De la Grassmanniana y las gráficas plabic, a los positroides y las particiones que no se cruzan.

Jorge Luis Santos Silva

Instituto de Matemáticas, UNAM, Oax.

26/11/2021

# Grassmanniana Grkn

#### Definición

La **Grassmanniana**  $Gr_{kn}$  es el espacio de todos los espacios vectoriales de  $\mathbb{R}^n$  de dimensión k. La **Grassmanniana totalmente no negativa**  $(Gr_{kn})_{\geq 0}$  (**Grassmanniana positiva**  $(Gr_{kn})_{>0}$ ) es el conjunto de  $Gr_{kn}$  que pueden ser representado por matrices A tal que  $\Delta_I(A) \geq 0$   $(\Delta_I(A) > 0)$ , donde  $I \subseteq {[n] \choose k}$  y  $\Delta_I(A)$  es el menor maximal de A con las columnas indexadas por I.

#### Definiciór

Dado  $\mathcal{M} \subseteq \binom{[n]}{k}$  definimos la **positroid cell**  $S_{\mathcal{M}}^{tnn}$  como los elementos de  $Gr_{kn}$  que son representados por matrices A tales que  $\Delta_I(A) > 0$  para  $I \in \mathcal{M}$  y  $\Delta_J(A) = 0$  si  $J \notin \mathcal{M}$ .

# Grassmanniana Grkn

#### Definición

La **Grassmanniana**  $Gr_{kn}$  es el espacio de todos los espacios vectoriales de  $\mathbb{R}^n$  de dimensión k. La **Grassmanniana totalmente no negativa**  $(Gr_{kn})_{\geq 0}$  (**Grassmanniana positiva**  $(Gr_{kn})_{>0}$ ) es el conjunto de  $Gr_{kn}$  que pueden ser representado por matrices A tal que  $\Delta_I(A) \geq 0$   $(\Delta_I(A) > 0)$ , donde  $I \subseteq {[n] \choose k}$  y  $\Delta_I(A)$  es el menor maximal de A con las columnas indexadas por I.

# Definición

Dado  $\mathcal{M} \subseteq \binom{[n]}{k}$  definimos la **positroid cell**  $S_{\mathcal{M}}^{tnn}$  como los elementos de  $Gr_{kn}$  que son representados por matrices A tales que  $\Delta_I(A) > 0$  para  $I \in \mathcal{M}$  y  $\Delta_J(A) = 0$  si  $J \notin \mathcal{M}$ .

# Observacioń

 $Gr_{kn}$  es unión disjunta de positroid cells  $S^{tnn}_{\mathbb{M}}.$ 

#### Definición

Un **collar de Grassmann reducido** de tipo (k, n) es una sucesión  $\mathcal{I} = (I_1, I_2, \dots, I_n)$  tal que para toda  $i \leq n$  tenemos,  $I_i \in \binom{[n]}{k}, i \in I_i \ y \ I_{i+1} = (I_i \setminus \{i\}) \cup \{j\}$  para alguna  $j \in [n]$ .

# Ejemplo

(123, 235, 234, 134, 145) y (12, 23, 34, 45, 51) son collares de Grassmann de tipo (3, 5) y (2, 5) respectivamente.

# Observacioń

 $Gr_{kn}$  es unión disjunta de positroid cells  $S_{\mathcal{M}}^{tnn}$ .

## Definición

Un **collar de Grassmann reducido** de tipo (k, n) es una sucesión  $\mathcal{I} = (I_1, I_2, \dots, I_n)$  tal que para toda  $i \leq n$  tenemos,  $I_i \in \binom{[n]}{k}$ ,  $i \in I_i$  y  $I_{i+1} = (I_i \setminus \{i\}) \cup \{j\}$  para alguna  $j \in [n]$ .

# Ejemplo

(123, 235, 234, 134, 145) y (12, 23, 34, 45, 51) son collares de Grassmann de tipo (3, 5) y (2, 5) respectivamente.

