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What is this talk about?

I This talk is about a space E (2,G ) that one can assign to any
topological group G .

I The space E (2,G ) knows something about which pairs of
elements of G commute and which do not. In particular, it
will follow from its definition that:
If G is abelian then E (2,G ) is contractible.

I Simon Gritschacher, Bernardo Villarreal and I proved a strong
converse for compact Lie groups:
If G is a compact Lie group and E (2,G ) has
π1 = π2 = π4 = 0, then G is abelian.

I Background:
I When G is discrete there is a better result due to Cihan Okay:

If G is a discrete group and π1(E (2,G )) = 0, then G is
abelian.

I A theorem of Araki, James and Thomas:
If G is a compact, connected Lie group, and the commutator
map G × G → G , (g , h) 7→ g−1h−1gh is null-homotopic, then
G is abelian.



The Plan

I First I will tell you about the case of discrete groups.
I A brief reminder about simplicial complexes.
I Abels’ and Holz’s idea of “higher generation”.
I Cihan Okay’s theorem: π1(E (2,G )) = 0 implies G is abelian.

I Then I’ll tell you about the Lie group case.
I A brief reminder about simplicial spaces.
I The definition of E (2,G ).
I The main tool in our proof: the commutator map

E (2,G )→ B[G ,G ].



Simplicial complexes

Definition
A simplicial complex K is a family of non-empty finite sets such
that ∅ 6= σ ⊂ τ ∈ K =⇒ σ ∈ K .
The vertices are the elements of the singletons:

V (K ) := {v : {v} ∈ K} =
⋃

σ∈K
σ.

Geometric realization |K |
We think of the elements of K as
simplices.

I {u} ∈ K is a vertex

I {u, v} ∈ K is an edge

I {u, v ,w} ∈ K is a triangle

I etc.



Simplicial complexes associated to families of subsets

Let U = {Uj : j ∈ J} be a family of subsets of a set X .
Consider the following simplicial complexes:

I NU , the nerve of U :
{j0, . . . , jn} is a simplex of NU is Uj0 ∩ Uj1 ∩ · · · ∩ Ujn 6= ∅.

I SU , the subset complex of U :
{x0, . . . , xn} is a simplex of SU if there is some j ∈ J such
that {x0, . . . , xn} ⊆ Uj .

I PU , the order complex of the poset (U ,⊆), whose simplices
are chains {Uj0 ⊆ Uj1 ⊆ · · · ⊆ Ujn}.

Theorem (Abels and Holz)

I NU and SU are homotopy equivalent.
I If Ui ∩ Uj 6= ∅ =⇒ Ui ∩ Uj ∈ U , then PU is also homotopy

equivalent to NU and SU .



Cosets

Let F be a family of subgroups of some discrete group G , closed
under intersection.
The collection GF = {gH : g ∈ G ,H ∈ F} of all cosets of
elements of F is a family of subsets of G to which we can apply
the previous constructions.
We obtain three homotopy equivalent simplicial complexes whose
simplices are:

NGF sets of cosets with non-empty intersection

SGF subsets of G contained in a single coset

PGF chains of cosets ordered by inclusion

If G ∈ F , these are contractible.



Higher generation

Let F be a family of subgroups of some discrete group G , closed
under intersection.
The group H = colimF∈F F has the following presentation:

generators xg for g ∈
⋃
F ,

relations xgh = xgxh whenever g , h ∈ F for some F ∈ F .

There is a canonical homomorphism κ : H → G given by
κ(xg ) = g .

Theorem (Abels and Holz)

I π0(NGF ) = G/〈
⋃
F〉

I π1(NGF ) = ker κ

Definition (Abels and Holz)

The family F is n-generating πk(NGF ) = 0 for all k < n.



The family of abelian subgroups

For the family A of abelian subgroups of G we can say more.
First, recall that if G itself is abelian, NGA, SGA and PGA are
contractible.

Theorem (Okay)

If π1(PGA) = 1, then G is abelian.

Proof.
By Abels’ & Holz’s theorem, the group

H = 〈xg : g ∈ G | xgh = xgxh if [g , h] = 1〉

is isomorphic to G via κ(xg ) = g .
Since (gh)−1 = g−1h−1 whenever [g , h] = 1, the formula
xg 7→ x−1g defines an endomorphism of H. Therefore g 7→ g−1

defines an endomorphism of G and so G is abelian.



Affine commutativity

Let G be a group and let g0, . . . , gn ∈ G . Let’s describe the
simplices of SGA, where A = abelian subgroups of G .
The following are equivalent:

I {g0, . . . , gn} is contained in some coset of an abelian
subgroup.

I {g−10 g1, . . . , g
−1
0 gn} commute pairwise.

I {g−1i gj : 0 ≤ i , j ≤ n} commute pairwise.

If these conditions hold we say that {g0, . . . , gn} is an affinely
commutative set. We’ll call SGA the affine commutativity complex
of G .

Observations

I Any set of 1 or 2 elements is affinely commutative.

I A set of more than 3 elements is affinely commutative if and
only if all of its 3 element subsets are affinely commutative.



