Classifying spaces for commutativity in groups IPPICTA

> Omar Antolín Camarena IMATE UNAM - CDMX

Spaces of commuting elements

Spaces of commuting elements

For a topological group G we can topologize the set of group homomorphisms $\operatorname{Hom}(\mathbb{Z}^n, G)$ as a subspace of G^n by associating to each $\phi : \mathbb{Z}^n \to G$ the point $(\phi(e_1), \ldots, \phi(e_n))$.

 $\operatorname{Hom}(\mathbb{Z}^n,G)\cong\{(g_1,\ldots,g_n)\in G^n:g_ig_j=g_jg_i\}.$

Example: commutativity in SU(2)

- ► *SU*(2) is the group of unit quaternions.
- ▶ We write a quaternion as a + u where $a \in \mathbb{R}$ is the real part, and $u = bi + cj + dk \in \mathbb{R}^3$ is the imaginary part.
- Multiplication is given by $uv = -u \cdot v + u \times v$.
- a + u and b + v commute if and only if u and v are parallel.

Example: commuting pairs in SU(2), I

$$p: S^2 \times S^1 \times S^1 \rightarrow \operatorname{Hom}(\mathbb{Z}^2, SU(2))$$
$$(v, a_1 + a_2i, b_1 + b_2i) \mapsto (a_1 + a_2v, b_1 + b_2v)$$

p is surjective and p(v, a, b) = p(-v, ā, b).
 p descends to a map

$$\bar{p}: (S^2 \times S^1 \times S^1) / \sim \rightarrow \operatorname{Hom}(\mathbb{Z}^2, SU(2)).$$

Example: commuting pairs in SU(2), II

$$p(v, a_1 + a_2 i, b_1 + b_2 v) = (a_1 + a_2 v, b_1 + b_2 v)$$

$$\bar{p}([v, \pm 1, \pm 1]) = (\pm 1, \pm 1).$$

p̄ is an embedding when restricted to

$$S^2 \times (S^1 \times S^1 \setminus \{\pm 1\} \times \{\pm 1\}).$$

So Hom(Z², SU(2) is obtained from (S² × S¹ × S¹)/~ by collapsing each of four copies of ℝP² to a point.

Homotopical behavior of $Hom(\mathbb{Z}^n, G)$

If $f : H \to G$ is both a group homomorphism and a homotopy equivalence, then for many purposes H and G have the same homotopical behavior.

But Hom(\mathbb{Z}^n , G) and Hom(\mathbb{Z}^n , H) need not even have the same number of connected components! Not even if G is a Lie group and H = K is its maximal compact subgroup.

Maximal compact subgroups

- A connected Lie group G always has a maximal compact subgroup K.
- All the maximal compact subgroups are conjugate to each other.
- G is homeomorphic to $K \times \mathbb{R}^d$ for some d, but not isomorphic as a group.
- Even if G is a complex Lie group, K is a real Lie group.
- Basic examples: $G = GL(n, \mathbb{R})$, K = O(n); $G = GL(n, \mathbb{C})$, K = U(n).

Reductive algebraic groups

Pettet and Souto (2013): If G is the group of (complex resp. real) points of a (complex resp. real) reductive algebraic group, and K is its maximal compact subgroup, then the inclusion of $Hom(\mathbb{Z}^n, K)$ into $Hom(\mathbb{Z}^n, G)$ is a homotopy equivalence.

Examples of reductive algebraic groups: GL(n), SL(n), SU(n), SO(n), Sp(2n).

This result does not hold for non-algebraic groups!

The Heisenberg group

•
$$G = \begin{pmatrix} 1 & \mathbb{R} & \mathbb{R}/\mathbb{Z} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{pmatrix}$$
. *G* is not algebraic.
• $\begin{pmatrix} 1 & a & [c] \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & x & [z] \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$ commute if and only if $ay - bx \in \mathbb{Z}$.

- ► Thus Hom(Zⁿ, G) has infinitely many connected components.
- ► The maximal compact subgroups is the K = ℝ/ℤ in the corner, so Hom(ℤⁿ, K) = Kⁿ is connected.

