GEOMETRÍA Y TOPOLOGÍA LOCAL DE FOLIACIONES RIEMANNIANAS SINGULARES

Diego Corro UNAM Sextas Jornadas de Geometría, Topología y Dinámica, UNAM. 25 de Marzo del 2020

Teorema de Frobenious

Da una manera de encontrar soluciones independientes a un sistema regular de ecuaciones lineales homogéneas parciales de primer orden. Las curvas de nivel de las soluciones nos dan una partición ${\mathcal F}$ del espacio en subvariedades .

Teorema de Frobenious

Da una manera de encontrar soluciones independientes a un sistema regular de ecuaciones lineales homogéneas parciales de primer orden. Las curvas de nivel de las soluciones nos dan una partición ${\mathcal F}$ del espacio en subvariedades .

Esto fue generalizado por Stefan-Sussmann (1973) cuando el sistema tiene "singularidades", i.e. cuando tenemos foliaciones con hojas de dimensión variable.

Teorema de Frobenious

Da una manera de encontrar soluciones independientes a un sistema regular de ecuaciones lineales homogéneas parciales de primer orden. Las curvas de nivel de las soluciones nos dan una partición ${\mathcal F}$ del espacio en subvariedades .

Esto fue generalizado por Stefan-Sussmann (1973) cuando el sistema tiene "singularidades", i.e. cuando tenemos foliaciones con hojas de dimensión variable.

Proyecciones métricas

Submersiones Riemannianas $\pi: (M^n, g) \to (B^k, h)$,

Localmente se ven como la proyección ortogonal $\mathbb{R}^n = \mathbb{R}^{n-k} \times \mathbb{R}^k \to \mathbb{R}^k$.

Teorema de Frobenious

Da una manera de encontrar soluciones independientes a un sistema regular de ecuaciones lineales homogéneas parciales de primer orden. Las curvas de nivel de las soluciones nos dan una partición ${\mathcal F}$ del espacio en subvariedades .

Esto fue generalizado por Stefan-Sussmann (1973) cuando el sistema tiene "singularidades", i.e. cuando tenemos foliaciones con hojas de dimensión variable.

Proyecciones métricas

Submersiones Riemannianas $\pi: (M^n, g) \to (B^k, h)$,

- Localmente se ven como la proyección ortogonal $\mathbb{R}^n = \mathbb{R}^{n-k} \times \mathbb{R}^k \to \mathbb{R}^k$.
- ▶ $\mathcal{F} = \{\pi^{-1}(b) \mid b \in B\}.$

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

La dimensión de las hojas no es en general constante.

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

La dimensión de las hojas no es en general constante.

Ejemplos:

Triviales:

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

La dimensión de las hojas no es en general constante.

Ejemplos:

Triviales:

(M, M)

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

La dimensión de las hojas no es en general constante.

Ejemplos:

Triviales:

$$(M, M) \qquad (M, \{p \mid p \in M\})$$

Foliación singular Riemanniana (SRF)

Una **FSR** (M, \mathcal{F}) sobre una variedad Riemanniana (compacta) M, es una partición en subvariedades $\mathcal{F} = \{L_p \mid p \in M\}$, llamadas **hojas**, tales que L_p son conexas encajadas, y satisfacen:

- Existe una familia de campos vectoriales X_{α} diferenciables que generan $T_{\rho}L_{\rho}$ para cualquier $\rho \in M$.
- ▶ Dada una geodésica de M perpendicular a una hoja, entonces es perpendicular a todas las hojas que intersecta.

La dimensión de las hojas no es en general constante.

Ejemplos:

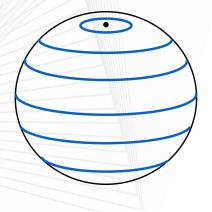
Triviales:

$$(M,M) \qquad (M,\{p \mid p \in M\})$$

Un grupo de Lie *G* actuando por isometrías genera una FSR, denotada como **FSR** homogénea.

