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Spaces of commuting elements

For a topological group G we can topologize the set
of group homomorphisms Hom(Zn,G ) as a subspace
of G n by associating to each ϕ : Zn → G the point
(ϕ(e1), . . . , ϕ(en)).

Hom(Zn,G ) ∼= {(g1, . . . , gn) ∈ G n : gigj = gjgi}.



Example: commutativity in SU(2)

▶ SU(2) is the group of unit quaternions.

▶ We write a quaternion as a+ u where a ∈ R is
the real part, and u = bi + cj + dk ∈ R3 is the
imaginary part.

▶ Multiplication is given by uv = −u · v + u × v .

▶ a+ u and b + v commute if and only if u and v

are parallel.



Example: commuting pairs in SU(2), I

p : S2 × S1 × S1 → Hom(Z2, SU(2))

(v , a1 + a2i , b1 + b2i) 7→ (a1 + a2v , b1 + b2v)

▶ p is surjective and p(v , a, b) = p(−v , ā, b̄).
▶ p descends to a map

p̄ : (S2 × S1 × S1)/∼→ Hom(Z2, SU(2)).



Example: commuting pairs in SU(2), II

▶ p(v , a1 + a2i , b1 + b2v) = (a1 + a2v , b1 + b2v)

▶ p̄([v ,±1,±1]) = (±1,±1).

▶ p̄ is an embedding when restricted to

S2 × (S1 × S1 \ {±1} × {±1}).

▶ So Hom(Z2, SU(2) is obtained from
(S2 × S1 × S1)/∼ by collapsing each of four
copies of RP2 to a point.



Homotopical behavior of Hom(Zn,G )

If f : H → G is both a group homomorphism and a
homotopy equivalence, then for many purposes H
and G have the same homotopical behavior.

But Hom(Zn,G ) and Hom(Zn,H) need not even
have the same number of connected components!
Not even if G is a Lie group and H = K is its
maximal compact subgroup.



Maximal compact subgroups

▶ A connected Lie group G always has a maximal
compact subgroup K .

▶ All the maximal compact subgroups are
conjugate to each other.

▶ G is homeomorphic to K × Rd for some d , but
not isomorphic as a group.

▶ Even if G is a complex Lie group, K is a real Lie
group.

▶ Basic examples: G = GL(n,R), K = O(n);
G = GL(n,C), K = U(n).



Reductive algebraic groups

Pettet and Souto (2013): If G is the group of
(complex resp. real) points of a (complex resp. real)
reductive algebraic group, and K is its maximal
compact subgroup, then the inclusion of Hom(Zn,K )
into Hom(Zn,G ) is a homotopy equivalence.

Examples of reductive algebraic groups: GL(n),
SL(n), SU(n), SO(n), Sp(2n).

This result does not hold for non-algebraic groups!



The Heisenberg group

▶ G =

1 R R/Z
0 1 R
0 0 1

. G is not algebraic.

▶

1 a [c]
0 1 b

0 0 1

 and

1 x [z ]
0 1 y

0 0 1

 commute if and

only if ay − bx ∈ Z.
▶ Thus Hom(Zn,G ) has in�nitely many connected

components.

▶ The maximal compact subgroups is the
K = R/Z in the corner, so Hom(Zn,K ) = K n is
connected.



A source of commuting elements
Let G be a compact, connected Lie group, let T be
its maximal torus, and W = N(T )/T be its Weyl
group.

Consider the map

φ : (G/T × T n)/W → Hom(Zn,G )

given by

[gT , (t1, . . . , tn)] 7→ (gt1g
−1, . . . , gtng

−1).

It can be shown its image is the connected
component of the trivial homomorphism, denoted by
Hom(Zn,G )1.



Rational cohomology of Hom(Zn,G )1
▶ Baird (2007) proved φ induces an isomorphism

on rational cohomology, so

H∗(Hom(Zn,G )1) ∼= (H∗(G/T )⊗ H∗(T )⊗n)W .

▶ Ramras and Stafa (2021) gave a formula for the
Poincaré series of Hom(Zn,G )1, that is, the
generating function of the Betti numbers: if
H∗(G ) is an exterior algebra on generators in
degrees 2di − 1, the Poincaré series is

1

|W |
∏

(1− t2di )
∏
w∈W

det(1+ tw)n

det(1− t2w)
.



Torsion in the homology of Hom(Zn,G )1

Kishimoto and Takeda (2022) showed that the
integral homology of Hom(Zn,G )1 has p-torsion if
and only if p divides |W | for G = SU(n),G2, F4,E6.



