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Motivation
Let X = G/P ↪→ P(Vλ) a flag variety and R =

⊕
`≥0 V

∗
`λ its homogeneous

coordinate ring.

Given a valuation ν : R → ZdimX+1 with finitely generated image of rank
dimX + 1 and its Newton–Okounkov polytope

∆(ν,R) := conv
⋃
i≥1

{
ν(f )

`
: f ∈ V ∗`λ

}
we get a toric degeneration of X to X∆.

Many polytopes parametrizing bases of representations arise this way, like
Gelfand–Zetlin polytope, string polytopes, FFLV polytopes, ...

Further, many of the mentioned polytopes are isomorphic to polytopes
arising from tropicalized potentials on cluster varieties contained in X .

Aim: Develop the framework of Newton–Okounkov bodies for cluster
varieties that includes all the representation theoretic examples.
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Overview

1 Cluster varieties
I Tropicalization
I Fock–Goncharov conjecture
I Wall and chamber structure

2 Compactifications
I Potentials

3 Intrinsic Newton–Okounkov bodies
I Broken line convexity

4 Grassmannians
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Part I: Cluster varieties
N ∼= Zn lattice, {·, ·} : N × N → Z skew-symmetric bilinear form, M = N∗

µ(n,m) : TN := N ⊗Z C∗ 99K TN called mutation

µ∗(n,m)(zm
′
) = zm

′
(1 + zm)m

′(n).

Let s0 = {e1, . . . , en} basis of N (called a seed) and vi := {ei , ·} ∈ M

Exercise: Tropicalization of µ(−ek ,vk ) to µT
k : TN(ZT ) = N → N is a

pseudoreflection and µTk (s0) is a new seed.

A-cluster varieties are the schemes

A :=
⋃
s∼s0

TN,s glued by mutations µ(−ek ,vk )

X :=
⋃
s∼s0

TM,s glued by mutations µ(vk ,ek )

 dual cluster varieties A and X generalize dual tori TN and TM .
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Example: A and X in case A2

N = Z2 with {·, ·} given by
(

0 1
−1 0

)
for {e1, e2}. Then A and X are glued

from 5 tori each with local coordinates:

σ0

σ1σ2

σ3

σ4

z f1

z f2

z f1

1+zf1

zf2

1+zf2 +zf1

zf1+f2

1+zf1

zf2

1+zf2

zf1

1+zf1 +zf2

zf1+f2
z f2

1+zf2

zf1

A

σ0

σ1σ2

σ3

σ4

ze2

ze1

z−e2

ze1 (ze2 + 1)

ze1 (1+ze2 )+1

ze1

1
ze1 (ze2 +1)

ze1 +1

ze1+e2

ze1
ze1 (1+ze2 )+1

z−e1

ze1+e2
ze1 +1

X
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Example: cluster variety inside Gr2,n

Let N = Z2(n−2)+1 with seed basis {e12, . . . , e1n, e23, e34, . . . , en−1,n} and
all ei ,i+1 frozen. The form {·, ·} is given by

1

2

3 4

5

1

p12

2

p23

3
p34

4

p45

5

p15

p13 p14

If we identify z fij = pij then A ⊂ G̃r2(Cn). More precisely,

A = G̃r2(Cn) \
n−1⋃
i=1

{pi ,i+1 = 0}.
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Example: cluster variety inside Gr2,5

In this case, we have a bijection between

seeds ↔ triangulations of an n-gon

The cluster variables z fij are Plücker coordinates and the pull-back of the
A-cluster mutation on those corresponds to three-term Plücker relations.

1
p12

2
p23

3 p34
4

p45

5

p15

p13 p14

σ0

σ2σ3

σ1σ4

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5
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Tropicalizing cluster varieties

Notice: Mutation µ∗(n,m)(zm
′
) = zm

′
(1 + zm)m

′(n) is substraction-free
⇒ may consider cluster varieties over semifields.

For P a semifield we have TN(P) = N ⊗Z P.

⇒ every seed s gives non-canonical identifications

A(P)|TN,s
≡ N ⊗Z P and X (P)|TM,s

≡ M ⊗Z P

Definition

The (integer/rational/real) tropicalization of a cluster variety is

A(ZT )/A(QT )/A(RT ) resp. X (ZT )/X (QT )/X (RT ),

where ZT = (Z,max,+)/QT = (Q,max,+)/RT = (R,max,+).
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Cluster duality and the Fock–Goncharov conjecture

Recall: TN has dual torus TM and TM(ZT ) = M ⊗Z Z = M parametrizes
a basis of regular functions Γ(TN ,OTN

)  characters of TN

Fock–Goncharov conjecture

The tropical cluster variety X (ZT ), respextively A(ZT ), parametrizes a
basis for Γ(A,OA), respectively Γ(X ,OX ).

false in general (counter examples due to Gross–Hacking–Keel),
true in interesting examples like cluster varieties inside the Grassmannians,
flag varieties, configuration space.