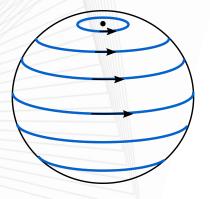
Ejemplo concreto

Consideramos la FSR ($\mathbb{S}^2, \mathbb{S}^1$).



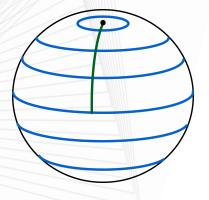
Ejemplo concreto

Campos vectoriales generando las hojas de $(\mathbb{S}^2, \mathbb{S}^1)$.



Ejemplo concreto

Geodésica \perp (\mathbb{S}^2 , \mathbb{S}^1).



Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

Una FSR (M, \mathcal{F}) es:

de dimensión n si una hoja de dimensión máxima tiene dimensión *n*;

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

- **de dimensión n** si una hoja de dimensión máxima tiene dimensión *n*;
- **de codimensión k** si $k = dim(M) dim(\mathcal{F})$;

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

- **de dimensión n** si una hoja de dimensión máxima tiene dimensión *n*;
- **de codimensión k** si $k = dim(M) dim(\mathcal{F})$;
- cerrada si todas las hojas son cerradas (en este caso el espacio de hojas es un espacio métrico con una cota inferior de curvatura).

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

- **de dimensión n** si una hoja de dimensión máxima tiene dimensión *n*;
- **de codimensión k** si $k = dim(M) dim(\mathcal{F})$;
- cerrada si todas las hojas son cerradas (en este caso el espacio de hojas es un espacio métrico con una cota inferior de curvatura).
- ▶ Si \mathcal{F} es cerrada, entonces π : $(M,d) \rightarrow (M^*,d^*)$ es una submetría.

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

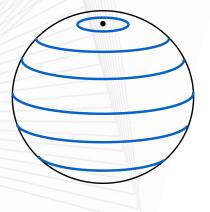
- **de dimensión n** si una hoja de dimensión máxima tiene dimensión *n*;
- **de codimensión k** si $k = dim(M) dim(\mathcal{F})$;
- cerrada si todas las hojas son cerradas (en este caso el espacio de hojas es un espacio métrico con una cota inferior de curvatura).
- ▶ Si \mathcal{F} es cerrada, entonces π : $(M,d) \rightarrow (M^*,d^*)$ es una submetría.
- Hojas de dimensión máxima son hojas regulares.

Al espacio cociente $M^* = M/\mathcal{F}$ lo llamamos el **espacio de hojas**, y consideramos el **mapeo cociente** $\pi: M \to M^*$.

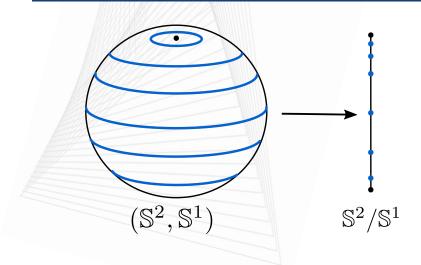
- **de dimensión n** si una hoja de dimensión máxima tiene dimensión *n*;
- **de codimensión k** si $k = dim(M) dim(\mathcal{F})$;
- cerrada si todas las hojas son cerradas (en este caso el espacio de hojas es un espacio métrico con una cota inferior de curvatura).
- ▶ Si \mathcal{F} es cerrada, entonces π : $(M,d) \rightarrow (M^*,d^*)$ es una submetría.
- Hojas de dimensión máxima son hojas regulares.
- De otra manera son hojas singulares.

Ejemplo concreto II

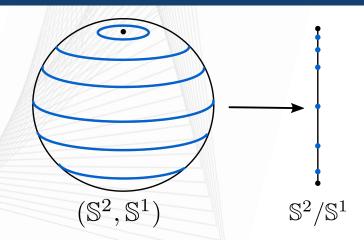
Consideramos la FSR ($\mathbb{S}^2, \mathbb{S}^1$).



