Computing toric degenerations of flag varieties

Lara Bossinger

SIAM

31. July, 2017

Motivation: Why toric degenerations?

For toric varieties we have a dictionary between

Motivation: Why toric degenerations?

For toric varieties we have a dictionary between

$$
\left\{\begin{array}{c}
\text { algebraic and geometric } \\
\text { properties } \\
\text { e.g. smooth, compact }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { combinatorial } \\
\text { data } \\
\text { e.g. polytope, fan }
\end{array}\right\}
$$

Want to use this dictionary for an arbitrary variety X by constructing a flat family

$$
\begin{array}{rll}
\pi: \mathcal{X} \rightarrow \mathbb{A}^{1}, \text { s.t } & \pi^{-1}(0) \cong T & \text { toric variety } \\
\text { and } & \pi^{-1}(t) \cong X & \text { for } t \neq 0 .
\end{array}
$$

Motivation: Why toric degenerations?

For toric varieties we have a dictionary between

$$
\left\{\begin{array}{c}
\text { algebraic and geometric } \\
\text { properties } \\
\text { e.g. smooth, compact }
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { combinatorial } \\
\text { data } \\
\text { e.g. polytope, fan }
\end{array}\right\}
$$

Want to use this dictionary for an arbitrary variety X by constructing a flat family

$$
\begin{array}{rll}
\pi: \mathcal{X} \rightarrow \mathbb{A}^{1}, \text { s.t } & \pi^{-1}(0) \cong T & \text { toric variety } \\
\text { and } & \pi^{-1}(t) \cong X & \text { for } t \neq 0 .
\end{array}
$$

Flatness preserves (some) algebraic and geometric properties, e.g. dimension, degree, Gromov-width..
\rightsquigarrow can use (parts of) the dictionary for X.

Motivation: Why flag varieties?

- The flag variety $\mathcal{F} \ell_{n}$ is the set of all flags of \mathbb{C}^{n}-vector subspaces

$$
\mathcal{V}:\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}, \operatorname{dim} V_{i}=i
$$

Motivation: Why flag varieties?

- The flag variety $\mathcal{F} \ell_{n}$ is the set of all flags of \mathbb{C}^{n}-vector subspaces

$$
\mathcal{V}:\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}, \operatorname{dim} V_{i}=i
$$

- Can also be realized as $S L_{n} / B$, where B is the subgroup of upper triangular matrices with determinant 1 . So we can use representation theory of $S L_{n}$.

Motivation: Why flag varieties?

- The flag variety $\mathcal{F} \ell_{n}$ is the set of all flags of \mathbb{C}^{n}-vector subspaces

$$
\mathcal{V}:\{0\}=V_{0} \subset V_{1} \subset \cdots \subset V_{n-1} \subset V_{n}=\mathbb{C}^{n}, \operatorname{dim} V_{i}=i
$$

- Can also be realized as $S L_{n} / B$, where B is the subgroup of upper triangular matrices with determinant 1 . So we can use representation theory of $S L_{n}$.
- Consider $U \subset B$ matrices with all diagonal entries being 1 . Then $S L_{n} / B$ and $S L_{n} / U$ differ only by $\left(\mathbb{C}^{*}\right)^{n}$. The homogenous coordinate ring $\mathbb{C}\left[S L_{n} / U\right]$ has the structure of a cluster algebra.
\rightsquigarrow lots of additional information to explore different theories

Constructions of toric degenerations

A: Tropical Geometry

Using the Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}\binom{n}{k}-1$ for Grassmannians we fix the embedding

$$
\mathcal{F} \ell_{n} \hookrightarrow \operatorname{Gr}(1, n) \times \cdots \times \operatorname{Gr}(n-1, n) \hookrightarrow \mathbb{P}_{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1} .
$$

