RT = (R, max, +).
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Cluster duality and the Fock—Goncharov conjecture

Recall: Ty has dual torus Ty and Ty (ZT) = M ®z Z = M parametrizes
a basis of regular functions I'( Ty, O7,) ~~ characters of Ty
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Cluster duality and the Fock—Goncharov conjecture

Recall: Ty has dual torus Ty and Ty (ZT) = M ®z Z = M parametrizes
a basis of regular functions I'( Ty, O7,) ~~ characters of Ty

Fock—Goncharov conjecture

The tropical cluster variety X(Z"), respextively A(Z"), parametrizes a
basis for (A, O.4), respectively (X, Oy).
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Cluster duality and the Fock—Goncharov conjecture

Recall: Ty has dual torus Ty and Ty (ZT) = M ®z Z = M parametrizes
a basis of regular functions I'( Ty, O7,) ~~ characters of Ty
Fock—Goncharov conjecture

The tropical cluster variety X(Z"), respextively A(ZT), parametrizes a
basis for (A, O 4), respectively I'(X, Ox).

false in general (counter examples due to Gross—Hacking—Keel),
true in interesting examples like cluster varieties inside the Grassmannians,
flag varieties, configuration space.

Assumption: the full Fock—Goncharov conjecture holds for A, that is
O :={Un:me X(ZT)} is a basis for (A, O4), called theta basis.
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Wall and chamber structure on X(RT)
Fact: for every seed s’ = (ef, ..., e},) with dual basis f/,...,f, € M we
have z™Mfi++mfi ¢ © with m; € N called cluster monomials and

/ “ee /
gs/(2m1fl+ +mnf,,) — mlfl’ 4+t mnf,;

!conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]
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Wall and chamber structure on X(RT)
Fact: for every seed s’ = (ef, ..., e},) with dual basis f/,...,f, € M we
have z™Mfi++mfi ¢ © with m; € N called cluster monomials and

! !
gs,(zmlfl—i-...—f—mnfn) = mlfl’ 4+t mnf,;

Let Gey(s') = pi, o (-, o) 20) then Uy g Gsy(s') is a simplicial fan®

!conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]
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Wall and chamber structure on X(RT)
Fact: for every seed s’ = (ef, ..., e},) with dual basis f/,...,f, € M we
have z™Mfi++mfi ¢ © with m; € N called cluster monomials and

gs,(zmlf{—i-...—f—mnfn’) = mf]{ + -+ m,f,
Let Gy (s') = pl o ((f, .., f1)>0) then Uy g, Gs(8) is a simplicial fan®

Example: In case of A C Grp(C®), so N = Z(3), consider a slice of M of
points afiz + bfi4, a,b € Z:

b £+ bF: b
I(—a,a1b) = P34PTs Y(a,b) = Z".ﬁ 2 = pi3piy
_ P12P34+P14P23 _ f;
Py = PRELAAER — 9y ) Yo,1) = 27 = pua
J4 P M]R = X(RT)
TN 70 D100 =21 =p13
2|01

!conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]
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Part |I: Compactifying A-cluster varieties

In the initial data sp = {e1,...,e,} C N declare e, ..., e, frozen, i.e.

never mutate at e, ..., e, then allow vanishing of zf, ... zf.
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Part |I: Compactifying A-cluster varieties

In the initial data sp = {e1,...,e,} C N declare e, ..., e, frozen, i.e.

never mutate at e, ..., e, then allow vanishing of zf, ... zf.

Example: N = Z?2 with {-,-} given by ( % §) for {e1, &2} and e, frozen.
Then A is glued from 2 tori each with local coordinates:

£
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Part |I: Compactifying A-cluster varieties

In the initial data sp = {e1,...,e,} C N declare e, ..., e, frozen, i.e.
never mutate at e, ..., e, then allow vanishing of zf, ... zf.

Example: N = Z2 with {-,-} given by ( % ) for {e1, e} and e, frozen.
Then A is glued from 2 tori each with local coordinates:

£
14272 p
RN 1
zfl < > z

PR e 2]

a0

The (partial) compactification A is glued from two copies of C* x C along
the biggest open subset where mutation is still defined.

D := A\ A is called the boundary divisor.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dy U---U D, with D; = {z = 0}.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dy U---U D, with D; = {z = 0}.

Mild assumptions = may identify tropical points with divisorial discrete
valuations:

ordp, ¢+ n; € A(ZT) «—9; : X - C

Then the ¥-potential is W =9, +---+ 19, : X — C.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dy U---U D, with D; = {z = 0}.

Mild assumptions = may identify tropical points with divisorial discrete
valuations:

ordp, ¢+ n; € A(ZT) «—9; : X - C
Then the ¥-potential is W =9, +---+ 19, : X — C.

