Higher generation of compact Lie groups by abelian subgroups

Omar Antolín Camarena (IMATE UNAM - Mexico City)

What is this talk about?

- This talk is about a space E(2, G) that one can assign to any topological group G.
- The space E(2, G) knows something about which pairs of elements of G commute and which do not. In particular, it will follow from its definition that: If G is abelian then E(2, G) is contractible.
- Simon Gritschacher, Bernardo Villarreal and I proved a strong converse for compact Lie groups:

If G is a compact Lie group and E(2, G) has

 $\pi_1 = \pi_2 = \pi_4 = 0$, then G is abelian.

Background:

- When G is discrete there is a better result due to Cihan Okay: If G is a discrete group and π₁(E(2, G)) = 0, then G is abelian.
- A theorem of Araki, James and Thomas: If G is a compact, connected Lie group, and the commutator map G × G → G, (g, h) → g⁻¹h⁻¹gh is null-homotopic, then G is abelian.

The Plan

First I will tell you about the case of discrete groups.

- A brief reminder about simplicial complexes.
- Abels' and Holz's idea of "higher generation".
- Cihan Okay's theorem: $\pi_1(E(2, G)) = 0$ implies G is abelian.
- Then I'll tell you about the Lie group case.
 - A brief reminder about simplicial spaces.
 - The definition of E(2, G).
 - The main tool in our proof: the commutator map E(2, G) → B[G, G].

Simplicial complexes

Definition

A simplicial complex K is a family of non-empty finite sets such that $\emptyset \neq \sigma \subset \tau \in K \implies \sigma \in K$. The vertices are the elements of the singletons:

$$V(K) := \{ \mathbf{v} : \{ \mathbf{v} \} \in K \} = \bigcup_{\sigma \in K} \sigma.$$

Geometric realization |K|

We think of the elements of *K* as *simplices*.

- $\{u\} \in K$ is a vertex
- $\{u, v\} \in K$ is an edge
- $\{u, v, w\} \in K$ is a triangle

etc.

Simplicial complexes associated to families of subsets

Let $U = \{U_j : j \in J\}$ be a family of subsets of a set X. Consider the following simplicial complexes:

P_U, the order complex of the poset (U, ⊆), whose simplices are chains {U_{j0} ⊆ U_{j1} ⊆ · · · ⊆ U_{jn}}.

Theorem (Abels and Holz)

- ▶ $N_{\mathcal{U}}$ and $S_{\mathcal{U}}$ are homotopy equivalent.
- If $U_i \cap U_j \neq \emptyset \implies U_i \cap U_j \in U$, then P_U is also homotopy equivalent to N_U and S_U .

Cosets

Let \mathcal{F} be a family of subgroups of some discrete group G, closed under intersection.

The collection $G\mathcal{F} = \{gH : g \in G, H \in \mathcal{F}\}$ of all cosets of elements of \mathcal{F} is a family of subsets of G to which we can apply the previous constructions.

We obtain three homotopy equivalent simplicial complexes whose simplices are:

 $N_{G\mathcal{F}}$ sets of cosets with non-empty intersection

 $S_{G\mathcal{F}}$ subsets of G contained in a single coset

 P_{GF} chains of cosets ordered by inclusion

If $G \in \mathcal{F}$, these are contractible.

Higher generation

Let \mathcal{F} be a family of subgroups of some discrete group G, closed under intersection.

The group $H = \operatorname{colim}_{F \in \mathcal{F}} F$ has the following presentation:

generators x_g for $g \in \bigcup \mathcal{F}$,

relations $x_{gh} = x_g x_h$ whenever $g, h \in F$ for some $F \in \mathcal{F}$.

There is a canonical homomorphism $\kappa : H \to G$ given by $\kappa(x_g) = g$.

Theorem (Abels and Holz)

$$= \pi_0(N_{GF}) = G/\langle \bigcup F \rangle$$

 $\blacktriangleright \pi_1(N_{GF}) = \ker \kappa$

Definition (Abels and Holz)

The family \mathcal{F} is *n*-generating $\pi_k(N_{G\mathcal{F}}) = 0$ for all k < n.

The family of abelian subgroups

For the family \mathcal{A} of abelian subgroups of G we can say more. First, recall that if G itself is abelian, $N_{G\mathcal{A}}$, $S_{G\mathcal{A}}$ and $P_{G\mathcal{A}}$ are contractible.

Theorem (Okay) If $\pi_1(P_{GA}) = 1$, then G is abelian.

Proof.