Homotopy groups of Hom(Zn,G )

Let G be a compact, connected Lie group.

▶ Gómez, Pettet and Souto (2012) proved that
π1(Hom(Zn,G )1) ∼= π1(G )

n.

▶ Adem, Gómez, Gritschacher (2022) computed
π2(Hom(Zn,G )) for G = SU(m), Sp(m).

▶ Jaime García Villeda computed the rank of
π3(Hom(Zn,G ))⊗Q for Q = SU(m), Sp(m).



Classifying spaces for

commutativity



Brief reminder of simplicial spaces
A simplicial space X• consists of a sequence of
topological spaces Xn for n = 0, 1, 2, . . . and maps
di : Xn → Xn−1 for 0 ≤ i ≤ n.

The points of Xn are called n-simplices, and you
should think of each n-simplex as having a �xed
numbering of its vertices with the numbers 0 through
n. The map di gives you the face opposite the vertex
numbered i .

The geometric realization is given by:

|X•| :=

(∐
n≥0

Xn ×∆n

)
/ ∼ .



The classifying space for commutativity

For a �xed G , as you vary n, the spaces Hom(Zn,G )
assemble to form a simplicial space! The face maps
multiply adjacent coordinates (except d0 and dn
which simply drop the �rst or last coordinate).

BcomG := |Hom(Z•,G )|

This is a simplicial subspace of a classic model for
the classifying space of G , namely BG := |G •|.



Principle G -bundles

The space BG is called the classifying space of G
because there is a bijection between isomorphism
classes of principal G -bundles on a space X and
homotopy classes of maps X → BG .

A principle G -bundle on X is a space Y with a free
G -action, together with a homeomorphism
X ∼= Y /G , and such that for any x ∈ X there is
some open U ∋ x where the quotient map Y → X

has a section.



The universal principal G -bundle

The principal G -bundle corresponding to a map
X → BG can be obtained by pulling back to X a
�xed universal bundle EG → BG .

There is a simplicial model for EG , namely
EG = |G •+1| where the face maps just drop the
corresponding coordinate.

The quotient map G n+1 → G n is given by

(g0, . . . , gn) 7→ (g−1
0 g1, . . . , g

−1
n−1gn).



EcomG

Just like BcomG came from a simplicial subspace of
the model for BG , we can de�ne a corrsponding
EcomG from a simplicial subspace of the model for
EG .

EcomG := |X•|, where Xn = {(g0, . . . , gn) ∈ G n+1 :
g−1
0 g1, . . . , g

−1
n−1gn commute pairwise}.



A�nely commuting elements

The following are equivalent:

▶ g−1
0 g1, . . . , g

−1
n−1gn commute pairwise,

▶ all quotients g−1
i gj commute pairwise,

▶ there is some abelian subgroup A of G such that
gi ∈ g0A.

We say g0, . . . , gn are a�nely commutative.



The commutator map
Consider the following map from the space of a�nely
commutative (n + 1)-tuples in G to [G ,G ]n:

cn(g0, g1 . . . , gn) = ([g0, g1], [g1, g2], . . . , [gn−1, gn])

This gives a simplicial map between the simplicial
models for EcomG and B[G ,G ], whose geometric
realization is called the commutator map
c : EcomG → B[G ,G ].

The existence of c is a bit of a miracle. The space
EcomG ) is part of a family E (q,G ) de�ned in terms
of nilpotent subgroups of class less than q. For q > 2
we don't know how to de�ne something like c.



When is EcomG contractible?

If G is abelian, then EcomG = EG is contractible.
And for G = SL(2,R), we have that
EcomG ≃ EcomSO(2) is also contractible.

A., Gritschacher, Villarreal (2021): For a compact Lie
group the following are equivalent:

▶ G is abelian.

▶ EcomG is contractible.

▶ c : EcomG → B[G ,G ] is null-homotopic.

▶ πk(EcomG ) = 0 for k = 1, 2, 4.



Homotopy-abelian groups

For compact connected Lie groups, the implication

�c null-homotopic =⇒ G is abelian�,

can be deduced from a classic theorem of Araki,
James and Thomas: If G is a compact connected Lie
group, and the algebraic commutator map
G × G → G , (g , h) 7→ [g , h] is null-homotopic, then
G is a torus.

The proof relies on the classi�cation of Lie groups.

Warning: This is false for disconnected groups!



Does BcomG classify some kind of bundle?

BcomG classi�es principal G -bundles with a
transitionally commutative structure.