A source of commuting elements Let G be a compact, connected Lie group, let T be its maximal torus, and W = N(T)/T be its Weyl group.

Consider the map

$$\varphi: (G/T \times T^n)/W \to \operatorname{Hom}(\mathbb{Z}^n, G)$$

given by

$$[gT, (t_1, \ldots, t_n)] \mapsto (gt_1g^{-1}, \ldots, gt_ng^{-1}).$$

It can be shown its image is the connected component of the trivial homomorphism, denoted by $Hom(\mathbb{Z}^n, G)_1$.

Rational cohomology of $Hom(\mathbb{Z}^n, G)_1$

 Baird (2007) proved φ induces an isomorphism on rational cohomology, so

 $H^*(\operatorname{Hom}(\mathbb{Z}^n,G)_1)\cong (H^*(G/T)\otimes H^*(T)^{\otimes n})^W.$

▶ Ramras and Stafa (2021) gave a formula for the Poincaré series of Hom(Zⁿ, G)₁, that is, the generating function of the Betti numbers: if H^{*}(G) is an exterior algebra on generators in degrees 2d_i − 1, the Poincaré series is

$$\frac{1}{|W|}\prod(1-t^{2d_i})\prod_{w\in W}\frac{\det(1+tw)^n}{\det(1-t^2w)}.$$

Torsion in the homology of $Hom(\mathbb{Z}^n, G)_1$

Kishimoto and Takeda (2022) showed that the integral homology of $\text{Hom}(\mathbb{Z}^n, G)_1$ has *p*-torsion if and only if *p* divides |W| for $G = SU(n), G_2, F_4, E_6$.

Homotopy groups of $Hom(\mathbb{Z}^n, G)$

Let G be a compact, connected Lie group.

- Gómez, Pettet and Souto (2012) proved that $\pi_1(\operatorname{Hom}(\mathbb{Z}^n, G)_1) \cong \pi_1(G)^n$.
- Adem, Gómez, Gritschacher (2022) computed π₂(Hom(ℤⁿ, G)) for G = SU(m), Sp(m).
- ▶ Jaime García Villeda computed the rank of $\pi_3(\operatorname{Hom}(\mathbb{Z}^n, G)) \otimes \mathbb{Q}$ for Q = SU(m), Sp(m).

Classifying spaces for commutativity

Brief reminder of simplicial spaces A simplicial space X_{\bullet} consists of a sequence of topological spaces X_n for n = 0, 1, 2, ... and maps $d_i : X_n \to X_{n-1}$ for $0 \le i \le n$.

The points of X_n are called *n*-simplices, and you should think of each *n*-simplex as having a fixed numbering of its vertices with the numbers 0 through *n*. The map d_i gives you the face opposite the vertex numbered *i*.

The geometric realization is given by:

$$|X_{\bullet}| := \left(\prod_{n \ge 0} X_n \times \Delta^n \right) / \sim .$$

The classifying space for commutativity

For a fixed G, as you vary n, the spaces $\text{Hom}(\mathbb{Z}^n, G)$ assemble to form a simplicial space! The face maps multiply adjacent coordinates (except d_0 and d_n which simply drop the first or last coordinate).

$$B_{\operatorname{com}}G := |\operatorname{Hom}(\mathbb{Z}^{\bullet},G)|$$

This is a simplicial subspace of a classic model for the classifying space of G, namely $BG := |G^{\bullet}|$.

Principle G-bundles

The space BG is called the classifying space of G because there is a bijection between isomorphism classes of principal G-bundles on a space X and homotopy classes of maps $X \rightarrow BG$.

A principle *G*-bundle on *X* is a space *Y* with a free *G*-action, together with a homeomorphism $X \cong Y/G$, and such that for any $x \in X$ there is some open $U \ni x$ where the quotient map $Y \to X$ has a section.

The universal principal G-bundle

The principal G-bundle corresponding to a map $X \rightarrow BG$ can be obtained by pulling back to X a fixed universal bundle $EG \rightarrow BG$.

There is a simplicial model for EG, namely $EG = |G^{\bullet+1}|$ where the face maps just drop the corresponding coordinate.