Assumption: the full Fock–Goncharov conjecture holds for A, that is

Θ := {ϑm : m ∈ X (ZT )} is a basis for Γ(A,OA), called theta basis.
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Wall and chamber structure on X (RT )
Fact: for every seed s ′ = (e ′1, . . . , e

′
n) with dual basis f ′1 , . . . , f

′
n ∈ M we

have zm1f ′1 +···+mnf ′n ∈ Θ with mi ∈ N called cluster monomials and

gs′(z
m1f ′1 +···+mnf ′n ) = m1f

′
1 + · · ·+ mnf

′
n

Let Gs0(s ′) = µ∗s0,s′
(〈f ′1 , . . . , f ′n〉≥0) then

⋃
s′∼s0

Gs0(s ′) is a simplicial fan1

Example: In case of A ⊂ Gr2(C5), so N = Z(5
2), consider a slice of M of

points af13 + bf14, a, b ∈ Z:

σ0

σ1σ2

σ3

σ4

ϑ(0,1) = z f2 = p14

ϑ(1,0) = z f1 = p13

ϑ(a,b) = zaf1+bf2 = pa13p
b
14

p24 =
p12p34+p14p23

p13
= ϑ(−1,1)

ϑ(−a,a+b) = pa24p
b
14

MR ≡ X (RT )

1conjectured by [FZ], partial results due to [CIKLP], full generality [GHKK]
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Part II: Compactifying A-cluster varieties

In the initial data s0 = {e1, . . . , en} ⊂ N declare ek , . . . , en frozen, i.e.
never mutate at ek , . . . , en, then allow vanishing of z fk , . . . , z fn .

Example: N = Z2 with {·, ·} given by
(

0 1
−1 0

)
for {e1, e2} and e2 frozen.

Then A is glued from 2 tori each with local coordinates:

σ0

σ4

z f1

z f2z f2

1+zf2

zf1

The (partial) compactification A is glued from two copies of C∗ ×C along
the biggest open subset where mutation is still defined.

D := A \ A is called the boundary divisor.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dk ∪ · · · ∪ Dn with Di = {z fi = 0}.

Mild assumptions ⇒ may identify tropical points with divisorial discrete
valuations:

ordDi
←→ ni ∈ A(ZT )←→ ϑi : X → C

Then the ϑ-potential is W = ϑk + · · ·+ ϑn : X → C.

Combinatorial hypothesis ⇒ for every i there exists a seed
s ′ = (e ′1, . . . , e

′
n) and ϑi |TM ,s′ = z−e

′
i .

Example: N = Z2 with {·, ·} given by
(

0 1
−1 0

)
for s0 = {e1, e2} and e2

frozen we have D = {z f2 = 0} and W |TM,s0
= ϑ1|TM,s0

= z−e2 + z−e1−e2 .

Note: σ0
σ4

= {m ∈ MR : 〈m,−e1〉 ≤ 0, 〈m,−e1 − e2〉 ≤ 0}.
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Potentials for cluster varieties

In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dk ∪ · · · ∪ Dn with Di = {z fi = 0}.

Mild assumptions ⇒ may identify tropical points with divisorial discrete
valuations:

ordDi
←→ ni ∈ A(ZT )←→ ϑi : X → C

Then the ϑ-potential is W = ϑk + · · ·+ ϑn : X → C.

Combinatorial hypothesis ⇒ for every i there exists a seed
s ′ = (e ′1, . . . , e

′
n) and ϑi |TM ,s′ = z−e

′
i .

Example: N = Z2 with {·, ·} given by
(

0 1
−1 0

)
for s0 = {e1, e2} and e2

frozen we have D = {z f2 = 0} and W |TM,s0
= ϑ1|TM,s0

= z−e2 + z−e1−e2 .

Note: σ0
σ4

= {m ∈ MR : 〈m,−e1〉 ≤ 0, 〈m,−e1 − e2〉 ≤ 0}.

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez) 11/ 20
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In the spirit of mirror symmetry the compactification A of A should
induce a potential function on the dual X cluster variety

Recall: D = Dk ∪ · · · ∪ Dn with Di = {z fi = 0}.

