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What is this talk about?

» This talk is about a space E(2, G) that one can assign to any
topological group G.

» The space E(2, G) knows something about which pairs of
elements of G commute and which do not. In particular, it
will follow from its definition that:

If G is abelian then E(2, G) is contractible.

» Simon Gritschacher, Bernardo Villarreal and | proved a strong
converse for compact Lie groups:
If G is a compact Lie group and E(2, G) has
7 = T = 74 = 0, then G is abelian.
» Background:
» When G is discrete there is a better result due to Cihan Okay:
If G is a discrete group and m1(E(2, G)) =0, then G is
abelian.
» A theorem of Araki, James and Thomas:
If G is a compact, connected Lie group, and the commutator
map G x G — G, (g, h) — g~ *h~lgh is null-homotopic, then
G is abelian.



The Plan

» First | will tell you about the case of discrete groups.

» A brief reminder about simplicial complexes.
» Abels' and Holz's idea of “higher generation”.
» Cihan Okay's theorem: m1(E(2, G)) = 0 implies G is abelian.

» Then I'll tell you about the Lie group case.

» A brief reminder about simplicial spaces.

» The definition of E(2, G).

» The main tool in our proof: the commutator map
E(2,G) — B|G, G].



Simplicial complexes

Definition

A simplicial complex K is a family of non-empty finite sets such
that) 0o C7e K = o€ K.

The vertices are the elements of the singletons:

V(K) ={v:{v} e K} = UUeK"-

Geometric realization |K|
We think of the elements of K as
simplices.
» {u} € K is a vertex
» {u,v} € K is an edge
» {u,v,w} € K is a triangle
> etc.




Simplicial complexes associated to families of subsets

Let i = {U; : j € J} be a family of subsets of a set X.
Consider the following simplicial complexes:

» Ny, the nerve of U:
{Jo,---+Jn} is a simplex of Ny is U, N U, N--- N U;, # 0.
» Sy, the subset complex of U:
{x0,-..,Xn} is a simplex of S if there is some j € J such
that {xo,...,xn} C U;.
» Py, the order complex of the poset (U, C), whose simplices
are chains {Uj, C Uy C--- C U, }.

Theorem (Abels and Holz)

» Ny and S, are homotopy equivalent.
> IfUiNU #0 = U:nU; €U, then Py is also homotopy
equivalent to Ny, and Sy.



Cosets

Let F be a family of subgroups of some discrete group G, closed
under intersection.

The collection GF = {gH : g € G, H € F} of all cosets of
elements of F is a family of subsets of G to which we can apply
the previous constructions.

We obtain three homotopy equivalent simplicial complexes whose

simplices are:
Ngr sets of cosets with non-empty intersection
ScF subsets of G contained in a single coset
Pcr chains of cosets ordered by inclusion

If G € F, these are contractible.



Higher generation

Let F be a family of subgroups of some discrete group G, closed
under intersection.
The group H = colimgcx F has the following presentation:

generators x, for g € |JF,
relations xg, = Xgx;, whenever g, h € F for some F € F.
There is a canonical homomorphism x : H — G given by
K(xg) =&
Theorem (Abels and Holz)
> mo(Ner) = G/(UF)

> m1(Ngr) = kerk

Definition (Abels and Holz)
The family F is n-generating mx(Ngx) = 0 for all k < n.



The family of abelian subgroups

For the family A of abelian subgroups of G we can say more.
First, recall that if G itself is abelian, Ng 4, Sc4 and Pg 4 are
contractible.

Theorem (Okay)

If m1(Pga) = 1, then G is abelian.

Proof.
By Abels’ & Holz's theorem, the group

H=(xg:8€ G| xgh=xgxnif [g,h] =1)

is isomorphic to G via k(xg) = g.

Since (gh)~! = g~th~! whenever [g, h] = 1, the formula

Xg > xg_1 defines an endomorphism of H. Therefore g +— g~
defines an endomorphism of G and so G is abelian.
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Affine commutativity

Let G be a group and let gp,...,gn € G. Let's describe the
simplices of Sg_4, where A = abelian subgroups of G.
The following are equivalent:

» {go,...,8n} is contained in some coset of an abelian
subgroup.
> {go_lgl, e ,go_lg,,} commute pairwise.

> {g g :0<i,j<n} commute pairwise.
If these conditions hold we say that {go,...,gs} is an affinely

commutative set. We'll call Sg 4 the affine commutativity complex
of G.

Observations

> Any set of 1 or 2 elements is affinely commutative.

> A set of more than 3 elements is affinely commutative if and
only if all of its 3 element subsets are affinely commutative.