Ejemplo concreto II



Ejemplo concreto II



Es una foliación homogénea.

Información local de foliaciones singulares Riemannianas

Sea (M, \mathcal{F}) una foliación singular Riemanniana con hojas cerradas.

▶ Fijemos $p \in M$.

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_p(\mathbb{S}_p^{\perp})$.

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_p(\mathbb{S}_p^{\perp})$.
- lacksquare Tomamos la preimagenes bajo \exp_p de estas componentes en \mathbb{S}_p^\perp .

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_{\rho}(\mathbb{S}_{\rho}^{\perp})$.
- lacksquare Tomamos la preimagenes bajo \exp_p de estas componentes en \mathbb{S}_p^\perp .
- Inducen una foliación singular \mathcal{F}_p sobre \mathbb{S}_p^{\perp} .

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_p(\mathbb{S}_p^{\perp})$.
- lacksquare Tomamos la preimagenes bajo \exp_p de estas componentes en \mathbb{S}_p^\perp .
- Inducen una foliación singular \mathcal{F}_p sobre \mathbb{S}_p^{\perp} .
- Respecto a la métrica redonda, la foliación $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ es una foliación singular Riemanniana (Molino).

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_{\rho}(\mathbb{S}_{\rho}^{\perp})$.
- lacksquare Tomamos la preimagenes bajo \exp_p de estas componentes en \mathbb{S}_p^\perp .
- ▶ Inducen una foliación singular \mathcal{F}_p sobre \mathbb{S}_p^{\perp} .
- Respecto a la métrica redonda, la foliación $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ es una foliación singular Riemanniana (Molino).
- Está construcción no depende de $p \in L_p$, solamente de $L = L_p \subset M$.

Sea (M, \mathcal{F}) una foliación singular Riemanniana con hojas cerradas.

- ▶ Fijemos $p \in M$.
- ▶ Consideremos la esfera normal \mathbb{S}_p^{\perp} en p de la hoja L_p .
- Consideramos las componentes conexas de las intersecciones de las hojas de \mathcal{F} , con $\exp_p(\mathbb{S}_p^{\perp})$.
- ightharpoonup Tomamos la preimagenes bajo \exp_p de estas componentes en \mathbb{S}_p^{\perp} .
- ▶ Inducen una foliación singular \mathcal{F}_p sobre \mathbb{S}_p^{\perp} .
- Respecto a la métrica redonda, la foliación $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ es una foliación singular Riemanniana (Molino).
- Está construcción no depende de $p \in L_p$, solamente de $L = L_p \subset M$.

La foliación singular Riemanniana $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ es conocida como la **foliación infinitesimal** de L_p .

Foliaciones en esferas redondas

Problema

Clasificación de las foliaciones singulares Riemannianas en $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.

Foliaciones en esferas redondas

Problema

Clasificación de las foliaciones singulares Riemannianas en $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.

Élie Cartan comenzó el estudio foliaciones de codimensión 1 en esferas redondas (sigue abierto).

Foliaciones en esferas redondas

Problema

Clasificación de las foliaciones singulares Riemannianas en $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.

Élie Cartan comenzó el estudio foliaciones de codimensión 1 en esferas redondas (sigue abierto).

Teorema (Radeschi 2012)

Una foliación singular Riemanniana en una esfera redonda $(\mathbb{S}^n, \mathcal{F})$ de dimensión a lo más 3 está dada por una acción de un grupo de Lie.

Foliaciones en esferas redondas

Problema

Clasificación de las foliaciones singulares Riemannianas en $\mathbb{S}^n \subset \mathbb{R}^{n+1}$.

Élie Cartan comenzó el estudio foliaciones de codimensión 1 en esferas redondas (sigue abierto).

Teorema (Radeschi 2012)

Una foliación singular Riemanniana en una esfera redonda $(\mathbb{S}^n, \mathcal{F})$ de dimensión a lo más 3 está dada por una acción de un grupo de Lie.