#### Observacioń

 $Gr_{kn}$  es unión disjunta de positroid cells  $\mathcal{S}^{tnn}_{\mathbb{M}}.$ 

# Definición

Un **collar de Grassmann reducido** de tipo (k, n) es una sucesión  $\mathcal{I} = (I_1, I_2, \dots, I_n)$  tal que para toda  $i \leq n$  tenemos,  $I_i \in \binom{[n]}{k}$ ,  $i \in I_i$  y  $I_{i+1} = (I_i \setminus \{i\}) \cup \{j\}$  para alguna  $j \in [n]$ .

# Ejemplo

(123, 235, 234, 134, 145) y (12, 23, 34, 45, 51) son collares de Grassmann de tipo (3,5) y (2,5) respectivamente.

Una **gráfica plabic** es una gráfica plana no dirigida dibujada dentro de un círculo con n puntos es la frontera dispuestos en contra de las manecillas del reloj, tal que cada vértice frontera es adyacente a un sólo vértice. Cada vértice interior (no frontera) esta coloreado color blanco o negro.

## Definición

Un diagrama Le  $L(\lambda, D)_{k,n}$  es un diagrama de Young para la partición  $\lambda$  contenido en un rectángulo k(n-k) y las cajas están etiquetadas con "+" y "0", donde las etiquetas cumplen: no hay 0 que tiene un + arriba en la misma columna y un + a su izquierda en el mismo renglón.

Sea  $S^{tnn}_{\mathbb{M}}$  una positroid cell en  $(Gr_{kn})_{\geq 0}$ . Para  $r \leq n$ , tomamos  $I_r \in \mathbb{M}$  que es el menor con el orden lexicográfico con respecto al orden  $r < r+1 < \cdots < n < 1 < \cdots < r-1$ . Entonces  $\{I_i\}_{i\leq n}$  es un collar de Grassmann del tipo (k,n).

Sea  $\mathcal{I}$  un collar de Grassmann de tipo (k, n):

- Construimos un diagrama de Young dentro de un rectángulo de k(n-k) tal que las columnas son etiquetadas por  $I_1$ .
- Hacemos  $I_1 \setminus I_i = \{a_1 > a_2 \dots > a_r\}$  y  $I_i \setminus I_1 = \{b_1 < b_2 < \dots < b_r\}$  y formamos las parejas

$$(a_1, b_1), (a_2, b_2), \ldots, (a_r, b_r).$$

en la correspondiente caja de el diagrama colocamos un "±"



Sea  $S^{tnn}_{\mathbb{M}}$  una positroid cell en  $(Gr_{kn})_{\geq 0}$ . Para  $r \leq n$ , tomamos  $I_r \in \mathbb{M}$  que es el menor con el orden lexicográfico con respecto al orden  $r < r+1 < \cdots < n < 1 < \cdots < r-1$ . Entonces  $\{I_i\}_{i\leq n}$  es un collar de Grassmann del tipo (k,n).

Sea  $\mathfrak{I}$  un collar de Grassmann de tipo (k, n):

- Construimos un diagrama de Young dentro de un rectángulo de k(n-k) tal que las columnas son etiquetadas por  $I_1$ .
- Hacemos  $I_1 \setminus I_i = \{a_1 > a_2 \dots > a_r\}$  y  $I_i \setminus I_1 = \{b_1 < b_2 < \dots < b_r\}$  y formamos las parejas

$$(a_1, b_1), (a_2, b_2), \ldots, (a_r, b_r).$$

en la correspondiente caja de el diagrama colocamos un "±"



Sea  $S_{\mathfrak{M}}^{tnn}$  una positroid cell en  $(Gr_{kn})_{\geq 0}$ . Para  $r \leq n$ , tomamos  $I_r \in \mathcal{M}$  que es el menor con el orden lexicográfico con respecto al orden  $r < r+1 < \cdots < n < 1 < \cdots < r-1$ . Entonces  $\{I_i\}_{i\leq n}$  es un collar de Grassmann del tipo (k,n).