The fundamental group of a simplicial complex

Let X be a connected simplicial complex and let T be a spanning
tree for its 1-skeleton.
The fundamental group of the geometric realization of X has the
following presentation:

generators xuv for each {u, v} ∈ X .

relations I xvv = 1
I xuv = x−1vu
I xuv = 1 if {u, v} ∈ T
I xuvxvw = xuw if {u, v ,w} ∈ X

(In particular, the fundamental group only depends on the vertices,
edges and triangles of X , not on simplices of higher dimension.)



The fundamental group of the complex of affine
commutativity

Since SGA has all possible edges, we can pick T as the star
centered at 1 ∈ G and obtain the following presentation π1(SGA):

generators xgh with g , h ∈ G

relations I xg1 = x1g = 1
I xghxhk = xgk if {g , h, k} is affinely commutative.



The commutator homomorphism

Lemma
{g , h, k} is affinely commutative =⇒ [g , h][h, k] = [g , k].

Proof.
(g−1h−1gh)(h−1k−1hk) = g−1(h−1g)(k−1h)k

= g−1(k−1h)(h−1g)k = [g , k]

Therefore, there is a homomorphism c : π1(SGA)→ [G ,G ] defined
on the generators by c(xgh) := [g , h].
Obviously c is surjective: its image includes all generators of
[G ,G ]. Therefore, if [G ,G ] 6= 1, then π1(SGA) 6= 1.

Theorem
If SGA is simply connected, then G is abelian.



Simplicial spaces

A simplicial space X• comprises:

I for each n ≥ 0 a space Xn whose points we call n-simplices
—we’ll imagine each n-simplex as equipped with a fixed
numbering of its vertices from 0 to n—, and

I continuous functions dj : Xn → Xn−1 for 0 ≤ j ≤ n, that we
interpret as follows: given an n-simplex x ∈ Xn, the simplex
dj(x) is the face opposite vertex number j in x .

Geometric realization
Let ιj : ∆n−1 → ∆n be the inclusion of the face opposite vertex j ,

and set |X•| =
(∐

n≥0 Xn ×∆n
)
/∼, where (x , ιj(p)) ∼ (dj(x), p)

for x ∈ Xn, p ∈ ∆n−1.



E (2,G )

Let G be a topological group.
We define a simplicial space E•(2,G ) with

En(2,G ) = {(g0, . . . , gn) : {g0, . . . , gn} is affinely commutative}.

En(2,G ) ⊆ Gn+1 and we give it the subspace topology.
Vertex number j of (g0, . . . , gn) is gj and
dj(g0, . . . , gn) = (g0, . . . , gj−1, gj+1, . . . , gn).
The space E (2,G ) is the geometric realization of E•(2,G ).
(The original definition by Adem, F. Cohen and Torres Giese is
different but isomorphic to this one).



What is known about these spaces?

I Not much!

I If G is abelian, E (2,G ) = EG is contractible.

I If G is discrete, E (2,G ) is homotopy equivalent to the
complex of affine commutativity of G .

I We don’t know much about the case of general topological
groups, research has been focused on compact Lie groups.

I There is a variant E (2,G )1 obtained by taking from En(2,G )
just the connected component En(2,G )1 of (1, . . . , 1). This
space is more tractable, at least for rational cohomology
calculations:

Theorem (Adem and Gómez)

If G is a compact connected Lie group, E (2,G )1 has the homotopy
type of a CW complex with finitely many cells and

H∗(E (2,G )1,Q) ∼=
(
H∗(G/T ;Q)⊗ H∗(G/T ;Q)

)W
, where T is a

maximal torus in G and W = NG (T )/T is the Weyl group.



Concrete calculations of the homotopy type of E (2,G )?

Very few!

Theorem (Okay)

If G is an extraspecial group of order 32, then π1(E (2,G )) = Z/2
and the universal cover of E (2,G ) is homotopy equivalent to∨151 S2. Thus, for example, π2(E (2,G )) ∼= Z151, y
π3(E (2,G )) ∼= Z11476. (!)

Theorem (Gritschacher)

E (2,U) ' BU × BU〈6〉 × BU〈8〉 × · · ·, where BU〈2n〉 is the
(2n − 1)-connected cover of BU. Thus, π2n(E (2,U)) = Zn−1 y
π2n+1(E (2,U)) = 0.

Theorem (A., Gritschacher, Villarreal)

E (2,O(2)) ' S3 ∨ S2 ∨ S2 and E (2,SU(2)) ' S4 ∨ Σ4RP2. Thus,
for example, π10(E (2, SU(2))) = Z/4⊕ (Z/24)2 y
π10(E (2,O(2))) = Z308⊕ (Z/2)215⊕ (Z/3)4⊕ (Z/15)4⊕ (Z/24)34



Commutator map

A big advantage of the definition I gave you of E (2,G ) over the
original isomorphic but slightly different definition, is that it
suggests defining the following simplicial map:

c• : E•(2,G )→ B•[G ,G ]

cn(g0, g1 . . . , gn) = ([g0, g1], [g1, g2], . . . , [gn−1, gn])

Its geometric realization is the commutator map
c : E (2,G )→ B[G ,G ].
When G is discrete, c induces the homomorphism
c : π1(E (2,G ))→ [G ,G ] given by c(xgh) = [g , h] that we used
before.
The existence of c is a bit of a miracle. The space E (2,G ) is called
that because it is a part of a family E (q,G ) defined in terms of
nilpotent subgroups of class less than q. For q > 2 we don’t know
how to define something like c.