Combinatorial hypothesis = for every i there exists a seed
/

s'=(e,...,€)) and Vi|,, & =27 €.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dy U---U D, with D; = {z = 0}.

Mild assumptions = may identify tropical points with divisorial discrete
valuations:
OI’dDI. <—— n; € A(ZT) +—— 1 X —>C

Then the ¥-potential is W =9, +---+ 19, : X — C.

Combinatorial hypothesis = for every i there exists a seed
s'=(ef,...,e) and ;|1 & = 25

Example: N = Z2 with {-,-} given by ( % ¢) for so = {e1, &} and e,
frozen we have D = {z =0} and Wity =Yy, =2 2 +z 2%
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dy U---U D, with D; = {z = 0}.

Mild assumptions = may identify tropical points with divisorial discrete
valuations:
OI’dDI. <—— n; € A(ZT) +—— 1 X —>C

Then the ¥-potential is W =9, +---+ 19, : X — C.

Combinatorial hypothesis = for every i there exists a seed

s'=(ef,...,e) and ;|1 & = 25

Example: N = Z2 with {-,-} given by ( % ¢) for so = {e1, &} and e,
frozen we have D = {zf2 =0} and W‘TM,SO = ﬁl‘TM,sO — 7@ 4 e

Note: \JL ={me Mg :{(m —e) <0,(m —e — &) <0}
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Valuations for cluster varieties
Recall: X(Z")|r,,, = M and the theta basis © = {J, : m € X(ZT)}.

Be (A, D) a (partially) compactified cluster variety with theta potential
W : X — C and its tropicalization = := {m € X(Z") : WT(m) < 0}.
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Valuations for cluster varieties
Recall: X(Z")|r,,, = M and the theta basis © = {J, : m € X(ZT)}.

Be (A, D) a (partially) compactified cluster variety with theta potential
W : X — C and its tropicalization = := {m € X(Z") : WT(m) < 0}.
Given the combinatorial and mild assumptions, we have

©:={Um:meZ} isabasisfor (A Ox).

Let =, := Cone(ZNX(Z7)|7,,,) C Mg.
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Valuations for cluster varieties
Recall: X(Z")|r,,, = M and the theta basis © = {J, : m € X(ZT)}.

Be (A, D) a (partially) compactified cluster variety with theta potential
W : X — C and its tropicalization = := {m € X(Z") : WT(m) < 0}.
Given the combinatorial and mild assumptions, we have

©:={Um:meZ} isabasisfor (A Ox).
Let =, := Cone(ZNX(Z7)|7,,,) C Mg.

Proposition (B.—Cheung—-Magee—Ndgjera Chévez)
Given the above assumptions the assignment ¥, — m € = for
m € =; N M extends to a valuation

gs 1 T(A, O\ {0} =M

whose Newton—Okounkov cone is =s.
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Part Ill: Broken line convexity

X(Z")|,,, = M is non-canonical as X(Z") is not a lattice.

But X(RT) has a wall and chamber 0.2
structure and notion of broken lines?. /

2combinatorial gadgets replacing pseudoholomorphic disks, their counts give the
structure constants for the theta basis
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Part Ill: Broken line convexity

X(Z")|,,, = M is non-canonical as X(Z") is not a lattice.

But X(RT) has a wall and chamber
structure and notion of broken lines?.

[Cheung—Magee—-N4djera Chévez| introduce

broken line convexity: a closed set S C X(RT)

is broken line convex iff Va, b € S and any

broken line segment ¢ between a, b we have ¢ C S.

2combinatorial gadgets replacing pseudoholomorphic disks, their counts give the
structure constants for the theta basis
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Part Ill: Broken line convexity

X(Z")|,,, = M is non-canonical as X(Z") is not a lattice.

But X(RT) has a wall and chamber 0.9
structure and notion of broken lines?.

[Cheung—Magee—-N4djera Chévez| introduce

broken line convexity: a closed set S C X(RT)

is broken line convex iff Va, b € S and any

broken line segment ¢ between a, b we have ¢ C S.

Theorem (Cheung—Magee—N4jera Chavez)

A compact set S C X(RT) that is broken line convex defines a projective
compactification of an A-cluster variety whose graded ring has a theta
basis.

2combinatorial gadgets replacing pseudoholomorphic disks, their counts give the
structure constants for the theta basis
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Intrinsic Newton—Okounkov body

Assuming the full Fock—-Goncharov conjecture holds, for f € T(A, O 4) we
have f = ZmeX(ZT) CmVUm and define its ©-Newton polytope:

Newy(f) := convg, (m cX(Z"):cm# 0) c XR").
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Intrinsic Newton—Okounkov body

Assuming the full Fock—-Goncharov conjecture holds, for f € T(A, O 4) we
have f = ZmeX(ZT) CmVUm and define its ©-Newton polytope:

Newy(f) := convg, (m cX(Z"):cm# 0) c XR").