The fundamental group of a simplicial complex

Let X be a connected simplicial complex and let T be a spanning
tree for its 1-skeleton.

The fundamental group of the geometric realization of X has the
following presentation:

generators xy, for each {u,v} € X.

relations P x,, =1
> Xuv = XV_LIl
» x,o =1if{u,v}eT
> XuvXow = Xuw if {u,v,w} € X

(In particular, the fundamental group only depends on the vertices,
edges and triangles of X, not on simplices of higher dimension.)



The fundamental group of the complex of affine
commutativity

Since Sg 4 has all possible edges, we can pick T as the star
centered at 1 € G and obtain the following presentation m1(S¢.4):
generators xgn with g,h € G

relations P xg1 = x5 =1
> XghXnk = Xgk if {g, h, k} is affinely commutative.



The commutator homomorphism

Lemma
{g, h, k} is affinely commutative = |[g, h][h, k] = [g, k].

Proof.
(g th~tgh)(h 1k~ hk) = g H(h ™ g)(k th)k
=g (kT h)(h ')k = [g, K]
Therefore, there is a homomorphism ¢ : m1(Sg.4) — [G, G] defined
on the generators by c(xg1) := [g, h].
Obviously c is surjective: its image includes all generators of
[G, G]. Therefore, if [G, G] # 1, then 71(Sc4) # 1.

Theorem
If Sg 4 is simply connected, then G is abelian.



Simplicial spaces

A simplicial space X, comprises:

» for each n > 0 a space X, whose points we call n-simplices
—we'll imagine each n-simplex as equipped with a fixed
numbering of its vertices from 0 to n—, and

» continuous functions d; : X, — X,_1 for 0 < j < n, that we
interpret as follows: given an n-simplex x € X, the simplex
d;(x) is the face opposite vertex number j in x.

Geometric realization
Let ¢ : A"1 — A" be the inclusion of the face opposite vertex j,

and set [Xu| = (IL,z0 Xo x A7) /~, where (x,1,(p)) ~ (d(x), p)
forxe X,, p€ AL



E(2,G)

Let G be a topological group.
We define a simplicial space Eo(2, G) with

En(2,G) ={(g0,---,8n) : {80,---,8n} is affinely commutative}.

E.(2,G) € G™1 and we give it the subspace topology.

Vertex number j of (go,...,&n) is gj and

di(go,---,8n) = (&0, -+ &~1,8+1>---+8&n)-

The space E(2, G) is the geometric realization of E,(2, G).
(The original definition by Adem, F. Cohen and Torres Giese is
different but isomorphic to this one).



What is known about these spaces?

» Not much!
If G is abelian, E(2, G) = EG is contractible.

» If G is discrete, E(2, G) is homotopy equivalent to the
complex of affine commutativity of G.
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> We don't know much about the case of general topological
groups, research has been focused on compact Lie groups.

» There is a variant E(2, G); obtained by taking from E,(2, G)
just the connected component E,(2, G); of (1,...,1). This
space is more tractable, at least for rational cohomology
calculations:

Theorem (Adem and Gémez)

If G is a compact connected Lie group, E(2, G)1 has the homotopy
type of a CW complex with finitely many cells and

H*(E(2, G)1,Q) = (H*(G/T;Q) ® H*(G/T;Q))", where T is a
maximal torus in G and W = Ng(T)/T is the Weyl group.



Concrete calculations of the homotopy type of E(2, G)?

Very few!

Theorem (Okay)

If G is an extraspecial group of order 32, then m1(E(2,G)) = Z/2
and the universal cover of E(2, G) is homotopy equivalent to
/1 S2. Thus, for example, m(E(2, G)) = 715!, y

m3(E(2, G)) = 747 (1)

Theorem (Gritschacher)

E(2,U) ~ BU x BU(6) x BU(8) x ---, where BU(2n) is the

(2n — 1)-connected cover of BU. Thus, m,(E(2,U)) =Z" 1y
mant+1(E(2,U)) = 0.

Theorem (A., Gritschacher, Villarreal)

E(2,0(2)) ~ S3Vv S?V 52 and E(2,SU(2)) ~ S* v X*RP?. Thus,
for example, T10(E(2,SU(2))) = Z/4 ® (Z/24)? y
m10(E(2,0(2))) = Z°% & (2/2)*° & (Z/3)* & (2/15)* & (2/24)**



Commutator map

A big advantage of the definition | gave you of E(2, G) over the
original isomorphic but slightly different definition, is that it
suggests defining the following simplicial map:

e : Eo(2,G) — B.[G, G]
¢n(go,81---.8n) = ([g0, 81], 81, 82], - - - . [€n—1. &0n])

Its geometric realization is the commutator map

c: E(2,G) — B|[G,G].