A: Tropical Geometry

Using the Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$ for Grassmannians we fix the embedding

$$
\mathcal{F} \ell_{n} \hookrightarrow \operatorname{Gr}(1, n) \times \cdots \times \operatorname{Gr}(n-1, n) \hookrightarrow \mathbb{P}_{\binom{n}{1}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1} .
$$

As a result we obtain an ideal $I_{n} \subset \mathbb{C}\left[p_{I} \mid I \subset\{1, \ldots, n\}\right]$ with $V\left(I_{n}\right)=\mathcal{F} \ell_{n}$ and I_{n} is generated by Plücker relations, e.g.

$$
I_{3}=\left\langle p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right\rangle .
$$

A: Tropical Geometry

Using the Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}^{\binom{n}{k}-1}$ for Grassmannians we fix the embedding

$$
\mathcal{F} \ell_{n} \hookrightarrow \operatorname{Gr}(1, n) \times \cdots \times \operatorname{Gr}(n-1, n) \hookrightarrow \mathbb{P}\binom{n}{1}-1 \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1} .
$$

As a result we obtain an ideal $I_{n} \subset \mathbb{C}\left[p_{I} \mid I \subset\{1, \ldots, n\}\right]$ with $V\left(I_{n}\right)=\mathcal{F} \ell_{n}$ and I_{n} is generated by Plücker relations, e.g.

$$
I_{3}=\left\langle p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right\rangle
$$

Definition

Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and $f=\sum a_{\mathbf{u}} x^{\mathbf{u}} \in I$. We define with respect to $\mathbf{w} \in \mathbb{R}^{n}$

- the initial form of f as $\operatorname{in}_{\mathbf{w}}(f)=\sum_{\mathbf{w} \cdot \mathbf{u} \text { minimal }} a_{\mathbf{u}} x^{\mathbf{u}}$, and
- the initial ideal of I as $\mathrm{in}_{\mathbf{w}}(I)=\left\langle\mathrm{in}_{\mathbf{w}}(f) \mid f \in I\right\rangle$.

A: Tropical Geometry

Example

Take $I_{3} \subset \mathbb{C}\left[p_{1}, p_{2}, p_{3}, p_{12}, p_{13}, p_{23}\right]$ and $\mathbf{w}=(0,0,1,0,0,0) \in \mathbb{R}^{6}$. Then

$$
\mathrm{in}_{\mathbf{w}}\left(p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right)=p_{1} p_{23}-p_{2} p_{13} .
$$

A: Tropical Geometry

Example

Take $I_{3} \subset \mathbb{C}\left[p_{1}, p_{2}, p_{3}, p_{12}, p_{13}, p_{23}\right]$ and $\mathbf{w}=(0,0,1,0,0,0) \in \mathbb{R}^{6}$. Then

$$
\mathrm{in}_{\mathbf{w}}\left(p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right)=p_{1} p_{23}-p_{2} p_{13} .
$$

Let $X=V(I)$ for $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbf{w} \in \mathbb{R}^{n}$ arbitrary. Then we have a flat family $\pi: \mathcal{X} \rightarrow \mathbb{A}^{1}$ with

$$
\pi^{-1}(t) \cong V(I) \text { for } t \neq 0, \text { and } \pi^{-1}(0) \cong V\left(\mathrm{in}_{\mathrm{w}}(I)\right)
$$

A: Tropical Geometry

Example

Take $I_{3} \subset \mathbb{C}\left[p_{1}, p_{2}, p_{3}, p_{12}, p_{13}, p_{23}\right]$ and $\mathbf{w}=(0,0,1,0,0,0) \in \mathbb{R}^{6}$. Then

$$
\mathrm{in}_{\mathbf{w}}\left(p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right)=p_{1} p_{23}-p_{2} p_{13} .
$$

Let $X=V(I)$ for $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbf{w} \in \mathbb{R}^{n}$ arbitrary. Then we have a flat family $\pi: \mathcal{X} \rightarrow \mathbb{A}^{1}$ with

$$
\pi^{-1}(t) \cong V(I) \text { for } t \neq 0, \text { and } \pi^{-1}(0) \cong V\left(\mathrm{in}_{\mathrm{w}}(I)\right)
$$

If $\mathrm{in}_{\mathrm{w}}(I)$ is binomial and prime, then $V\left(\mathrm{in}_{\mathrm{w}}(I)\right)$ is a toric variety. Hence, the flat family defines a (Gröbner) toric degeneration of X.

