Higher generation of compact Lie groups by abelian subgroups

Omar Antolín Camarena (IMATE UNAM - Mexico City)

What is this talk about?

- This talk is about a space $E(2, G)$ that one can assign to any topological group G.
- The space $E(2, G)$ knows something about which pairs of elements of G commute and which do not. In particular, it will follow from its definition that: If G is abelian then $E(2, G)$ is contractible.
- Simon Gritschacher, Bernardo Villarreal and I proved a strong converse for compact Lie groups: If G is a compact Lie group and $E(2, G)$ has $\pi_{1}=\pi_{2}=\pi_{4}=0$, then G is abelian.
- Background:
- When G is discrete there is a better result due to Cihan Okay: If G is a discrete group and $\pi_{1}(E(2, G))=0$, then G is abelian.
- A theorem of Araki, James and Thomas:

If G is a compact, connected Lie group, and the commutator map $G \times G \rightarrow G,(g, h) \mapsto g^{-1} h^{-1} g h$ is null-homotopic, then G is abelian.

The Plan

- First I will tell you about the case of discrete groups.
- A brief reminder about simplicial complexes.
- Abels' and Holz's idea of "higher generation".
- Cihan Okay's theorem: $\pi_{1}(E(2, G))=0$ implies G is abelian.
- Then I'll tell you about the Lie group case.
- A brief reminder about simplicial spaces.
- The definition of $E(2, G)$.
- The main tool in our proof: the commutator map $E(2, G) \rightarrow B[G, G]$.

Simplicial complexes

Definition

A simplicial complex K is a family of non-empty finite sets such that $\emptyset \neq \sigma \subset \tau \in K \Longrightarrow \sigma \in K$.
The vertices are the elements of the singletons:

$$
V(K):=\{v:\{v\} \in K\}=\bigcup_{\sigma \in K} \sigma .
$$

Geometric realization $|K|$
We think of the elements of K as simplices.

- $\{u\} \in K$ is a vertex
- $\{u, v\} \in K$ is an edge
- $\{u, v, w\} \in K$ is a triangle
- etc.

Simplicial complexes associated to families of subsets

Let $\mathcal{U}=\left\{U_{j}: j \in J\right\}$ be a family of subsets of a set X.
Consider the following simplicial complexes:

- $N_{\mathcal{U}}$, the nerve of \mathcal{U} :
$\left\{j_{0}, \ldots, j_{n}\right\}$ is a simplex of $N_{\mathcal{U}}$ is $U_{j_{0}} \cap U_{j_{1}} \cap \cdots \cap U_{j_{n}} \neq \emptyset$.
- $S_{\mathcal{U}}$, the subset complex of \mathcal{U} : $\left\{x_{0}, \ldots, x_{n}\right\}$ is a simplex of $S_{\mathcal{U}}$ if there is some $j \in J$ such that $\left\{x_{0}, \ldots, x_{n}\right\} \subseteq U_{j}$.
- $P_{\mathcal{U}}$, the order complex of the poset (\mathcal{U}, \subseteq), whose simplices are chains $\left\{U_{j_{0}} \subseteq U_{j_{1}} \subseteq \cdots \subseteq U_{j_{n}}\right\}$.
Theorem (Abels and Holz)
- $N_{\mathcal{U}}$ and $S_{\mathcal{U}}$ are homotopy equivalent.
- If $U_{i} \cap U_{j} \neq \emptyset \Longrightarrow U_{i} \cap U_{j} \in \mathcal{U}$, then $P_{\mathcal{U}}$ is also homotopy equivalent to $N_{\mathcal{U}}$ and $S_{\mathcal{U}}$.

Cosets

Let \mathcal{F} be a family of subgroups of some discrete group G, closed under intersection.
The collection $G \mathcal{F}=\{g H: g \in G, H \in \mathcal{F}\}$ of all cosets of elements of \mathcal{F} is a family of subsets of G to which we can apply the previous constructions.
We obtain three homotopy equivalent simplicial complexes whose simplices are:
$N_{G \mathcal{F}}$ sets of cosets with non-empty intersection
$S_{G \mathcal{F}}$ subsets of G contained in a single coset
$P_{G F}$ chains of cosets ordered by inclusion
If $G \in \mathcal{F}$, these are contractible.