When G is discrete, ¢ induces the homomorphism

c:m(E(2,G)) — [G, G] given by c(xgn) = [g, h] that we used
before.

The existence of ¢ is a bit of a miracle. The space E(2, G) is called
that because it is a part of a family E(q, G) defined in terms of
nilpotent subgroups of class less than g. For g > 2 we don’t know
how to define something like ¢.



Our main theorem

Theorem (A., Gritschacher, Villarreal)
For a compact Lie group the following are equivalent:
» G is abelian.
» E(2,G) is contractible.
» ¢: E(2,G) — B[G, G] is null-homotopic.
> m(E(2,G)) =0 for k =1,2,4.



Homotopy-abelian groups

For compact connected Lie groups, the implication

“¢ null-homotopic = G is abelian”,

can be deduced from a classic theorem of Araki, James and
Thomas:

Theorem (Araki, James, Thomas)

If G is a compact connected Lie group, and the algebraic
commutator map G x G — G, (g, h) — [g, h] is null-homotopic,
then G is a torus.

The proof relies on the classification of Lie groups.

Warning: This is false for disconnected groups! The group

G = (S! x Qg)/D where D = {(—1,-1)) < S x Qg is
homotopy-abelian, but not abelian. Indeed, [G, G] = (1,+1)
(mod D) = (¥1,1) (mod D). So [G, G] is contained in the image
of St x {1} in G, which is = S and thus path-connected.



¢ null-homotopic = G is abelian

If X, is a simplicial space, we can take a truncated geometric
realization, Fy|X,|, given by the image of H,Iy:o Xn x A" in | X,].
There is a commutative square:

YGAG —— FE?2,G) — FB[G,G] —— ¥[G, G]

! |

E(2,G) —— B[G,G]

The top horizontal composition is the suspension of the map
GANG— G, gNh— g, h].

If ¢ is null-homotopic, then so is the composite XG A G — B[G, G],
and so is its adjunct G A G — [G, G] ~ QBJG, G].

Since the commutator G x G — G factors through G A G, the
commutator is then also null-homotopic, and by the theorem of
Araki, James and Thomas we deduce that G is a torus.



Sketch of the proof of the main theorem

> Qc: QE(2,S5U(2)) — SU(2) has a section.

» If m4(E(2,G)) =0, then the identity component Gy of G is a
torus.
This step uses that or any simply-connected simple Lie group
K there is homomorphism SU(2) < K inducing an
isomorphism on 73.

» If Gy is a torus and E(2, G) is 2-connected, then
¢: E(2,G) — B[G, G] is null-homotopic.
[G, G] C Gy is also a torus, say of rank r, and maps like that
correspond to classes in H?(E(2, G);Z") = 0.



The End

Thank you!



The nerve theorem

The nerve of a cover
IfU = {U; :j € J} is a family of subsets of X, the nerve of U is
the simplicial complex N, with:
vertices the elements of J
simplices the {jo,...,jn} such that Uy N U; N---NU;, #0.

The Nerve Theorem

If U satisfies that for any {jo,...,jn} C J the intersection

U, Uy, N---NU;, # 0 is either empty or contractible, then X is
homotopy equivalent to Njy,.

The fine print
The theorem holds if:
» U is an open cover of a space X, or

» U is cover of a simplicial complex X by subcomplexes.



Example of the Nerve Theorem

Say X = U1 U U U Us with:
» U; contractible,
» U; N U; contractible, and
> U; N U N Us empty.

Then N¢y, u,,us) is the boundary of a triangle.



The nerve and the subset complex

> Forxe X, let y={jeJ:xe U}
» All non-empty finite subsets of J, are simplices of N,.

> Let Ny be the subcomplex of N, formed by these simplices.
N :={Ny : x € X} is a cover of Ny.

> N, N---N Ny, consists of all non-empty finite subsets of
{y€J:{x0,...,xa} € U;}. Therefore, this intersection is
empty when that set is and contractible otherwise.

» By the nerve theorem, Ny ~ Ny = Sy.



The order complex of the cover

> For x € X, let U, = {U; € J: x € Uj}.

» Let Py be the order complex of (Uy, Q).
P = {Px:x € X} is a cover of Py.

> P, N---N Py, is the order complex of
Z:={U;: {x0,...,%xa} C U;}. Therefore the intersection is
empty if Z = 0.

» If Z # () and U is closed under non-empty intersection, then Z
is directed and thus its order complex is contractible.

» By the nerve theorem, Py ~ Np = Pyy,.