Sea  $\mathcal{I}$  un collar de Grassmann de tipo (k, n):

- Construimos un diagrama de Young dentro de un rectángulo de k(n-k) tal que las columnas son etiquetadas por  $I_1$ .
- Hacemos  $I_1 \setminus I_i = \{a_1 > a_2 \cdots > a_r\}$  y  $I_i \setminus I_1 = \{b_1 < b_2 < \cdots < b_r\}$  y formamos las parejas

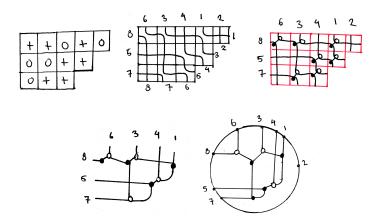
$$(a_1, b_1), (a_2, b_2), \ldots, (a_r, b_r).$$

en la correspondiente caja de el diagrama colocamos un "+".



 Repetimos lo que hicimos en el paso anterior con todos los demás elementos del collar, y en las cajas que quedaron vacías colocamos un "0". Dado un diagrama Le ¿Cómo construimos una gráfica plabic?

- Dado un diagrama Le etiquetaremos la frontera sureste con los números 1 hasta el n empezando desde la esquina noreste. Remplazaremos los 0 con cruces y los + con "codos". Para cada i en la frontera sureste etiquetaremos con el mismo número el elemento de la frontera que llegamos caminando por los caminos que hemos creado.
- Agregaremos una arista en los codos que estén dentro de la misma casilla, y dos vértices uno blanco si el codo va de norte a este y uno negro si va de oeste a sur. Y eliminemos todas las etiquetas de la frontera sureste.



- Borremos todos los vértices de grado dos, como tambien borraremos todos los eje del diagrama que terminan en la frontera sureste.
- Borremos ahora las casillas y acomodemos en un circulo con n vértices frontera.

Un **matroide** M es un par  $(E, \mathbb{B})$  que consiste en un conjunto finito E y una colección de conjuntos finita de conjuntos  $\mathbb{B} = \mathbb{B}(M)$  de E llamadas **bases** de M, que satisface el **axioma de cambio de base**: Si  $B_1, B_2 \in \mathbb{B}$  y  $b_1 \in B_1 \setminus B_2$ , entonces existe  $b_2 \in B_2 - B_1$  talque

$$(B_1 \setminus \{b_1\}) \cup B_2 \in \mathcal{B}.$$

A E lo llamamos **tierra** de M; también decimos que M es un matroide de E.

Decimos que un matroide M es **conexo** si no puede ser escrito como suma directa<sup>a</sup> de dos matroides no vacíos .

<sup>a</sup>Dadas M y N matroides de E y F respectivamente, definimos su suma directa  $M \oplus N$  como la unión disjunta de sus tierras y sus bases.

# Definición

Dada una matríz A de kxn totalmente no negativa, le asociamos un matroide M(A) de la siguiente manera: el conjunto tierra será [n] y las bases serán  $I \in \binom{[n]}{k}$  tal que  $\Delta_I(A) \neq 0$ . El matroide asociado M(A) le llamaremos **positroide**.

Sea  $I = (I_1, I_2, ..., I_n)$  un collar de Grassmann de tipo (d, n). Tomemos la colección

$$\mathcal{B}(I) := \{B \in \binom{[n]}{k} | B \ge_i I_i, 0 \le i \le n\},\$$

entonces  $\mathfrak{M}(I) = ([n], \mathfrak{B}(I))$  es un positroide.

Dada una gráfica plabic definimos una **orientación perfecta** sustituyendo las aristas por flecha, donde para todo vértice interior tenemos que:

- si de color negro, entonces existe una única flecha que sale de el.
- si es de color blanco, entonces existe una única flecha que entra a el.

Decimos que una gráfica plabic es **orientable perfectamente** si admite una orientación perfecta.