To specify such a structure on a G -bundle Y → X ,
pick an open cover of X on which there are local
sections for which the corresponding transitions
functions commute pairwise.

(Given two sections s : U → Y and t : V → Y the
transition function between them is the unique
function ϕ : U ∩ V → G such that
t(x) = ϕ(x) · s(x).)



Equivalence of TC-bundles
Giving such an open cover lets you factor the
classifying map X → BG through BcomG up to
homotopy. We say two transitionally commutative
bundles are equivalent if their classifying maps
X → BcomG are homotopic.

Warnings

▶ A single principal G -bundle can have many
di�erent inequivalent transitionally commutative
structures or none at all!

▶ Even the trivial bundle usually has many
inequivalent transitionally commutative
structures, which are in bijection with homotopy
classes of maps X → EcomG .



BcomG1 and EcomG1

Corresponding to the connected component
Hom(Zn,G )1 of (1, 1, . . . , 1) of the space of
commuting n-tuples, we can de�ne:

BcomG1 := |Hom(Z•,G )1|

and EcomG1 := |Z•| where Zn is the connected
component of (1, . . . , 1) in the space of a�nely
commuting (n + 1)-tuples.



Rational cohomology results

Let G be a compact, connected Lie group, let T be
its maximal torus, and W = N(T )/T be its Weyl
group.

▶ Classical: H∗(BG ) ∼= H∗(BT )W .

▶ Adem and Gómez (2015):

H∗(BcomG1) = (H∗(BT )⊗ H∗(G/T ))W

H∗(EcomG1) = (H∗(G/T )⊗ H∗(G/T ))W



Some speci�c calculations

A., Gritschaher, Villarreal (2019) computed for the
low-dimensional Lie groups
SU(2),U(2),O(2), SO(3)1:

▶ the integral cohomology ring of BcomG ,

▶ the mod 2 cohomology ring of BcomG and the
action of the Steenrod algebra on it,

▶ the homotopy type of EcomG .

Jana (2023) computes the mod 2 and mod 3
cohomology groups of EcomU(3).

1For SO(3) the calculations are only for BcomG1 and EcomG1.



Homotopy type of EcomG for Lie groups

Gritschaher (2018): For the in�nite unitary group we
have EcomU ≃ BU⟨4⟩ × BU⟨6⟩ × BU⟨8⟩ × · · · and
BcomU ≃ BU × EcomU, where BU⟨2n⟩ is the
(2n − 1)-connected cover of BU. Thus,
π2n(BcomU) = Zn y π2n+1(BcomU) = 0.

A., Gritschaher, Villarreal (2019):
EcomO(2) ≃ S3 ∨ S2 ∨ S2 and
EcomSU(2) ≃ S4 ∨ Σ4RP2. Thus, for example,
π10(EcomSU(2)) = Z/4⊕ (Z/24)2 and
π10(EcomO(2)) =
Z308 ⊕ (Z/2)215 ⊕ (Z/3)4 ⊕ (Z/15)4 ⊕ (Z/24)34



Homotopy type of EcomG for discrete G

Several people independently showed that when G is
discrete EcomG has the homotopy type of the order
complex of the poset of cosets of abelian subgroups
of G .

▶ Okay (2014): If G is an extraspecial group of
order 32, then π1(EcomG ) = Z/2 and the
universal cover of EcomG is homotopy equivalent
to
∨151

S2.
Thus, for example, π2(EcomG ) ∼= Z151, y
π3(EcomG ) ∼= Z11476. (!)



Geometric 3-manifolds
A model geometry is a simply connected manifold X

with a transitive action of a Lie group with compact
stabilizers; it is called maximal if G is maximal
among groups acting transitively on X with compact
stabilizers.

A geometric manifold is a manifold of the form X/Γ
where (G ,X ) is some maximal model geometry and
Γ is a discrete subgroup of G thats acts freely on X .

Thurston showed that there are eight 3-dimensional
maximal model geometries for which some compact
geometric manifold exists: S3, R3, H3, S2 × R,
H2 × R, P̃SL2(R), Nil, and Sol.



EcomG for geometric 3-manifold groups

A., García-Hernández, Sánchez-Saldaña (2023): Let
G be the fundamental group of an orientable
geometric 3-manifold. Then EcomG is homotopically
equivalent to

∨
I S

1, where I is a (possibly empty)
countable index set.

▶ I is empty if and only if G is abelian.

▶ I is �nite and non-empty if and only if G is
non-abelian and is the fundamental group of a
spherical 3-manifold.

▶ I is in�nite if and only if G is in�nite and
nonabelian.


