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Motivation: Why toric degenerations?

For toric varieties we have a dictionary between

8
<

:

algebraic and geometric
properties

e.g. smooth, compact

9
=

; $

8
<

:

combinatorial
data

e.g. polytope, fan

9
=

;

Want to use this dictionary for an arbitrary variety X by
constructing a flat family

⇡ : X ! A1, s.t ⇡�1(0) ⇠= T toric variety

and ⇡�1(t) ⇠= X for t 6= 0.

Flatness preserves (some) algebraic and geometric properties, e.g.
dimension, degree, Gromov-width..
 can use (parts of) the dictionary for X .
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Motivation: Why flag varieties?

•The flag variety F`n is the set of all flags of Cn-vector subspaces

V : {0} = V0 ⇢ V1 ⇢ · · · ⇢ Vn�1 ⇢ Vn = Cn, dimVi = i .

• Can also be realized as SLn/B , where B is the subgroup of upper
triangular matrices with determinant 1. So we can use
representation theory of SLn.

• Consider U ⇢ B matrices with all diagonal entries being 1. Then
SLn/B and SLn/U di↵er only by (C⇤)n. The homogenous
coordinate ring C[SLn/U] has the structure of a cluster algebra.

 lots of additional information to explore di↵erent theories
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Constructions of toric degenerations

Tropical
Geometry
trop(F`n)

classical
Gröbner

degeneration
[KM16]

Representation
Theory of SLn

[Cal02]
[AB01]
[FFL17]

Cluster structure
of C[SLn/U]

[BFZ05]
[GHKK14]
[Mag15]

jt. S.Lamboglia,
F.Mohammadi,
K.Mincheva

jt. G.Fourier
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A: Tropical Geometry

Using the Plücker embedding Gr(k , n) ,! P(
n
k)�1 for

Grassmannians we fix the embedding

F`n ,! Gr(1, n)⇥ · · ·⇥ Gr(n � 1, n) ,! P(
n
1)�1 ⇥ · · ·⇥ P(

n
n�1)�1.

As a result we obtain an ideal In ⇢ C[pI | I ⇢ {1, . . . , n}] with
V (In) = F`n and In is generated by Plücker relations, e.g.

I3 = hp1p23 � p2p13 + p3p12i.

Definition

Let I ⇢ C[x1, . . . , xn] be an ideal and f =
P

a
u

xu 2 I . We define
with respect to w 2 Rn

the initial form of f as in
w

(f ) =
P

w·u minimal aux
u, and

the initial ideal of I as in
w

(I ) = hin
w

(f ) | f 2 I i.
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A: Tropical Geometry

Example

Take I3 ⇢ C[p1, p2, p3, p12, p13, p23] and w = (0, 0, 1, 0, 0, 0) 2 R6.
Then

in
w

(p1p23 � p2p13 + p3p12) = p1p23 � p2p13.

Let X = V (I ) for I ⇢ C[x1, . . . , xn] and w 2 Rn arbitrary. Then we
have a flat family ⇡ : X ! A1 with

⇡�1(t) ⇠= V (I ) for t 6= 0, and ⇡�1(0) ⇠= V (in
w

(I )).

If in
w

(I ) is binomial and prime, then V (in
w

(I )) is a toric variety.
Hence, the flat family defines a (Gröbner) toric degeneration of X .
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A: Tropical Geometry

Definition

The tropicalized flag variety is defined as

trop(F`n) = {w 2 R(
n
1)+···+( n

n�1) | inw (In) contains no monomials}.

It has a fan structure: for w,w0 in relative interior of a cone C

in
w

(In) = in
w

0(In) =: inC (In).

The Sn-action on F`n, for � 2 Sn induced by

p{i1,...,ik} 7! sgn(�)p{�(i1),...,�(ik )},

and the Z2-action induced by pI 7! p[n]\I extend to trop(F`n).

Aim: Find (up to symmetry) all maximal prime cones
C ⇢ trop(F`n), i.e. inC (In) is binomial and prime.
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A: Tropical Geometry

Kaveh-Manon construction:

8
<

:

C ⇢ trop(F`n)
maximal

prime cone

9
=

;

 
⇢

full rank
valuation ⌫C

�
 

8
<

:

Newton-
Okounkov

polytope NOC

9
=

;

NOC is the polytope associated to the normalization of the toric
variety V (inC (In)).
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A: Tropical Geometry

Theorem (B.-Lamboglia-Mincheva-Mohammadi)

For F`4 there are 78 maximal cones in trop(F`4) grouped in five
S4 ⇥ Z2-symmetry classes.