For £ and line bundle on A and R(L) = D=0 Ri(L) its section ring we

define the intrinsic Newton—Okounkov body

Apgi (L) := convp U U {}Newlg(f)} c XR")

J>1 \feR;(L)
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Intrinsic Newton—Okounkov body

Assuming the full Fock—-Goncharov conjecture holds, for f € T(A, O 4) we
have f = ZmeX(ZT) CmVUm and define its ©-Newton polytope:

Newy(f) := convg, (m cX(Z"):cm# 0) c XR").

For £ and line bundle on A and R(L) = D=0 Ri(L) its section ring we

define the intrinsic Newton—Okounkov body

Apgi (L) := convp U U {}Newlg(f)} c XR")

J>1 \feR;(L)

Theorem (B.—Cheung—Magee—Ndjera Chévez)
For a seed s and gs : R(£) \ {0} = M = X(ZT7)|,,, we have

A (L)|Ty,, = Ags, £) ==sNHe C Mg

~ the broken line convex hull detects missing vertices.
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Example: Grassmannian

For a general Grassmannian Gr,(C") we define the initial seed s with basis

{eix;}ij where zfixi = P[1,k—jJulk—j+i+1,k+i] and {-,-} given by:
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Example: Grassmannian

For a general Grassmannian Gr,(C") we define the initial seed s with basis
{e,‘xj},"j where Zf"XJ' = p[l,k—j]U[k—j+i+1,k+i] and {', } given by

\
T
l \ l \ \
(7£)x‘}7£)x‘2\---‘\(fk)xk
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Example: Grassmannian

For a general Grassmannian Gr,(C") we define the initial seed s with basis
{e,‘xj},"j where Zf"XJ' = p[l,k—j]U[k—j+i+1,k+i] and {', } given by

\

1x1 51 %2 1k Exercise: for k =2
i \‘2£2\---\2xk Q corresponds to

(n—k)x1 (n—k)x2 (n— k) x k
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Example: Grassmannian

For a general Grassmannian Gr,(C") we define the initial seed s with basis

{eix;}ij where zfixi = P[1,k—jJulk—j+i+1,k+i] and {-,-} given by:
z
N\ .
1x1 $1x2 1%k Exercise: for k = 2
2£1\>2£2\_” \“k Q corresponds to
(n—k)x1 (n—k)x2 . (n— k) x k

Mutation at 4-valent vertices <> 3-term Plucker relations, e.g.
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Example: Grassmannian

For a general Grassmannian Gr,(C") we define the initial seed s with basis

{eix;}ij where zfixi = P[1,k—jJulk—j+i+1,k+i] and {-,-} given by:
z
N\ .
1x1\>1x2\---\1xk Exercise: for k = 2
l l
2y NPV ok Q corresponds to

(n—k)x1 (n—k)x2 . (n— k) x k

Mutation at 4-valent vertices <> 3-term Plucker relations, e.g.

SMxathxi, fothx
Sfx1

P[1,k—2]Ulk,k+1]P[1,k—2]U[k+1,k+2] TP, k—1JU{k+1}P[L,k]
P[Lk—1]U{k+1} = Pl1,k—2]u{k,k+2}"

p1x1(z1x1)
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Part IV: Examples

The Grassmannian Gry , is a compactification of a cluster variety [Scott].

More precisely, there exists (A, D) satisfying all above conjectures and
assumptions with (A, O%) = Cox(Gr ).
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Part IV: Examples

The Grassmannian Gry , is a compactification of a cluster variety [Scott].
More precisely, there exists (A, D) satisfying all above conjectures and
assumptions with (A, O%) = Cox(Gr ).

The cluster dual XV can be embedded into the dual Grassmannian
Grp_k,n-
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Part IV: Examples

The Grassmannian Gry , is a compactification of a cluster variety [Scott].
More precisely, there exists (A, D) satisfying all above conjectures and
assumptions with (A, O%) = Cox(Gr ).

The cluster dual XV can be embedded into the dual Grassmannian
Grp_k,n-

[Marsh—Rietsch]| prove a mirror symmetry conjecture for Gry , using their
Pliicker potential P : Gr; — C.

n—k,n
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Part IV: Examples

The Grassmannian Gry , is a compactification of a cluster variety [Scott].
More precisely, there exists (A, D) satisfying all above conjectures and
assumptions with (A, O%) = Cox(Gr ).