Higher generation

Let \mathcal{F} be a family of subgroups of some discrete group G, closed under intersection.
The group $H=\operatorname{colim}_{F \in \mathcal{F}} F$ has the following presentation:
generators x_{g} for $g \in \bigcup \mathcal{F}$,
relations $x_{g h}=x_{g} x_{h}$ whenever $g, h \in F$ for some $F \in \mathcal{F}$.
There is a canonical homomorphism $\kappa: H \rightarrow G$ given by $\kappa\left(x_{g}\right)=g$.
Theorem (Abels and Holz)

- $\pi_{0}\left(N_{G \mathcal{F}}\right)=G /\langle\bigcup \mathcal{F}\rangle$
- $\pi_{1}\left(N_{G F}\right)=\operatorname{ker} \kappa$

Definition (Abels and Holz)
The family \mathcal{F} is n-generating $\pi_{k}\left(N_{G \mathcal{F}}\right)=0$ for all $k<n$.

The family of abelian subgroups

For the family \mathcal{A} of abelian subgroups of G we can say more.
First, recall that if G itself is abelian, $N_{G \mathcal{A}}, S_{G \mathcal{A}}$ and $P_{G \mathcal{A}}$ are contractible.
Theorem (Okay)
If $\pi_{1}\left(P_{G \mathcal{A}}\right)=1$, then G is abelian.
Proof.
By Abels' \& Holz's theorem, the group

$$
\left.H=\left\langle x_{g}: g \in G\right| x_{g h}=x_{g} x_{h} \text { if }[g, h]=1\right\rangle
$$

is isomorphic to G via $\kappa\left(x_{g}\right)=g$.
Since $(g h)^{-1}=g^{-1} h^{-1}$ whenever $[g, h]=1$, the formula $x_{g} \mapsto x_{g}^{-1}$ defines an endomorphism of H. Therefore $g \mapsto g^{-1}$ defines an endomorphism of G and so G is abelian.

Affine commutativity

Let G be a group and let $g_{0}, \ldots, g_{n} \in G$. Let's describe the simplices of $S_{G \mathcal{A}}$, where $\mathcal{A}=$ abelian subgroups of G.
The following are equivalent:

- $\left\{g_{0}, \ldots, g_{n}\right\}$ is contained in some coset of an abelian subgroup.
- $\left\{g_{0}^{-1} g_{1}, \ldots, g_{0}^{-1} g_{n}\right\}$ commute pairwise.
- $\left\{g_{i}^{-1} g_{j}: 0 \leq i, j \leq n\right\}$ commute pairwise.

If these conditions hold we say that $\left\{g_{0}, \ldots, g_{n}\right\}$ is an affinely commutative set. We'll call $S_{G \mathcal{A}}$ the affine commutativity complex of G.

Observations

- Any set of 1 or 2 elements is affinely commutative.
- A set of more than 3 elements is affinely commutative if and only if all of its 3 element subsets are affinely commutative.

The fundamental group of a simplicial complex

Let X be a connected simplicial complex and let T be a spanning tree for its 1 -skeleton.
The fundamental group of the geometric realization of X has the following presentation:

```
generators \(x_{u v}\) for each \(\{u, v\} \in X\).
    relations \(\downarrow x_{v v}=1\)
    - \(x_{u v}=x_{v u}^{-1}\)
    - \(x_{u v}=1\) if \(\{u, v\} \in T\)
    - \(x_{u v} x_{v w}=x_{u w}\) if \(\{u, v, w\} \in X\)
```

(In particular, the fundamental group only depends on the vertices, edges and triangles of X, not on simplices of higher dimension.)

The fundamental group of the complex of affine commutativity

Since $S_{G \mathcal{A}}$ has all possible edges, we can pick T as the star centered at $1 \in G$ and obtain the following presentation $\pi_{1}\left(S_{G \mathcal{A}}\right)$:
generators $x_{g h}$ with $g, h \in G$
relations $>x_{g 1}=x_{1 g}=1$

- $x_{g h} x_{h k}=x_{g k}$ if $\{g, h, k\}$ is affinely commutative.