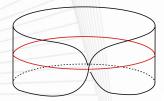
Teorema (Radeschi 2014, Ferus-Karcher-Münzner 1981)

Existen una familia infinita de foliaciones singulares Riemannianas $(\mathbb{S}^{2\ell-1}, \mathcal{F}_{\mathcal{C}})$ que no son homogéneas.

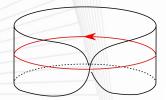
Problema:

Problema:

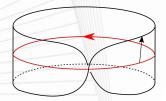
Problema:



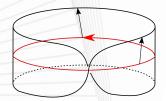
Problema:



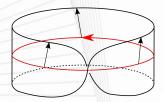
Problema:



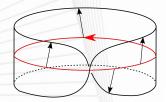
Problema:



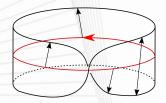
Problema:



Problema:



Problema:



Problema:

Las hojas se pueden enredar alrededor de una hoja fija L.

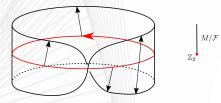
Esto implica que para $p \in L$, dos hojas distintas en $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ pueden estar contenidas en una misma hoja de \mathcal{F} .

Problema:

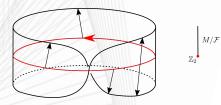
Las hojas se pueden enredar alrededor de una hoja fija L.

Esto implica que para $p \in L$, dos hojas distintas en $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$ pueden estar contenidas en una misma hoja de \mathcal{F} .

Este efecto es detectado por la holonomía de L.

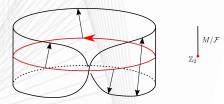


Tenemos una representación de $\pi_1(L, p)$ en el grupo de isometrías foliadas de $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$.



Tenemos una representación de $\pi_1(L, p)$ en el grupo de isometrías foliadas de $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$.

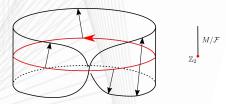
$$1 \to K \to \pi_1(L, \rho) \to \operatorname{Hol}(L) \subset \operatorname{O}(\mathbb{S}_\rho^\perp) \to 1.$$



Tenemos una representación de $\pi_1(L, p)$ en el grupo de isometrías foliadas de $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$.

$$1 \to K \to \pi_1(L, \rho) \to \operatorname{Hol}(L) \subset \operatorname{O}(\mathbb{S}_\rho^\perp) \to 1.$$

Una hoja regular *L* es **principal** si su holonomía es la representación trivial.



Tenemos una representación de $\pi_1(L, p)$ en el grupo de isometrías foliadas de $(\mathbb{S}_p^{\perp}, \mathcal{F}_p)$.

$$1 \to K \to \pi_1(L, p) \to \operatorname{Hol}(L) \subset \operatorname{O}(\mathbb{S}_p^{\perp}) \to 1.$$

Una hoja regular L es **principal** si su holonomía es la representación trivial.

La dimensión de las hojas, y el tipo de holonomia estratifican al espacio de hojas M/\mathcal{F} .

Vecindad tubular

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemanniana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$(P\times_{\operatorname{Hol}(L)}\mathbb{D}_p^{\perp}, P\times_{\operatorname{Hol}(L)}\mathcal{F}_p).$$

Donde $P \to L$ es un haz Hol(L)-principal.

= 1

Vecindad tubular

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemanniana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$(P\times_{\operatorname{Hol}(L)}\mathbb{D}_{\rho}^{\perp}, P\times_{\operatorname{Hol}(L)}\mathcal{F}_{\rho}).$$

Donde $P \to L$ es un haz Hol(L)-principal.

$$P\times_{\operatorname{Hol}(L)}\mathbb{D}_{\rho}^{\perp}=(P\times\mathbb{D}_{\rho}^{\perp})/\operatorname{Hol}(L),\quad P\times_{\operatorname{Hol}(L)}\mathcal{F}_{\rho}=(P\times\mathcal{F}_{\rho})/\operatorname{Hol}(L).$$