A: Tropical Geometry

Definition

The tropicalized flag variety is defined as

$$
\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)=\left\{\left.w \in \mathbb{R}^{\binom{n}{1}+\cdots+\binom{n}{n-1}} \right\rvert\, \mathrm{in}_{w}\left(I_{n}\right) \text { contains no monomials }\right\} .
$$

A: Tropical Geometry

Definition

The tropicalized flag variety is defined as
$\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)=\left\{\left.w \in \mathbb{R}^{\binom{n}{1}+\cdots+\binom{n}{n-1}} \right\rvert\, \operatorname{in}_{w}\left(I_{n}\right)\right.$ contains no monomials $\}$.

- It has a fan structure: for $\mathbf{w}, \mathbf{w}^{\prime}$ in relative interior of a cone C

$$
\operatorname{in}_{\mathbf{w}}\left(I_{n}\right)=\operatorname{in}_{\mathbf{w}^{\prime}}\left(I_{n}\right)=: \operatorname{in}_{C}\left(I_{n}\right) .
$$

A: Tropical Geometry

Definition

The tropicalized flag variety is defined as $\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)=\left\{\left.w \in \mathbb{R}^{\binom{n}{1}+\cdots+\binom{n}{n-1}} \right\rvert\, \mathrm{in}_{w}\left(I_{n}\right)\right.$ contains no monomials $\}$.

- It has a fan structure: for $\mathbf{w}, \mathbf{w}^{\prime}$ in relative interior of a cone C

$$
\operatorname{in}_{\mathbf{w}}\left(I_{n}\right)=\operatorname{in}_{\mathbf{w}^{\prime}}\left(I_{n}\right)=: \operatorname{in}_{C}\left(I_{n}\right)
$$

- The S_{n}-action on $\mathcal{F} \ell_{n}$, for $\sigma \in S_{n}$ induced by

$$
p_{\left\{i_{1}, \ldots, i_{k}\right\}} \mapsto \operatorname{sgn}(\sigma) p_{\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right\}},
$$

and the \mathbb{Z}^{2}-action induced by $p_{I} \mapsto p_{[n] \backslash /}$ extend to $\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)$.

A: Tropical Geometry

Definition

The tropicalized flag variety is defined as

$$
\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)=\left\{\left.w \in \mathbb{R}^{\binom{n}{1}+\cdots+\binom{n}{n-1}} \right\rvert\, \mathrm{in}_{w}\left(I_{n}\right) \text { contains no monomials }\right\} .
$$

- It has a fan structure: for $\mathbf{w}, \mathbf{w}^{\prime}$ in relative interior of a cone C

$$
\mathrm{in}_{\mathbf{w}}\left(I_{n}\right)=\mathrm{in}_{\mathbf{w}^{\prime}}\left(I_{n}\right)=: \operatorname{in}_{C}\left(I_{n}\right)
$$

- The S_{n}-action on $\mathcal{F} \ell_{n}$, for $\sigma \in S_{n}$ induced by

$$
p_{\left\{i_{1}, \ldots, i_{k}\right\}} \mapsto \operatorname{sgn}(\sigma) p_{\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right\}},
$$

and the \mathbb{Z}^{2}-action induced by $p_{I} \mapsto p_{[n] \backslash /}$ extend to $\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)$.
Aim: Find (up to symmetry) all maximal prime cones $C \subset \operatorname{trop}\left(F \ell_{n}\right)$, i.e. $\operatorname{in}_{C}\left(I_{n}\right)$ is binomial and prime.