The commutator homomorphism

Lemma

$\{g, h, k\}$ is affinely commutative $\Longrightarrow[g, h][h, k]=[g, k]$.
Proof.
$\left(g^{-1} h^{-1} g h\right)\left(h^{-1} k^{-1} h k\right)=g^{-1}\left(h^{-1} g\right)\left(k^{-1} h\right) k$

$$
=g^{-1}\left(k^{-1} h\right)\left(h^{-1} g\right) k=[g, k]
$$

Therefore, there is a homomorphism $c: \pi_{1}\left(S_{G \mathcal{A}}\right) \rightarrow[G, G]$ defined on the generators by $c\left(x_{g h}\right):=[g, h]$.
Obviously c is surjective: its image includes all generators of $[G, G]$. Therefore, if $[G, G] \neq 1$, then $\pi_{1}\left(S_{G \mathcal{A}}\right) \neq 1$.
Theorem
If $S_{G \mathcal{A}}$ is simply connected, then G is abelian.

Simplicial spaces

A simplicial space X_{\bullet} comprises:

- for each $n \geq 0$ a space X_{n} whose points we call n-simplices -we'll imagine each n-simplex as equipped with a fixed numbering of its vertices from 0 to n-, and
- continuous functions $d_{j}: X_{n} \rightarrow X_{n-1}$ for $0 \leq j \leq n$, that we interpret as follows: given an n-simplex $x \in X_{n}$, the simplex $d_{j}(x)$ is the face opposite vertex number j in x.

Geometric realization

Let $\iota_{j}: \Delta^{n-1} \rightarrow \Delta^{n}$ be the inclusion of the face opposite vertex j, and set $\left|X_{0}\right|=\left(\coprod_{n \geq 0} X_{n} \times \Delta^{n}\right) / \sim$, where $\left(x, \iota_{j}(p)\right) \sim\left(d_{j}(x), p\right)$ for $x \in X_{n}, p \in \Delta^{n-1}$.

$E(2, G)$

Let G be a topological group.
We define a simplicial space $E_{\bullet}(2, G)$ with

$$
E_{n}(2, G)=\left\{\left(g_{0}, \ldots, g_{n}\right):\left\{g_{0}, \ldots, g_{n}\right\} \text { is affinely commutative }\right\}
$$

$E_{n}(2, G) \subseteq G^{n+1}$ and we give it the subspace topology.
Vertex number j of $\left(g_{0}, \ldots, g_{n}\right)$ is g_{j} and $d_{j}\left(g_{0}, \ldots, g_{n}\right)=\left(g_{0}, \ldots, g_{j-1}, g_{j+1}, \ldots, g_{n}\right)$.
The space $E(2, G)$ is the geometric realization of $E_{\bullet}(2, G)$. (The original definition by Adem, F. Cohen and Torres Giese is different but isomorphic to this one).

What is known about these spaces?

- Not much!
- If G is abelian, $E(2, G)=E G$ is contractible.
- If G is discrete, $E(2, G)$ is homotopy equivalent to the complex of affine commutativity of G.
- We don't know much about the case of general topological groups, research has been focused on compact Lie groups.
- There is a variant $E(2, G)_{1}$ obtained by taking from $E_{n}(2, G)$ just the connected component $E_{n}(2, G)_{1}$ of $(1, \ldots, 1)$. This space is more tractable, at least for rational cohomology calculations:

Theorem (Adem and Gómez)
If G is a compact connected Lie group, $E(2, G)_{1}$ has the homotopy type of a CW complex with finitely many cells and $H^{*}\left(E(2, G)_{1}, \mathbb{Q}\right) \cong\left(H^{*}(G / T ; \mathbb{Q}) \otimes H^{*}(G / T ; \mathbb{Q})\right)^{W}$, where T is a maximal torus in G and $W=N_{G}(T) / T$ is the Weyl group.