= 1

Vecindad tubular

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemanniana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$(P\times_{\operatorname{Hol}(L)}\mathbb{D}_{\rho}^{\perp}, P\times_{\operatorname{Hol}(L)}\mathcal{F}_{\rho}).$$

Donde $P \to L$ es un haz Hol(L)-principal.

$$P imes_{\operatorname{Hol}(L)} \mathbb{D}_p^{\perp} = (P imes \mathbb{D}_p^{\perp}) / \operatorname{Hol}(L), \quad P imes_{\operatorname{Hol}(L)} \mathcal{F}_p = (P imes \mathcal{F}_p) / \operatorname{Hol}(L).$$

Problema

¿Como podemos pegar vecindades tubulares para tener una métrica foliada?

=1

Foliaciones por toros

Fibraciones de Seifert, generalización de acciones por toros.

Sea (M, \mathcal{F}) una foliación con hojas principales homeomorfas a toros de dimensión n, en una variedad simplemente conexa.

Sea (M,\mathcal{F}) una foliación con hojas principales homeomorfas a toros de dimensión n, en una variedad simplemente conexa.

Fijemos L una hoja de dimensión $n - \ell$.

Sea (M, \mathcal{F}) una foliación con hojas principales homeomorfas a toros de dimensión n, en una variedad simplemente conexa.

Fijemos L una hoja de dimensión $n - \ell$.

Teorema (- 2018)

Sea (M, \mathcal{F}) una foliación por toros en una variedad simplemente conexa. Entonces cualquier hoja $L \in \mathcal{F}$ tiene al toro como una cubierta finita:

$$T^{\ell} \to T^{\ell}/\mathrm{Hol}(L) \cong L.$$

Sea (M, \mathcal{F}) una foliación con hojas principales homeomorfas a toros de dimensión n, en una variedad simplemente conexa.

Fijemos L una hoja de dimensión $n - \ell$.

Teorema (- 2018)

Sea (M, \mathcal{F}) una foliación por toros en una variedad simplemente conexa. Entonces cualquier hoja $L \in \mathcal{F}$ tiene al toro como una cubierta finita:

$$T^\ell \to T^\ell/\mathrm{Hol}(L) \cong L.$$

Sea $p \in L$ y $v \in \mathbb{S}_p^{\perp}$ tal que para $q = \exp_p(v) \in M$ la hoja L_q es principal. Entonces tenemos una submersion:

$$\mathcal{L}_{v} \rightarrow L_{q} = T^{n} \rightarrow T^{n-\ell}$$
.

Sea (M, \mathcal{F}) una foliación con hojas principales homeomorfas a toros de dimensión n, en una variedad simplemente conexa.

Fijemos L una hoja de dimensión $n - \ell$.

Teorema (- 2018)

Sea (M, \mathcal{F}) una foliación por toros en una variedad simplemente conexa. Entonces cualquier hoja $L \in \mathcal{F}$ tiene al toro como una cubierta finita:

$$T^\ell \to T^\ell/\mathrm{Hol}(L) \cong L.$$

Sea $p \in L$ y $v \in \mathbb{S}_p^{\perp}$ tal que para $q = \exp_p(v) \in M$ la hoja L_q es principal. Entonces tenemos una submersion:

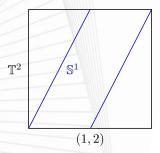
$$\mathcal{L}_{v} \rightarrow L_{q} = T^{n} \rightarrow T^{n-\ell}$$
.

Via la sucesión exacta larga de grupos de homotopía concluimos que \mathcal{L}_{ν} es un toro \mathcal{T}^{ℓ} .

Este toro $\mathcal{L}_{V} = \mathcal{T}^{\ell}$ está determinado por una lista de vectores $a_1, \ldots, a_{\ell} \in \mathbb{Z}^n$.