Mild assumptions ⇒ may identify tropical points with divisorial discrete
valuations:

ordDi
←→ ni ∈ A(ZT )←→ ϑi : X → C

Then the ϑ-potential is W = ϑk + · · ·+ ϑn : X → C.
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′
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Valuations for cluster varieties
Recall: X (ZT )|TM,s

≡ M and the theta basis Θ = {ϑm : m ∈ X (ZT )}.

Be (A,D) a (partially) compactified cluster variety with theta potential
W : X → C and its tropicalization Ξ := {m ∈ X (ZT ) : W T (m) ≤ 0}.

Given the combinatorial and mild assumptions, we have

Θ := {ϑm : m ∈ Ξ} is a basis for Γ(A,OA).

Let Ξs := Cone(Ξ ∩ X (ZT )|TM,s
) ⊂ MR.

Proposition (B.–Cheung–Magee–Nájera Chávez)

Given the above assumptions the assignment ϑm 7→ m ∈ Ξs for
m ∈ Ξs ∩M extends to a valuation

gs : Γ(A,OA) \ {0} → M

whose Newton–Okounkov cone is Ξs .
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Given the above assumptions the assignment ϑm 7→ m ∈ Ξs for
m ∈ Ξs ∩M extends to a valuation

gs : Γ(A,OA) \ {0} → M

whose Newton–Okounkov cone is Ξs .

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez) 12/ 20
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Part III: Broken line convexity

X (ZT )|TM,s
≡ M is non-canonical as X (ZT ) is not a lattice.

But X (RT ) has a wall and chamber
structure and notion of broken lines2.

[Cheung–Magee–Nájera Chávez] introduce
broken line convexity: a closed set S ⊂ X (RT )
is broken line convex iff ∀a, b ∈ S and any
broken line segment ` between a, b we have ` ⊂ S .

Theorem (Cheung–Magee–Nájera Chávez)

A compact set S ⊂ X (RT ) that is broken line convex defines a projective
compactification of an A-cluster variety whose graded ring has a theta
basis.

2combinatorial gadgets replacing pseudoholomorphic disks, their counts give the
structure constants for the theta basis
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Intrinsic Newton–Okounkov body
Assuming the full Fock–Goncharov conjecture holds, for f ∈ Γ(A,OA) we
have f =

∑
m∈X (ZT ) cmϑm and define its ϑ-Newton polytope:

Newϑ(f ) := convBL

(
m ∈ X (ZT ) : cm 6= 0

)
⊂ X (RT ).

For L and line bundle on A and R(L) =
⊕

j≥0 Rj(L) its section ring we
define the intrinsic Newton–Okounkov body

∆BL(L) := convBL

⋃
j≥1

 ⋃
f ∈Rj (L)

{
1

j
Newϑ(f )

} ⊂ X (RT )

Theorem (B.–Cheung–Magee–Nájera Chávez)

For a seed s and gs : R(L) \ {0} → M ≡ X (ZT )|TM,s
we have

∆BL(L)|TM,s
= ∆(gs ,L) = Ξs ∩ HL ⊂ MR

 the broken line convex hull detects missing vertices.
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Intrinsic Newton–Okounkov body
Assuming the full Fock–Goncharov conjecture holds, for f ∈ Γ(A,OA) we
have f =

∑
m∈X (ZT ) cmϑm and define its ϑ-Newton polytope:

Newϑ(f ) := convBL

(
m ∈ X (ZT ) : cm 6= 0

)
⊂ X (RT ).

For L and line bundle on A and R(L) =
⊕

j≥0 Rj(L) its section ring we
define the intrinsic Newton–Okounkov body

∆BL(L) := convBL

⋃
j≥1

 ⋃
f ∈Rj (L)

{
1

j
Newϑ(f )

} ⊂ X (RT )

Theorem (B.–Cheung–Magee–Nájera Chávez)
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Example: Grassmannian
For a general Grassmannian Grk(Cn) we define the initial seed s with basis
{ei×j}i ,j where z fi×j := p[1,k−j]∪[k−j+i+1,k+i ] and {·, ·} given by:

(n − k)× 1 (n − k)× 2 . . . (n − k)× k

...
...

...
...

2× 1 2× 2 . . . 2× k

1× 1 1× 2 . . . 1× k

∅

Exercise: for k = 2

Q corresponds to
1

2

3 n − 1

n

. . .

Mutation at 4-valent vertices ↔ 3-term Plücker relations, e.g.