A: Tropical Geometry

Kaveh-Manon construction:
$\left\{\begin{array}{c}C \subset \operatorname{trop}\left(F \ell_{n}\right) \\ \text { maximal } \\ \text { prime cone }\end{array}\right\}$

A: Tropical Geometry

Kaveh-Manon construction:
$\left\{\begin{array}{c}C \subset \operatorname{trop}\left(F \ell_{n}\right) \\ \text { maximal } \\ \text { prime cone }\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}\text { full rank } \\ \text { valuation } \nu_{C}\end{array}\right\}$

A: Tropical Geometry

Kaveh-Manon construction:

$$
\left\{\begin{array}{c}
C \subset \operatorname{trop}\left(\mathcal{F} \ell_{n}\right) \\
\text { maximal } \\
\text { prime cone }
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { full rank } \\
\text { valuation } \nu_{C}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { Newton- } \\
\text { Okounkov } \\
\text { polytope } N O_{C}
\end{array}\right\}
$$

A: Tropical Geometry

Kaveh-Manon construction:

$$
\left\{\begin{array}{c}
C \subset \operatorname{trop}\left(\mathcal{F} \ell_{n}\right) \\
\text { maximal } \\
\text { prime cone }
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { full rank } \\
\text { valuation } \nu_{C}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { Newton- } \\
\text { Okounkov } \\
\text { polytope } N O_{C}
\end{array}\right\}
$$

$N O_{C}$ is the polytope associated to the normalization of the toric variety $V\left(\operatorname{in}_{C}\left(I_{n}\right)\right)$.

A: Tropical Geometry

Theorem (B.-Lamboglia-Mincheva-Mohammadi)

For $\mathcal{F \ell _ { 4 }}$ there are 78 maximal cones in trop $\left(\mathcal{F} \ell_{4}\right)$ grouped in five $S_{4} \times \mathbb{Z}^{2}$-symmetry classes.

A: Tropical Geometry

Theorem (B.-Lamboglia-Mincheva-Mohammadi)

For $\mathcal{F} \ell_{4}$ there are 78 maximal cones in trop $\left(\mathcal{F} \ell_{4}\right)$ grouped in five $S_{4} \times \mathbb{Z}^{2}$-symmetry classes.

Orbit	Size	Prime	F-vector of NO_{C}
1	24	yes	$(42,141,202,153,63,13)$
2	12	yes	$(40,132,186,139,57,12)$
3	12	yes	$(42,141,202,153,63,13)$
4	24	yes	$(43,146,212,163,68,14)$
5	6	no	Not applicable

B: Representation Theory

Two examples of toric degenerations in representation theory are

B: Representation Theory

Two examples of toric degenerations in representation theory are
© String polytopes (defined by Littelmann [Lit98] resp. Berenstein-Zelevinsky [BZ01], degeneration due to Caldero [Cal02])

B: Representation Theory

Two examples of toric degenerations in representation theory are
© String polytopes (defined by Littelmann [Lit98] resp. Berenstein-Zelevinsky [BZ01], degeneration due to Caldero [Cal02])
(2) FFLV polytope (definition and degeneration due to Feigin-Fourier-Littelmann [FFL11], existence conjectured by Vinberg)

B: Representation Theory

Two examples of toric degenerations in representation theory are
© String polytopes (defined by Littelmann [Lit98] resp. Berenstein-Zelevinsky [BZ01], degeneration due to Caldero [Cal02])
(2) FFLV polytope (definition and degeneration due to Feigin-Fourier-Littelmann [FFL11], existence conjectured by Vinberg)

Both can be realized as NO-polytopes due to Kaveh, resp. Kiritchenko.
\rightsquigarrow compare to degenerations from $\operatorname{trop}\left(\mathcal{F} \ell_{n}\right)$

A vs. B

For $\mathcal{F} \ell_{4}$ up to isomorphism there are four classes of string polytopes and one FFLV polytope. We compare the NO-polytopes from $\operatorname{trop}\left(\mathcal{F} \ell_{4}\right)$ to those using polymake:

A vs. B

For $\mathcal{F} \ell_{4}$ up to isomorphism there are four classes of string polytopes and one FFLV polytope. We compare the NO-polytopes from $\operatorname{trop}\left(\mathcal{F} \ell_{4}\right)$ to those using polymake:

Orbit	Combinatorially equivalent polytopes
1	String 2
2	String 1 (Gelfand-Tsetlin)
3	String 3 and FFLV
4	-

C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed) for $\mathbb{C}\left[S L_{n} / U\right]$ and use mutation to sucessively generate all seeds.

C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed) for $\mathbb{C}\left[S L_{n} / U\right]$ and use mutation to sucessively generate all seeds.

Example

For $\mathbb{C}\left[S L_{4} / U\right]$ choose as initial seed

$$
s_{0}=\left\{\underline{p_{2}}, p_{3}, p_{23}, p_{1}, p_{12}, p_{123}, p_{4}, p_{34}, p_{234}\right\} .
$$

C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed) for $\mathbb{C}\left[S L_{n} / U\right]$ and use mutation to sucessively generate all seeds.

Example

For $\mathbb{C}\left[S L_{4} / U\right]$ choose as initial seed

$$
s_{0}=\left\{\underline{p_{2}}, p_{3}, p_{23}, p_{1}, p_{12}, p_{123}, p_{4}, p_{34}, p_{234}\right\} .
$$

Start replacing red ones (one at a time) by others using mutation, e.g.

$$
p_{13}=\frac{p_{1} p_{23}+p_{3} p_{12}}{p_{2}} .
$$

C: Cluster Algebras

Idea: start with set of algebraically independent generators (seed) for $\mathbb{C}\left[S L_{n} / U\right]$ and use mutation to sucessively generate all seeds.

Example

For $\mathbb{C}\left[S L_{4} / U\right]$ choose as initial seed

$$
s_{0}=\left\{\underline{p_{2}}, p_{3}, p_{23}, p_{1}, p_{12}, p_{123}, p_{4}, p_{34}, p_{234}\right\} .
$$

Start replacing red ones (one at a time) by others using mutation, e.g.

$$
p_{13}=\frac{p_{1} p_{23}+p_{3} p_{12}}{p_{2}}
$$

Then $\mu_{2}\left(s_{0}\right)=\left\{p_{13}, p_{3}, p_{23}, p_{1}, p_{12}, p_{123}, p_{4}, p_{34}, p_{234}\right\}$.

C: Cluster Algebras

Proceed and obtain the mutation graph for $\mathbb{C}\left[S L_{4} / U\right]$:

C: Cluster Algebras

Proceed and obtain the mutation graph for $\mathbb{C}\left[S L_{4} / U\right]$:

C: Cluster Algebras

Proceed and obtain the mutation graph for $\mathbb{C}\left[S L_{4} / U\right]$:

C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in $\mathbb{C}\left[S L_{n} / U\right]$ we have

C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in $\mathbb{C}\left[S L_{n} / U\right]$ we have
$\left\{\begin{array}{c}\text { superpotential } \\ \text { function }\left.W\right|_{s}\end{array}\right\}$

C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in $\mathbb{C}\left[S L_{n} / U\right]$ we have

$$
\left\{\begin{array}{c}
\text { superpotential } \\
\text { function }\left.W\right|_{s}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { cone } \bar{\Xi}_{s} \\
\text { defined by } \\
\left.W\right|_{s} ^{\text {trop }}(x) \geq 0
\end{array}\right\}
$$

C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in $\mathbb{C}\left[S L_{n} / U\right]$ we have

$$
\left\{\begin{array}{c}
\text { superpotential } \\
\text { function }\left.W\right|_{s}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { cone } \bar{\Xi}_{s} \\
\text { defined by } \\
\left.W\right|_{s} ^{\text {trop }}(x) \geq 0
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { polytope } \\
\Xi_{s}(\lambda)=\bar{\Xi}_{s} \cap H_{\lambda}
\end{array}\right\}
$$