The quotient map $G^{n+1} \to G^n$ is given by

$$(g_0,\ldots,g_n)\mapsto (g_0^{-1}g_1,\ldots,g_{n-1}^{-1}g_n).$$

$E_{\rm com}G$

Just like $B_{com}G$ came from a simplicial subspace of the model for BG, we can define a corresponding $E_{com}G$ from a simplicial subspace of the model for EG.

$$E_{\operatorname{com}} G := |X_{\bullet}|$$
, where $X_n = \{(g_0, \dots, g_n) \in G^{n+1} : g_0^{-1}g_1, \dots, g_{n-1}^{-1}g_n \text{ commute pairwise}\}$.

Affinely commuting elements

The following are equivalent:

We say g_0, \ldots, g_n are affinely commutative.

The commutator map

Consider the following map from the space of affinely commutative (n + 1)-tuples in G to $[G, G]^n$:

$$c_n(g_0, g_1, \ldots, g_n) = ([g_0, g_1], [g_1, g_2], \ldots, [g_{n-1}, g_n])$$

This gives a simplicial map between the simplicial models for $E_{com}G$ and B[G, G], whose geometric realization is called the *commutator map* $\mathfrak{c}: E_{com}G \to B[G, G]$.

The existence of \mathfrak{c} is a bit of a miracle. The space $E_{\text{com}}G$ is part of a family E(q, G) defined in terms of nilpotent subgroups of class less than q. For q > 2 we don't know how to define something like \mathfrak{c} .

When is $E_{com}G$ contractible?

If G is abelian, then $E_{\text{com}}G = EG$ is contractible. And for $G = SL(2, \mathbb{R})$, we have that $E_{\text{com}}G \simeq E_{\text{com}}SO(2)$ is also contractible.

A., Gritschacher, Villarreal (2021): For a compact Lie group the following are equivalent:

•
$$\mathfrak{c}: E_{com}G \to B[G, G]$$
 is null-homotopic.

•
$$\pi_k(E_{\text{com}}G) = 0$$
 for $k = 1, 2, 4$.

Homotopy-abelian groups

For compact connected Lie groups, the implication

" \mathfrak{c} null-homotopic \implies G is abelian",

can be deduced from a classic theorem of Araki, James and Thomas: If G is a compact connected Lie group, and the algebraic commutator map $G \times G \rightarrow G$, $(g, h) \mapsto [g, h]$ is null-homotopic, then G is a torus.

The proof relies on the classification of Lie groups.

Warning: This is false for disconnected groups!

Does $B_{com}G$ classify some kind of bundle?

 $B_{\rm com}G$ classifies principal *G*-bundles with a *transitionally commutative* structure.

To specify such a structure on a *G*-bundle $Y \rightarrow X$, pick an open cover of *X* on which there are local sections for which the corresponding transitions functions commute pairwise.

(Given two sections $s : U \to Y$ and $t : V \to Y$ the transition function between them is the unique function $\phi : U \cap V \to G$ such that $t(x) = \phi(x) \cdot s(x)$.)

Equivalence of TC-bundles

Giving such an open cover lets you factor the classifying map $X \rightarrow BG$ through $B_{\rm com}G$ up to homotopy. We say two transitionally commutative bundles are equivalent if their classifying maps $X \rightarrow B_{\rm com}G$ are homotopic.

Warnings

- A single principal G-bundle can have many different inequivalent transitionally commutative structures or none at all!
- Even the trivial bundle usually has many inequivalent transitionally commutative structures, which are in bijection with homotopy classes of maps $X \rightarrow E_{com}G$.

 $B_{\rm com}G_1$ and $E_{\rm com}G_1$

Corresponding to the connected component $\text{Hom}(\mathbb{Z}^n, G)_1$ of $(1, 1, \ldots, 1)$ of the space of commuting *n*-tuples, we can define:

$$B_{\operatorname{com}}G_1 := |\operatorname{Hom}(\mathbb{Z}^{ullet}, G)_1|$$

and $E_{\text{com}}G_1 := |Z_{\bullet}|$ where Z_n is the connected component of $(1, \ldots, 1)$ in the space of affinely commuting (n + 1)-tuples.