By Abels' & Holz's theorem, the group

$$H = \langle x_g : g \in G \mid x_{gh} = x_g x_h \text{ if } [g, h] = 1 \rangle$$

is isomorphic to G via $\kappa(x_g) = g$. Since $(gh)^{-1} = g^{-1}h^{-1}$ whenever [g, h] = 1, the formula $x_g \mapsto x_g^{-1}$ defines an endomorphism of H. Therefore $g \mapsto g^{-1}$ defines an endomorphism of G and so G is abelian.

Affine commutativity

Let G be a group and let $g_0, \ldots, g_n \in G$. Let's describe the simplices of $S_{G\mathcal{A}}$, where \mathcal{A} = abelian subgroups of G. The following are equivalent:

- {g₀,...,g_n} is contained in some coset of an abelian subgroup.
- $\{g_0^{-1}g_1,\ldots,g_0^{-1}g_n\}$ commute pairwise.
- $\{g_i^{-1}g_j: 0 \le i, j \le n\}$ commute pairwise.

If these conditions hold we say that $\{g_0, \ldots, g_n\}$ is an *affinely* commutative set. We'll call S_{GA} the *affine commutativity complex* of G.

Observations

- Any set of 1 or 2 elements is affinely commutative.
- A set of more than 3 elements is affinely commutative if and only if all of its 3 element subsets are affinely commutative.

The fundamental group of a simplicial complex

Let X be a connected simplicial complex and let T be a spanning tree for its 1-skeleton.

The fundamental group of the geometric realization of X has the following presentation:

generators x_{uv} for each $\{u, v\} \in X$. relations $\downarrow x_{vv} = 1$ $\downarrow x_{uv} = x_{vu}^{-1}$ $\downarrow x_{uv} = 1$ if $\{u, v\} \in T$ $\downarrow x_{uv} x_{vw} = x_{uw}$ if $\{u, v, w\} \in X$

(In particular, the fundamental group only depends on the vertices, edges and triangles of X, not on simplices of higher dimension.)

The fundamental group of the complex of affine commutativity

Since $S_{G,A}$ has all possible edges, we can pick T as the star centered at $1 \in G$ and obtain the following presentation $\pi_1(S_{G,A})$:

generators
$$x_{gh}$$
 with $g, h \in G$
relations
 $x_{g1} = x_{1g} = 1$
 $x_{gh}x_{hk} = x_{gk}$ if $\{g, h, k\}$ is affinely commutative.

The commutator homomorphism

Lemma

 $\{g, h, k\}$ is affinely commutative $\implies [g, h][h, k] = [g, k].$

Proof.

$$(g^{-1}h^{-1}gh)(h^{-1}k^{-1}hk) = g^{-1}(h^{-1}g)(k^{-1}h)k$$

 $= g^{-1}(k^{-1}h)(h^{-1}g)k = [g, k]$

Therefore, there is a homomorphism $c : \pi_1(S_{GA}) \to [G, G]$ defined on the generators by $c(x_{gh}) := [g, h]$.

Obviously c is surjective: its image includes all generators of [G, G]. Therefore, if $[G, G] \neq 1$, then $\pi_1(S_{GA}) \neq 1$.

Theorem

If S_{GA} is simply connected, then G is abelian.

Simplicial spaces

A simplicial space X_{\bullet} comprises:

- ▶ for each n ≥ 0 a space X_n whose points we call n-simplices —we'll imagine each n-simplex as equipped with a fixed numbering of its vertices from 0 to n—, and
- Continuous functions d_j : X_n → X_{n-1} for 0 ≤ j ≤ n, that we interpret as follows: given an n-simplex x ∈ X_n, the simplex d_j(x) is the face opposite vertex number j in x.

Geometric realization

Let $\iota_j : \Delta^{n-1} \to \Delta^n$ be the inclusion of the face opposite vertex j, and set $|X_{\bullet}| = \left(\coprod_{n \ge 0} X_n \times \Delta^n \right) / \sim$, where $(x, \iota_j(p)) \sim (d_j(x), p)$ for $x \in X_n$, $p \in \Delta^{n-1}$.

E(2, G)

Let G be a topological group. We define a simplicial space $E_{\bullet}(2, G)$ with

 $E_n(2,G) = \{(g_0,\ldots,g_n) : \{g_0,\ldots,g_n\} \text{ is affinely commutative}\}.$

 $E_n(2, G) \subseteq G^{n+1}$ and we give it the subspace topology. Vertex number j of (g_0, \ldots, g_n) is g_j and $d_j(g_0, \ldots, g_n) = (g_0, \ldots, g_{j-1}, g_{j+1}, \ldots, g_n)$. The space E(2, G) is the geometric realization of $E_{\bullet}(2, G)$. (The original definition by Adem, F. Cohen and Torres Giese is different but isomorphic to this one).