C: Cluster Algebras

[GHKK14] construction:
For a fixed seed s in $\mathbb{C}\left[S L_{n} / U\right]$ we have

$$
\left\{\begin{array}{c}
\text { superpotential } \\
\text { function }\left.W\right|_{s}
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { cone } \bar{\Xi}_{s} \\
\text { defined by } \\
\left.W\right|_{s} ^{\text {rop }}(x) \geq 0
\end{array}\right\} \rightsquigarrow\left\{\begin{array}{c}
\text { polytope } \\
\bar{\Xi}_{s}(\lambda)=\bar{\Xi}_{s} \cap H_{\lambda}
\end{array}\right\}
$$

There is a flat degeneration of $\mathcal{F} \ell_{n}$ to the toric variety associated to $\bar{\Xi}_{s}(\lambda)$.

B vs. C

Question: Does the GHKK-construction specialize to string polytopes?

B vs. C

Question: Does the GHKK-construction specialize to string polytopes?

Theorem (B.-Fourier)

For every string polytope there exists a unique seed s such that the string polytope is unimodularly equivalent to the polytope $\bar{\Xi}_{s}(\lambda)$.

B vs. C

The string polytopes (resp. FFLV polytope) located in the mutation graph of $\mathbb{C}\left[S L_{4} / U\right]$ up to unimodular (resp. combinat.) equivalence.

B vs. C

The string polytopes (resp. FFLV polytope) located in the mutation graph of $\mathbb{C}\left[S L_{4} / U\right]$ up to unimodular (resp. combinat.) equivalence.

B vs. C

The string polytopes (resp. FFLV polytope) located in the mutation graph of $\mathbb{C}\left[S L_{4} / U\right]$ up to unimodular (resp. combinat.) equivalence.

B vs. C

The string polytopes (resp. FFLV polytope) located in the mutation graph of $\mathbb{C}\left[S L_{4} / U\right]$ up to unimodular (resp. combinat.) equivalence.

Thank you!

References

BFZ05 Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126, no. 1, 152 (2005).

BZ01 Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77-128 (2001).
Cal02 Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7, 51-60 (2002).
FFL17 Fang, X., Fourier, G., Littelmann, P.: Essential bases and toric degenerations arising from birational sequences. Adv. Math. 312, 107149 (2017).

FFL11 Feigin, E., Fourier, G., Littelmann, P.: PBW filtration and bases for irreducible modules in type A_{n}. Transform. Groups 16, no. 1, 71-89 (2011).
Gfan Jensen, A. N.: Gfan, a software system for Gröbner fans and tropical varieties. URL: http://home.imf.au.dk/jensen/software/gfan/gfan.html.

GHKK14 M. Gross, P. Hacking, S. Keel and M. Kontsevich: Canonical bases for cluster algebras. preprint, arXiv:1411.1394 (2014).

KM16 Kaveh, K., Manon, C.: Khovanskii bases, Newton-Okounkov polytopes and tropical geometry of projective varieties. ArXiv preprint arXiv:1610.00298

Lit98 P. Littelmann: Cones, crystals, and patterns. Transform. Groups 3, 145-179 (1998).
Mag15 T. Magee: Fock-Goncharov conjecture and polyhedral cones for $U \subset S L_{n}$ and base affine space $S L_{n} / U$. preprint, arXiv:1502.03769 (2015).
M2 Grayson, D. R., Stillman, M. E.: Macaulay2, a software system for research in algebraic geometry. Available at URL: http://www.math.uiuc.edu/Macaulay2/

Polymake Gawrilow, E., Joswig, M., Polymake: a framework for analyzing convex polytopes. Polytopes combinatorics and computation (Oberwolfach, 1997), 43-73, DMV Sem., 29, Birkhäuser, Basel, (2000).