Concrete calculations of the homotopy type of $E(2, G)$?
Very few!
Theorem (Okay)
If G is an extraspecial group of order 32 , then $\pi_{1}(E(2, G))=\mathbb{Z} / 2$ and the universal cover of $E(2, G)$ is homotopy equivalent to
$\bigvee^{151} S^{2}$. Thus, for example, $\pi_{2}(E(2, G)) \cong \mathbb{Z}^{151}, y$
$\pi_{3}(E(2, G)) \cong \mathbb{Z}^{11476}$. (!)
Theorem (Gritschacher)
$E(2, U) \simeq B U \times B U\langle 6\rangle \times B U\langle 8\rangle \times \cdots$, where $B U\langle 2 n\rangle$ is the
$(2 n-1)$-connected cover of $B U$. Thus, $\pi_{2 n}(E(2, U))=\mathbb{Z}^{n-1} y$
$\pi_{2 n+1}(E(2, U))=0$.
Theorem (A., Gritschacher, Villarreal)
$E(2, O(2)) \simeq S^{3} \vee S^{2} \vee S^{2}$ and $E(2, S U(2)) \simeq S^{4} \vee \Sigma^{4} \mathbb{R} \mathbb{P}^{2}$. Thus, for example, $\pi_{10}(E(2, S U(2)))=\mathbb{Z} / 4 \oplus(\mathbb{Z} / 24)^{2} y$
$\pi_{10}(E(2, O(2)))=\mathbb{Z}^{308} \oplus(\mathbb{Z} / 2)^{215} \oplus(\mathbb{Z} / 3)^{4} \oplus(\mathbb{Z} / 15)^{4} \oplus(\mathbb{Z} / 24)^{34}$

Commutator map

A big advantage of the definition I gave you of $E(2, G)$ over the original isomorphic but slightly different definition, is that it suggests defining the following simplicial map:

$$
\begin{aligned}
\mathfrak{c}_{\bullet}: E_{\bullet}(2, G) & \rightarrow B_{\bullet}[G, G] \\
\mathfrak{c}_{n}\left(g_{0}, g_{1} \ldots, g_{n}\right) & =\left(\left[g_{0}, g_{1}\right],\left[g_{1}, g_{2}\right], \ldots,\left[g_{n-1}, g_{n}\right]\right)
\end{aligned}
$$

Its geometric realization is the commutator map
$\mathfrak{c}: E(2, G) \rightarrow B[G, G]$.
When G is discrete, \mathfrak{c} induces the homomorphism
$c: \pi_{1}(E(2, G)) \rightarrow[G, G]$ given by $c\left(x_{g h}\right)=[g, h]$ that we used before.
The existence of \mathfrak{c} is a bit of a miracle. The space $E(2, G)$ is called that because it is a part of a family $E(q, G)$ defined in terms of nilpotent subgroups of class less than q. For $q>2$ we don't know how to define something like \mathfrak{c}.

Our main theorem

Theorem (A., Gritschacher, Villarreal)
For a compact Lie group the following are equivalent:

- G is abelian.
- $E(2, G)$ is contractible.
- $\mathfrak{c}: E(2, G) \rightarrow B[G, G]$ is null-homotopic.
- $\pi_{k}(E(2, G))=0$ for $k=1,2,4$.

Homotopy-abelian groups

For compact connected Lie groups, the implication
"c null-homotopic $\Longrightarrow G$ is abelian",
can be deduced from a classic theorem of Araki, James and Thomas:

Theorem (Araki, James, Thomas)

If G is a compact connected Lie group, and the algebraic commutator map $G \times G \rightarrow G,(g, h) \mapsto[g, h]$ is null-homotopic, then G is a torus.
The proof relies on the classification of Lie groups.
Warning: This is false for disconnected groups! The group $G=\left(S^{1} \times Q_{8}\right) / D$ where $D=\langle(-1,-1)\rangle \leq S^{1} \times Q_{8}$ is
homotopy-abelian, but not abelian. Indeed, $[G, G]=(1, \pm 1)$ $(\bmod D)=(\mp 1,1)(\bmod D)$. So $[G, G]$ is contained in the image of $S^{1} \times\{1\}$ in G, which is $\cong S^{1}$ and thus path-connected.

\mathfrak{c} null-homotopic $\Longrightarrow G$ is abelian

If X_{\bullet} is a simplicial space, we can take a truncated geometric realization, $F_{N}\left|X_{\bullet}\right|$, given by the image of $\coprod_{n=0}^{N} X_{n} \times \Delta^{n}$ in $\left|X_{\bullet}\right|$. There is a commutative square:

$$
\Sigma G \wedge G \rightleftharpoons F_{1} E(2, G) \xrightarrow{F_{1} \mathfrak{c}} F_{1} B[G, G] \rightleftharpoons \Sigma[G, G]
$$

The top horizontal composition is the suspension of the map
$G \wedge G \rightarrow G, g \wedge h \mapsto[g, h]$.
If \mathfrak{c} is null-homotopic, then so is the composite $\Sigma G \wedge G \rightarrow B[G, G]$, and so is its adjunct $G \wedge G \rightarrow[G, G] \simeq \Omega B[G, G]$.
Since the commutator $G \times G \rightarrow G$ factors through $G \wedge G$, the commutator is then also null-homotopic, and by the theorem of Araki, James and Thomas we deduce that G is a torus.