Our main theorem

Theorem (A., Gritschacher, Villarreal)

For a compact Lie group the following are equivalent:

I G is abelian.

I E (2,G ) is contractible.

I c : E (2,G )→ B[G ,G ] is null-homotopic.

I πk(E (2,G )) = 0 for k = 1, 2, 4.



Homotopy-abelian groups

For compact connected Lie groups, the implication
“c null-homotopic =⇒ G is abelian”,
can be deduced from a classic theorem of Araki, James and
Thomas:

Theorem (Araki, James, Thomas)

If G is a compact connected Lie group, and the algebraic
commutator map G × G → G, (g , h) 7→ [g , h] is null-homotopic,
then G is a torus.

The proof relies on the classification of Lie groups.
Warning: This is false for disconnected groups! The group
G = (S1 × Q8)/D where D = 〈(−1,−1)〉 ≤ S1 × Q8 is
homotopy-abelian, but not abelian. Indeed, [G ,G ] = (1,±1)
(mod D) = (∓1, 1) (mod D). So [G ,G ] is contained in the image
of S1 × {1} in G , which is ∼= S1 and thus path-connected.



c null-homotopic =⇒ G is abelian

If X• is a simplicial space, we can take a truncated geometric
realization, FN |X•|, given by the image of

∐N
n=0 Xn ×∆n in |X•|.

There is a commutative square:

ΣG ∧ G F1E (2,G )
F1c−−−−→ F1B[G ,G ] Σ[G ,G ]y y

E (2,G )
c−−−−→ B[G ,G ]

The top horizontal composition is the suspension of the map
G ∧ G → G , g ∧ h 7→ [g , h].
If c is null-homotopic, then so is the composite ΣG ∧G → B[G ,G ],
and so is its adjunct G ∧ G → [G ,G ] ' ΩB[G ,G ].
Since the commutator G × G → G factors through G ∧ G , the
commutator is then also null-homotopic, and by the theorem of
Araki, James and Thomas we deduce that G is a torus.



Sketch of the proof of the main theorem

I Ωc : ΩE (2,SU(2))→ SU(2) has a section.

I If π4(E (2,G )) = 0, then the identity component G0 of G is a
torus.
This step uses that or any simply-connected simple Lie group
K there is homomorphism SU(2) ↪→ K inducing an
isomorphism on π3.

I If G0 is a torus and E (2,G ) is 2-connected, then
c : E (2,G )→ B[G ,G ] is null-homotopic.
[G ,G ] ⊂ G0 is also a torus, say of rank r , and maps like that
correspond to classes in H2(E (2,G );Zr ) = 0.



The End

Thank you!



The nerve theorem

The nerve of a cover
If U = {Uj : j ∈ J} is a family of subsets of X , the nerve of U is
the simplicial complex NU with:

vertices the elements of J

simplices the {j0, . . . , jn} such that Uj0 ∩ Uj1 ∩ · · · ∩ Ujn 6= ∅.

The Nerve Theorem
If U satisfies that for any {j0, . . . , jn} ⊆ J the intersection
Uj0 ∩ Uj1 ∩ · · · ∩ Ujn 6= ∅ is either empty or contractible, then X is
homotopy equivalent to NU .

The fine print

The theorem holds if:

I U is an open cover of a space X , or

I U is cover of a simplicial complex X by subcomplexes.



Example of the Nerve Theorem

Say X = U1 ∪ U2 ∪ U3 with:

I Ui contractible,

I Ui ∩ Uj contractible, and

I U1 ∩ U2 ∩ U3 empty.

Then N{U1,U2,U3} is the boundary of a triangle.



The nerve and the subset complex

I For x ∈ X , let Jx = {j ∈ J : x ∈ Uj}.
I All non-empty finite subsets of Jx are simplices of NU .

I Let Nx be the subcomplex of NU formed by these simplices.
N := {Nx : x ∈ X} is a cover of NU .

I Nx0 ∩ · · · ∩ Nxn consists of all non-empty finite subsets of
{j ∈ J : {x0, . . . , xn} ⊆ Uj}. Therefore, this intersection is
empty when that set is and contractible otherwise.

I By the nerve theorem, NU ' NN ∼= SU .



The order complex of the cover

I For x ∈ X , let Ux = {Uj ∈ J : x ∈ Uj}.
I Let Px be the order complex of (Ux ,⊆).
P := {Px : x ∈ X} is a cover of PU .

I Px0 ∩ · · · ∩ Pxn is the order complex of
I := {Uj : {x0, . . . , xn} ⊆ Uj}. Therefore the intersection is
empty if I = ∅.

I If I 6= ∅ and U is closed under non-empty intersection, then I
is directed and thus its order complex is contractible.

I By the nerve theorem, PU ' NP ∼= PU .