Orbit Size Prime F-vector of NOC

1 24 yes (42, 141, 202, 153, 63, 13)
2 12 yes (40, 132, 186, 139, 57, 12)
3 12 yes (42, 141, 202, 153, 63, 13)
4 24 yes (43, 146, 212, 163, 68, 14)
5 6 no Not applicable
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B: Representation Theory

Two examples of toric degenerations in representation theory are

1 String polytopes (defined by Littelmann [Lit98] resp.
Berenstein-Zelevinsky [BZ01], degeneration due to Caldero
[Cal02])

2 FFLV polytope (definition and degeneration due to
Feigin-Fourier-Littelmann [FFL11], existence conjectured by
Vinberg)

Both can be realized as NO-polytopes due to Kaveh, resp.
Kiritchenko.
 compare to degenerations from trop(F`n)
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A vs. B

For F`4 up to isomorphism there are four classes of string
polytopes and one FFLV polytope. We compare the NO-polytopes
from trop(F`4) to those using polymake:

Orbit Combinatorially equivalent polytopes
1 String 2
2 String 1 (Gelfand-Tsetlin)
3 String 3 and FFLV
4 -
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C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed)
for C[SLn/U] and use mutation to sucessively generate all seeds.

Example

For C[SL4/U] choose as initial seed

s0 = {p2, p3, p23, p1, p12, p123, p4, p34, p234}.

Start replacing red ones (one at a time) by others using mutation,
e.g.

p13 =
p1p23 + p3p12

p2
.

Then µ2(s0) = {p13, p3, p23, p1, p12, p123, p4, p34, p234}.

Computing toric degenerations of flag varieties Lara Bossinger 12/ 18



C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed)
for C[SLn/U] and use mutation to sucessively generate all seeds.

Example

For C[SL4/U] choose as initial seed

s0 = {p2, p3, p23, p1, p12, p123, p4, p34, p234}.

Start replacing red ones (one at a time) by others using mutation,
e.g.

p13 =
p1p23 + p3p12

p2
.

Then µ2(s0) = {p13, p3, p23, p1, p12, p123, p4, p34, p234}.

Computing toric degenerations of flag varieties Lara Bossinger 12/ 18



C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed)
for C[SLn/U] and use mutation to sucessively generate all seeds.

Example

For C[SL4/U] choose as initial seed

s0 = {p2, p3, p23, p1, p12, p123, p4, p34, p234}.

Start replacing red ones (one at a time) by others using mutation,
e.g.

p13 =
p1p23 + p3p12

p2
.

Then µ2(s0) = {p13, p3, p23, p1, p12, p123, p4, p34, p234}.

Computing toric degenerations of flag varieties Lara Bossinger 12/ 18



C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed)
for C[SLn/U] and use mutation to sucessively generate all seeds.

Example

For C[SL4/U] choose as initial seed

s0 = {p2, p3, p23, p1, p12, p123, p4, p34, p234}.

Start replacing red ones (one at a time) by others using mutation,
e.g.

p13 =
p1p23 + p3p12

p2
.

Then µ2(s0) = {p13, p3, p23, p1, p12, p123, p4, p34, p234}.

Computing toric degenerations of flag varieties Lara Bossinger 12/ 18



C: Cluster Algebras

Proceed and obtain the mutation graph for C[SL4/U]:

p14
p124
p134

p14
p13
p134

X
p124
p134

p14
p124
p24

p3
p13
p134

X
p3
p134

X
p124
p2

p14
p13
p23

p14
p24
p23

p2
p124
p24

p3
p13
p23

X
p3
p2

p2
p23
p24

p2
p3
p23

X = p3p12p134+p2p34p123
p23
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C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in C[SLn/U] we have

⇢
superpotential
function W |s

�
 

8
<

:

cone ⌅s

defined by
W |trops (x) � 0

9
=

;  
⇢

polytope
⌅s(�) = ⌅s \ H�

�

There is a flat degeneration of F`n to the toric variety associated
to ⌅s(�).
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B vs. C

Question: Does the GHKK-construction specialize to string
polytopes?

Theorem (B.-Fourier)

For every string polytope there exists a unique seed s such that the
string polytope is unimodularly equivalent to the polytope ⌅s(�).
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B vs. C

The string polytopes (resp. FFLV polytope) located in the
mutation graph of C[SL4/U] up to unimodular (resp. combinat.)
equivalence.
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Thank you!
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http://home.imf.au.dk/jensen/software/gfan/gfan.html.

GHKK14 M. Gross, P. Hacking, S. Keel and M. Kontsevich: Canonical bases for cluster algebras. preprint,
arXiv:1411.1394 (2014).

KM16 Kaveh, K., Manon, C.: Khovanskii bases, Newton-Okounkov polytopes and tropical geometry of projective
varieties. ArXiv preprint arXiv:1610.00298

Lit98 P. Littelmann: Cones, crystals, and patterns. Transform. Groups 3, 145–179 (1998).

Mag15 T. Magee: Fock-Goncharov conjecture and polyhedral cones for U ⇢ SLn and base a�ne space SLn/U.
preprint, arXiv:1502.03769 (2015).

M2 Grayson, D. R., Stillman, M. E.: Macaulay2, a software system for research in algebraic geometry.
Available at URL: http://www.math.uiuc.edu/Macaulay2/

Polymake Gawrilow, E., Joswig, M., Polymake: a framework for analyzing convex polytopes. Polytopes -
combinatorics and computation (Oberwolfach, 1997), 43–73, DMV Sem., 29, Birkhäuser, Basel, (2000).
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