Rational cohomology results

Let G be a compact, connected Lie group, let T be its maximal torus, and W = N(T)/T be its Weyl group.

▶ Classical: H*(BG) ≅ H*(BT)^W.
 ▶ Adem and Gómez (2015):

 $H^{*}(B_{com}G_{1}) = (H^{*}(BT) \otimes H^{*}(G/T))^{W}$ $H^{*}(E_{com}G_{1}) = (H^{*}(G/T) \otimes H^{*}(G/T))^{W}$

Some specific calculations

A., Gritschaher, Villarreal (2019) computed for the low-dimensional Lie groups $SU(2), U(2), O(2), SO(3)^1$:

- the integral cohomology ring of B_{com}G,
- the mod 2 cohomology ring of B_{com} G and the action of the Steenrod algebra on it,
- the homotopy type of $E_{\rm com}G$.

Jana (2023) computes the mod 2 and mod 3 cohomology groups of $E_{com} U(3)$.

¹For SO(3) the calculations are only for $B_{com}G_1$ and $EcomG_1$.

Homotopy type of $E_{com}G$ for Lie groups

Gritschaher (2018): For the infinite unitary group we have $E_{com}U \simeq BU\langle 4 \rangle \times BU\langle 6 \rangle \times BU\langle 8 \rangle \times \cdots$ and $B_{com}U \simeq BU \times E_{com}U$, where $BU\langle 2n \rangle$ is the (2n-1)-connected cover of BU. Thus, $\pi_{2n}(B_{com}U) = \mathbb{Z}^n$ y $\pi_{2n+1}(B_{com}U) = 0$.

A., Gritschaher, Villarreal (2019): $E_{com} O(2) \simeq S^3 \vee S^2 \vee S^2$ and $E_{com} SU(2) \simeq S^4 \vee \Sigma^4 \mathbb{RP}^2$. Thus, for example, $\pi_{10}(E_{com} SU(2)) = \mathbb{Z}/4 \oplus (\mathbb{Z}/24)^2$ and $\pi_{10}(E_{com} O(2)) = \mathbb{Z}^{308} \oplus (\mathbb{Z}/2)^{215} \oplus (\mathbb{Z}/3)^4 \oplus (\mathbb{Z}/15)^4 \oplus (\mathbb{Z}/24)^{34}$

Homotopy type of $E_{\text{com}}G$ for discrete G

Several people independently showed that when G is discrete $E_{com}G$ has the homotopy type of the order complex of the poset of cosets of abelian subgroups of G.

 Okay (2014): If G is an extraspecial group of order 32, then π₁(E_{com}G) = Z/2 and the universal cover of E_{com}G is homotopy equivalent to V¹⁵¹ S². Thus, for example, π₂(E_{com}G) ≅ Z¹⁵¹, y π₃(E_{com}G) ≅ Z¹¹⁴⁷⁶. (!)

Geometric 3-manifolds

A model geometry is a simply connected manifold X with a transitive action of a Lie group with compact stabilizers; it is called *maximal* if G is maximal among groups acting transitively on X with compact stabilizers.

A geometric manifold is a manifold of the form X/Γ where (G, X) is some maximal model geometry and Γ is a discrete subgroup of G thats acts freely on X.

Thurston showed that there are eight 3-dimensional maximal model geometries for which some compact geometric manifold exists: S^3 , \mathbb{R}^3 , \mathbb{H}^3 , $S^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$, $\widetilde{PSL}_2(\mathbb{R})$, Nil, and Sol.

$E_{\rm com}G$ for geometric 3-manifold groups

A., García-Hernández, Sánchez-Saldaña (2023): Let G be the fundamental group of an orientable geometric 3-manifold. Then $E_{\rm com}G$ is homotopically equivalent to $\bigvee_I S^1$, where I is a (possibly empty) countable index set.

- ► *I* is empty if and only if *G* is abelian.
- I is finite and non-empty if and only if G is non-abelian and is the fundamental group of a spherical 3-manifold.
- *I* is infinite if and only if *G* is infinite and nonabelian.