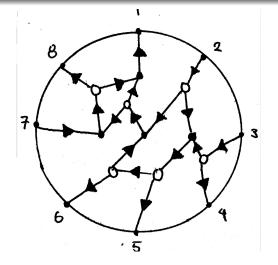


Figure: Orientación perfecta de una gráfica plabic.



15 / 22

# Proposición

Sea G una gráfica plabic de tipo (d, n). Entones tenemos un positroide  $M_G$  en [n] tal que sus bases están dadas por

 $\{I_0 | 0 \text{ es una orientacion perfecta}\},\$ 

donde  $I_{\mathbb{O}}$  es el conjunto de **fuentes** de los vértices frontera de G.

Las gráficas plabic que son obtenidas de L-diagramas son orientables perfectamente.

Dados G una gráfica plabic de tipo (d, n) y  $\mathcal{O}$  una orientación perfecta en G y un conjunto J de vértices frontera tal que  $|I_{\mathcal{O}}| = |J|$ , decimos que un conjunto de caminos que no comparten vértices de  $I_{\mathcal{O}}$  a J es un **flujo** si el conjunto de fuentes de estos caminos son  $I_{\mathcal{O}} \setminus (I_{\mathcal{O}} \cap J)$  y lo objetivos son  $J \setminus (I_{\mathcal{O}} \cap J)$ .

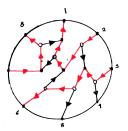


Figure: Flujo de  $\{2,3,7\}$  a  $\{1,6,8\}$ .

# Proposición

Sean G una gráfica plabic de tipo (d,n) y (0) una orientación perfecta en G. Entonces el conjunto de bases  $M_G$  son precisamente

 $\{I | \text{ existe un flujo de } I_0 \text{ a } I\}.$ 

# Proposición

Consideremos un positroide que está dado por la gráfica plabic G y la orientación perfecta  $\mathbb{O}$ . Entonces existe un cambio de base entre  $I_{\mathbb{O}}$  y  $J = (I_{\mathbb{O}} \setminus \{i\} \cup \{j\})$  si y sólo si existe un camino dirigido en  $\mathbb{O}$  de el vértice i al j.

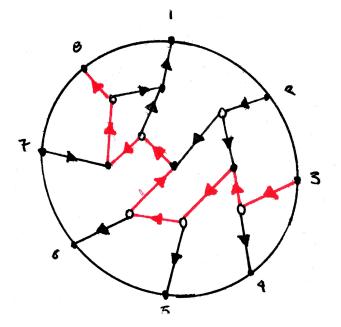


Figure: Camino dirigido de 3 a 8.

Un positroide es **conexo** si y sólo si no puede ser escrito como suma directa de dos positroides no vacíos.

# Proposición

Sea M un matroide en E. Para todo  $a,b \in E$  hacemos  $a \sim b$  siempre que existan dos bases  $B_1$  y  $B_2$  de M tal que  $B_2 = (B_1 \setminus \{a\}) \cup \{b\}$ . Entonces  $\sim$  es una relación de equivalencia y sus clases de equivalencia son las componentes conexas de M.

Sea  $\Pi$  una partición de n. Decimos que  $\Pi$  es una **partición que no se cruza** si no existen  $i, k, j, m \in [n]$  y  $A, B \in \Pi$  tales que  $i < k < j < m, i, j \in A$  y  $k, m \in B$ . Al conjunto de particiones que no se cruzan de [n] lo denotaremos con  $NC_n$ .

#### Teorema

Sean M un positroide en [n] y  $S_1, S_2, \ldots, S_k$  los conjuntos tierra de las componentes conexas de M.

$$\Pi_M = \{S_1, S_2, \dots, S_n\}$$

es una partición que no se cruza.

También tenemos el regreso

Si  $\Pi = \{S_1, S_2, \dots S_k\}$  es una partición que no se cruza en [n] y  $M_1, M_2, \dots, M_k$  matroides conexos para  $S_1, S_2, \dots, S_k$  respectivamente, entonces  $M = \bigoplus_{i \le k} M_i$  es un positroide.