What is known about these spaces?

- Not much!
- If G is abelian, E(2, G) = EG is contractible.
- ▶ If G is discrete, E(2, G) is homotopy equivalent to the complex of affine commutativity of G.
- We don't know much about the case of general topological groups, research has been focused on compact Lie groups.
- There is a variant E(2, G)₁ obtained by taking from E_n(2, G) just the connected component E_n(2, G)₁ of (1,...,1). This space is more tractable, at least for rational cohomology calculations:

Theorem (Adem and Gómez)

If G is a compact connected Lie group, $E(2, G)_1$ has the homotopy type of a CW complex with finitely many cells and $H^*(E(2, G)_1, \mathbb{Q}) \cong (H^*(G/T; \mathbb{Q}) \otimes H^*(G/T; \mathbb{Q}))^W$, where T is a maximal torus in G and $W = N_G(T)/T$ is the Weyl group. Concrete calculations of the homotopy type of E(2, G)?

Very few!

Theorem (Okay)

If G is an extraspecial group of order 32, then $\pi_1(E(2,G)) = \mathbb{Z}/2$ and the universal cover of E(2,G) is homotopy equivalent to $\bigvee^{151} S^2$. Thus, for example, $\pi_2(E(2,G)) \cong \mathbb{Z}^{151}$, y $\pi_3(E(2,G)) \cong \mathbb{Z}^{11476}$. (!)

Theorem (Gritschacher)

 $E(2, U) \simeq BU \times BU\langle 6 \rangle \times BU\langle 8 \rangle \times \cdots$, where $BU\langle 2n \rangle$ is the (2n-1)-connected cover of BU. Thus, $\pi_{2n}(E(2, U)) = \mathbb{Z}^{n-1} y \pi_{2n+1}(E(2, U)) = 0$.

Theorem (A., Gritschacher, Villarreal) $E(2, O(2)) \simeq S^3 \lor S^2 \lor S^2$ and $E(2, SU(2)) \simeq S^4 \lor \Sigma^4 \mathbb{RP}^2$. Thus, for example, $\pi_{10}(E(2, SU(2))) = \mathbb{Z}/4 \oplus (\mathbb{Z}/24)^2$ y $\pi_{10}(E(2, O(2))) = \mathbb{Z}^{308} \oplus (\mathbb{Z}/2)^{215} \oplus (\mathbb{Z}/3)^4 \oplus (\mathbb{Z}/15)^4 \oplus (\mathbb{Z}/24)^{34}$

Commutator map

A big advantage of the definition I gave you of E(2, G) over the original isomorphic but slightly different definition, is that it suggests defining the following simplicial map:

$$c_{\bullet}: E_{\bullet}(2, G) \to B_{\bullet}[G, G]$$

 $c_n(g_0, g_1, \dots, g_n) = ([g_0, g_1], [g_1, g_2], \dots, [g_{n-1}, g_n])$

Its geometric realization is the *commutator map* $\mathfrak{c}: E(2, G) \to B[G, G].$ When G is discrete, \mathfrak{c} induces the homomorphism $c: \pi_1(E(2, G)) \to [G, G]$ given by $c(x_{gh}) = [g, h]$ that we used before.

The existence of c is a bit of a miracle. The space E(2, G) is called that because it is a part of a family E(q, G) defined in terms of nilpotent subgroups of class less than q. For q > 2 we don't know how to define something like c.

Theorem (A., Gritschacher, Villarreal)

For a compact Lie group the following are equivalent:

- G is abelian.
- \blacktriangleright E(2, G) is contractible.
- $\mathfrak{c}: E(2, G) \rightarrow B[G, G]$ is null-homotopic.
- $\pi_k(E(2,G)) = 0$ for k = 1, 2, 4.

Homotopy-abelian groups

For compact connected Lie groups, the implication " \mathfrak{c} null-homotopic $\implies G$ is abelian", can be deduced from a classic theorem of Araki, James and Thomas:

Theorem (Araki, James, Thomas)

If G is a compact connected Lie group, and the algebraic commutator map $G \times G \rightarrow G$, $(g, h) \mapsto [g, h]$ is null-homotopic, then G is a torus.