The cluster dual XV can be embedded into the dual Grassmannian
Grp_k,n-

[Marsh—Rietsch]| prove a mirror symmetry conjecture for Gry , using their
Pliicker potential P : Gr; — C.

n—k,n

[Rietsch—Williams| use the cluster structure to define full rank valuations
vals : Cox(Grg ) \ {0} = N and Newton—Okounkov polytopes A(vals) for
every seed s. They show

A(valg) = T4(P)

where ['s(P) C N ®z R is the tropicalization of P|r, .
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Example: Gry(C>)
In the initial chart

o . .

P . Gr3 5 — (C IS given by Table 2. The valuations valg (P ) of the Pliicker coordinates.
)

Pliicker | gp

P>
p— P235 T P134 4 P245 4 P135 4 P124 -

P234  P345  P145  P125  P123 ﬁ
1.5

. Prs
In this case, Pou
P>s
P34

conv({vals(pj)}ij) = A(vals) =Ts(P) Pas

Pys

B

g | o=

=|=|=lo|lo|eo|e|e|eo|e| B

NSNS EIENEEE
HEEIEEIEIEEIEIE
=== —]e|e|e|e
—lo|lo|o|o|o|e|e|eo|e| B

RPN ==]|o

is the Gelfand—Zetlin polytope for SLs
and weight w>.
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Example: Gry(C>)

In the initial chart

P . Grg 5 — (C iS giVen by Table 2. The valuations valg (P ) of the Pliicker coordinates.
’ Pliicker | @\ |8 m | m | o
P, o |ojofo [o0]o
p— P235 T P134 4 P245 4 P135 4 P124. O RRA N
P234  Pp345  P145  P125  P123 Pra |t J1]ofo oo
P 1 1|10 [o]o
H Prs 1 lojo|1 |[o]oO
In this case, Pos |1 101 [0 0
Prs 1 1|1|1 |o]o
I A | r P P34 2 1 0 1 1 0
conviqva ilrii) = va = P; - 2 [1]1]1 |1]o0
({vals(pij) }ij) (vals) s(P) PR

is the Gelfand—Zetlin polytope for SLs
and weight w>.

Recall, N = Z' with basis {e12, 13, €14, €15, €23, €34, €45} and zfi = pij.
For the same initial seed we have W : X — C given by

Z_els+Z_e23—|—Z_elz(1+Z_el3)+2_e45(1+Z_e14)+2_e34(1+2_613(1+Z_el4)).

And =, N (fi2 + A3 + fia + fis + foz + a4 + fas) - = T5(P).
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Grassmannians

Remark: The equality conv({vals(p;j)}i;j) = A(vals) is false in general
(counterexamples for Grz g and larger). In general it is a hard (nonetheless
desirable) to find vertices of a Newton—Okounkov polytope, but broken
line convexity helps to do exactly this.
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Grassmannians

Remark: The equality conv({vals(p;j)}i;j) = A(vals) is false in general
(counterexamples for Grz g and larger). In general it is a hard (nonetheless
desirable) to find vertices of a Newton—Okounkov polytope, but broken
line convexity helps to do exactly this.

Fact: For all A- and X-cluster varieties there exists a family of cluster
ensemble maps p : A — X given by p} : N — M for every seed s.

—_~ ~ Y ~ —~ —_— ~ ",V ~ P

Grin D A —Pixc Gri,n Grp—kn DAY P XV Gro—k.n
| | Lo

Grin D> A—Lo X C Gy, Grotn DAY L XY CGry g

We have theta potentials W : X — C and W : XV — C and Pliicker
potentials P: AY — C and PV : A — C.
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Grassmannians

Theorem (B.—Cheung—Magee—Ndgjera Chévez)

For A C ar\k/n there exists a unique cluster ensemble map p : A = X that
pulls back the theta to the Pliicker potential p*(W) = PV.
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Grassmannians

Theorem (B.—Cheung—Magee—Ndgjera Chévez)

For A C 6?,:,, there exists a unique cluster ensemble map p : A = X that
pulls back the theta to the Pliicker potential p*(W) = PV.
Moreover, the dual map (p*)Y : N — M satisfies for Pliicker coordinates p;

()5 (vs(p1)) = &s(p1) + ¢,
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Grassmannians

Theorem (B.—Cheung—Magee—Ndgjera Chévez)

For A C a;:, there exists a unique cluster ensemble map p : A — X that
pulls back the theta to the Pliicker potential p*(W) = PV.
Moreover, the dual map (p*)Y : N — M satisfies for Pliicker coordinates p;

()5 (vs(p1)) = &s(p1) + ¢,

and for all seeds s the Newton—-Okounkov body A(gs) is

A(gs) = convpy <gs(p,) e ([Z]»

Corollary: (p*)(Ts) =Zs N H = A(gs) = (p*)I(A(vs)), so s = A(vs).

C Mg.

TM,S
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