µ1×1(z
f1×1 ) = z

f1×2+f2×1 +z
f∅+f2×2

z
f1×1

=
p[1,k−2]∪[k,k+1]p[1,k−2]∪[k+1,k+2]+p[1,k−1]∪{k+1}p[1,k]

p[1,k−1]∪{k+1}
= p[1,k−2]∪{k,k+2}.
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µ1×1(z
f1×1 ) = z

f1×2+f2×1 +z
f∅+f2×2

z
f1×1

=
p[1,k−2]∪[k,k+1]p[1,k−2]∪[k+1,k+2]+p[1,k−1]∪{k+1}p[1,k]

p[1,k−1]∪{k+1}
= p[1,k−2]∪{k,k+2}.

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez) 15/ 20



Part IV: Examples

The Grassmannian Grk,n is a compactification of a cluster variety [Scott].
More precisely, there exists (A,D) satisfying all above conjectures and
assumptions with Γ(A,OA) ∼= Cox(Grk,n).

The cluster dual X∨ can be embedded into the dual Grassmannian
Grn−k,n.

[Marsh–Rietsch] prove a mirror symmetry conjecture for Grk,n using their
Plücker potential P : Gr◦n−k,n → C.

[Rietsch–Williams] use the cluster structure to define full rank valuations
vals : Cox(Grk,n) \ {0} → N and Newton–Okounkov polytopes ∆(vals) for
every seed s. They show

∆(vals) ∼= Γs(P)

where Γs(P) ⊂ N ⊗Z R is the tropicalization of P|TN,s
.
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Plücker potential P : Gr◦n−k,n → C.

[Rietsch–Williams] use the cluster structure to define full rank valuations
vals : Cox(Grk,n) \ {0} → N and Newton–Okounkov polytopes ∆(vals) for
every seed s. They show

∆(vals) ∼= Γs(P)

where Γs(P) ⊂ N ⊗Z R is the tropicalization of P|TN,s
.

Lara Bossinger (jt. Cheung, Magee, Nájera Chávez) 16/ 20
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Example: Gr2(C5)
In the initial chart
P : Gr◦3,5 → C is given by

P =
p235

p234
+

p134

p345
+

p245

p145
+

p135

p125
+

p124

p123
.

In this case,

conv({vals(pij)}i ,j) = ∆(vals) = Γs(P)

is the Gelfand–Zetlin polytope for SL5

and weight ω2.

Recall, N = Z7 with basis {e12, e13, e14, e15, e23, e34, e45} and z fij = pij .

For the same initial seed we have W : X̃ → C given by

z−e15 +z−e23 +z−e12(1+z−e13)+z−e45(1+z−e14)+z−e34(1+z−e13(1+z−e14)).

And Ξs ∩ (f12 + f13 + f14 + f15 + f23 + f34 + f45)⊥ ∼= Γs(P).
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Grassmannians

Remark: The equality conv({vals(pij)}i ,j) = ∆(vals) is false in general
(counterexamples for Gr3,6 and larger). In general it is a hard (nonetheless
desirable) to find vertices of a Newton–Okounkov polytope, but broken
line convexity helps to do exactly this.

Fact: For all A- and X -cluster varieties there exists a family of cluster
ensemble maps p : A → X given by p∗s : N → M for every seed s.

G̃rk,n ⊃ Ã X̃ ⊂ G̃rk,n

Grk,n ⊃ A X ⊂ Grk,n

p̃

p

G̃rn−k,n ⊃ Ã∨ X̃∨ ⊂ G̃rn−k,n

Grn−k,n ⊃ A∨ X∨ ⊂ Grn−k,n

p̃∨

p∨

We have theta potentials W : X̃ → C and W ∨ : X̃∨ → C and Plücker
potentials P : A∨ → C and P∨ : A → C.
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Grassmannians

Theorem (B.–Cheung–Magee–Nájera Chávez)

For Ã ⊂ G̃rk,n there exists a unique cluster ensemble map p : Ã → X̃ that

pulls back the theta to the Plücker potential p∗(W ) = P̃∨.

Moreover, the dual map (p∗)∨s : N → M satisfies for Plücker coordinates pI

(p∗)∨s (νs(pI )) = gs(pI ) + c ,

and for all seeds s the Newton–Okounkov body ∆(gs) is

∆(gs) = convBL

(
gs(pI ) : I ∈

(
[n]

k

))∣∣∣∣
TM ,s

⊂ MR.

Corollary: (p∗)∨s (Γs) = Ξs ∩ H = ∆(gs) = (p∗)∨s (∆(νs)), so Γs = ∆(νs).
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Moreover, the dual map (p∗)∨s : N → M satisfies for Plücker coordinates pI
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(
gs(pI ) : I ∈

(
[n]

k

))∣∣∣∣
TM ,s

⊂ MR.

Corollary: (p∗)∨s (Γs) = Ξs ∩ H = ∆(gs) = (p∗)∨s (∆(νs)), so Γs = ∆(νs).
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