The proof relies on the classification of Lie groups. Warning: This is false for disconnected groups! The group $G = (S^1 \times Q_8)/D$ where $D = \langle (-1, -1) \rangle \leq S^1 \times Q_8$ is homotopy-abelian, but not abelian. Indeed, $[G, G] = (1, \pm 1)$ (mod $D) = (\mp 1, 1)$ (mod D). So [G, G] is contained in the image of $S^1 \times \{1\}$ in G, which is $\cong S^1$ and thus path-connected.

\mathfrak{c} null-homotopic \implies G is abelian

If X_{\bullet} is a simplicial space, we can take a truncated geometric realization, $F_N|X_{\bullet}|$, given by the image of $\prod_{n=0}^{N} X_n \times \Delta^n$ in $|X_{\bullet}|$. There is a commutative square:

The top horizontal composition is the suspension of the map $G \wedge G \rightarrow G$, $g \wedge h \mapsto [g, h]$. If c is null-homotopic, then so is the composite $\Sigma G \wedge G \rightarrow B[G, G]$, and so is its adjunct $G \wedge G \rightarrow [G, G] \simeq \Omega B[G, G]$. Since the commutator $G \times G \rightarrow G$ factors through $G \wedge G$, the commutator is then also null-homotopic, and by the theorem of Araki, James and Thomas we deduce that G is a torus. Sketch of the proof of the main theorem

• $\Omega \mathfrak{c} : \Omega E(2, SU(2)) \to SU(2)$ has a section.

If π₄(E(2, G)) = 0, then the identity component G₀ of G is a torus.

This step uses that or any simply-connected simple Lie group K there is homomorphism $SU(2) \hookrightarrow K$ inducing an isomorphism on π_3 .

If G₀ is a torus and E(2, G) is 2-connected, then
 c: E(2, G) → B[G, G] is null-homotopic.
 [G, G] ⊂ G₀ is also a torus, say of rank r, and maps like that correspond to classes in H²(E(2, G); Z^r) = 0.

Thank you!

The nerve theorem

The nerve of a cover

If $\mathcal{U} = \{U_j : j \in J\}$ is a family of subsets of X, the *nerve* of \mathcal{U} is the simplicial complex $N_{\mathcal{U}}$ with:

vertices the elements of J simplices the $\{j_0, \ldots, j_n\}$ such that $U_{j_0} \cap U_{j_1} \cap \cdots \cap U_{j_n} \neq \emptyset$.

The Nerve Theorem

If \mathcal{U} satisfies that for any $\{j_0, \ldots, j_n\} \subseteq J$ the intersection $U_{j_0} \cap U_{j_1} \cap \cdots \cap U_{j_n} \neq \emptyset$ is either *empty* or *contractible*, then X is homotopy equivalent to $N_{\mathcal{U}}$.

The fine print

The theorem holds if:

- \mathcal{U} is an *open* cover of a space X, or
- \mathcal{U} is cover of a simplicial complex X by subcomplexes.

Example of the Nerve Theorem

Say $X = U_1 \cup U_2 \cup U_3$ with:

- U_i contractible,
- ▶ $U_i \cap U_j$ contractible, and
- ► $U_1 \cap U_2 \cap U_3$ empty.

Then $N_{\{U_1,U_2,U_3\}}$ is the boundary of a triangle.

The nerve and the subset complex

- ▶ For $x \in X$, let $J_x = \{j \in J : x \in U_j\}$.
- All non-empty finite subsets of J_x are simplices of $N_{\mathcal{U}}$.
- Let N_x be the subcomplex of N_U formed by these simplices.
 N := {N_x : x ∈ X} is a cover of N_U.
- ▶ $N_{x_0} \cap \cdots \cap N_{x_n}$ consists of all non-empty finite subsets of $\{j \in J : \{x_0, \ldots, x_n\} \subseteq U_j\}$. Therefore, this intersection is empty when that set is and contractible otherwise.
- ▶ By the nerve theorem, $N_U \simeq N_N \cong S_U$.

The order complex of the cover

► For
$$x \in X$$
, let $U_x = \{U_j \in J : x \in U_j\}$.

- Let P_x be the order complex of (U_x, ⊆).
 P := {P_x : x ∈ X} is a cover of P_U.
- P_{x0} ∩ · · · ∩ P_{xn} is the order complex of

 I := {U_j : {x₀, . . . , x_n} ⊆ U_j}. Therefore the intersection is empty if *I* = Ø.
- If I ≠ Ø and U is closed under non-empty intersection, then I is directed and thus its order complex is contractible.
- ▶ By the nerve theorem, $P_U \simeq N_P \cong P_U$.