Sketch of the proof of the main theorem

- $\Omega \mathfrak{c}: \Omega E(2, S U(2)) \rightarrow S U(2)$ has a section.
- If $\pi_{4}(E(2, G))=0$, then the identity component G_{0} of G is a torus.
This step uses that or any simply-connected simple Lie group K there is homomorphism $S U(2) \hookrightarrow K$ inducing an isomorphism on π_{3}.
- If G_{0} is a torus and $E(2, G)$ is 2-connected, then $\mathfrak{c}: E(2, G) \rightarrow B[G, G]$ is null-homotopic. $[G, G] \subset G_{0}$ is also a torus, say of rank r, and maps like that correspond to classes in $H^{2}\left(E(2, G) ; \mathbb{Z}^{r}\right)=0$.

The End

Thank you!

The nerve theorem

The nerve of a cover
If $\mathcal{U}=\left\{U_{j}: j \in J\right\}$ is a family of subsets of X, the nerve of \mathcal{U} is the simplicial complex $N_{\mathcal{U}}$ with:
vertices the elements of J
simplices the $\left\{j_{0}, \ldots, j_{n}\right\}$ such that $U_{j_{0}} \cap U_{j_{1}} \cap \cdots \cap U_{j_{n}} \neq \emptyset$.

The Nerve Theorem
If \mathcal{U} satisfies that for any $\left\{j_{0}, \ldots, j_{n}\right\} \subseteq J$ the intersection $U_{j_{0}} \cap U_{j_{1}} \cap \cdots \cap U_{j_{n}} \neq \emptyset$ is either empty or contractible, then X is homotopy equivalent to $N_{\mathcal{U}}$.

The fine print
The theorem holds if:

- \mathcal{U} is an open cover of a space X, or
- \mathcal{U} is cover of a simplicial complex X by subcomplexes.

Example of the Nerve Theorem

Say $X=U_{1} \cup U_{2} \cup U_{3}$ with:

- U_{i} contractible,
- $U_{i} \cap U_{j}$ contractible, and
- $U_{1} \cap U_{2} \cap U_{3}$ empty.

Then $N_{\left\{U_{1}, U_{2}, U_{3}\right\}}$ is the boundary of a triangle.

The nerve and the subset complex

- For $x \in X$, let $J_{x}=\left\{j \in J: x \in U_{j}\right\}$.
- All non-empty finite subsets of J_{x} are simplices of $N_{\mathcal{U}}$.
- Let N_{x} be the subcomplex of $N_{\mathcal{U}}$ formed by these simplices. $\mathcal{N}:=\left\{N_{x}: x \in X\right\}$ is a cover of $N_{\mathcal{U}}$.
- $N_{x_{0}} \cap \cdots \cap N_{x_{n}}$ consists of all non-empty finite subsets of $\left\{j \in J:\left\{x_{0}, \ldots, x_{n}\right\} \subseteq U_{j}\right\}$. Therefore, this intersection is empty when that set is and contractible otherwise.
- By the nerve theorem, $N_{\mathcal{U}} \simeq N_{\mathcal{N}} \cong S_{\mathcal{U}}$.

The order complex of the cover

- For $x \in X$, let $\mathcal{U}_{x}=\left\{U_{j} \in J: x \in U_{j}\right\}$.
- Let P_{x} be the order complex of $\left(\mathcal{U}_{x}, \subseteq\right)$.
$\mathcal{P}:=\left\{P_{x}: x \in X\right\}$ is a cover of $P_{\mathcal{U}}$.
- $P_{x_{0}} \cap \cdots \cap P_{x_{n}}$ is the order complex of
$\mathcal{I}:=\left\{U_{j}:\left\{x_{0}, \ldots, x_{n}\right\} \subseteq U_{j}\right\}$. Therefore the intersection is empty if $\mathcal{I}=\emptyset$.
- If $\mathcal{I} \neq \emptyset$ and \mathcal{U} is closed under non-empty intersection, then \mathcal{I} is directed and thus its order complex is contractible.
- By the nerve theorem, $P_{\mathcal{U}} \simeq N_{\mathcal{P}} \cong P_{\mathcal{U}}$.