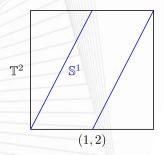
Este toro $\mathcal{L}_{v} = \mathcal{T}^{\ell}$ está determinado por una lista de vectores $a_1, \ldots, a_{\ell} \in \mathbb{Z}^n$.

Por ejemplo $\mathbb{S}^1 \to \mathbb{T}^2 \to \mathbb{S}^1$:



Este toro $\mathcal{L}_{v} = \mathcal{T}^{\ell}$ está determinado por una lista de vectores $a_1, \ldots, a_{\ell} \in \mathbb{Z}^n$.

Por ejemplo $\mathbb{S}^1 \to \mathbb{T}^2 \to \mathbb{S}^1$:



$$1 \to \pi_1(\mathcal{L}_{\nu}) = \mathbb{Z}^{\ell} \to \pi_1(T^n) = \mathbb{Z}^n \to \pi_1(T^{n-\ell}) \to 1.$$

Recordamos que para la hoja L de dimensión $k - \ell$ tenemos:

$$T^{n-\ell} \to T^{n-\ell}/\mathrm{Hol}(L) \cong L.$$

Recordamos que para la hoja L de dimensión $k - \ell$ tenemos:

$$T^{n-\ell} \to T^{n-\ell}/\mathrm{Hol}(L) \cong L.$$

Proposición

Dada una foliación por toros de dimensión n en una variedad compacta y simplemente conexa, una hoja de dimensión $n-\ell$ está determinada por los vectores $a_1,\ldots,a_\ell\in\mathbb{Z}^n$ y el grupo $\operatorname{Hol}(L)$.

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemannianana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$P \times_{\operatorname{Hol}(L)} \mathbb{S}_p^{\perp}$$
.

Donde $P \to L$ es un haz Hol(L)-principal.

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemannianana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$P \times_{\operatorname{Hol}(L)} \mathbb{S}_p^{\perp}$$
.

Donde $P \to L$ es un haz Hol(L)-principal.

En el caso de la foliación por toros de dimensión *n*, en una variedad simplemente conexa:

Fijemos una hoja L de dimensión $n - \ell$.

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemannianana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$P \times_{\operatorname{Hol}(L)} \mathbb{S}_p^{\perp}$$
.

Donde $P \to L$ es un haz Hol(L)-principal.

En el caso de la foliación por toros de dimensión *n*, en una variedad simplemente conexa:

- Fijemos una hoja L de dimensión $n \ell$.
- ▶ El espacio *P* corresponde al toro $T^{n-\ell} \to T^{k-\ell}/\mathrm{Hol}(L) = L$.

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemannianana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$P \times_{\operatorname{Hol}(L)} \mathbb{S}_p^{\perp}$$
.

Donde $P \to L$ es un haz Hol(L)-principal.

En el caso de la foliación por toros de dimensión *n*, en una variedad simplemente conexa:

- Fijemos una hoja L de dimensión $n \ell$.
- ▶ El espacio *P* corresponde al toro $T^{n-\ell} \to T^{k-\ell}/\mathrm{Hol}(L) = L$.
- ▶ *P* está determinado entonces por los vectores $a_1, \ldots, a_\ell \in \mathbb{Z}^n$.

Teorema de la rebanada (Mendes y Radeschi 2019)

Sea (M, \mathcal{F}) una foliación singular Riemannianana cerrada. Una vecindad tubular de una hoja $L \in \mathcal{F}$ es foliada difeomorfa a:

$$P \times_{\operatorname{Hol}(L)} \mathbb{S}_p^{\perp}$$
.

Donde $P \to L$ es un haz Hol(L)-principal.

En el caso de la foliación por toros de dimensión *n*, en una variedad simplemente conexa:

- Fijemos una hoja L de dimensión $n \ell$.
- ▶ El espacio *P* corresponde al toro $T^{n-\ell} \to T^{k-\ell}/\mathrm{Hol}(L) = L$.
- ▶ *P* está determinado entonces por los vectores $a_1, \ldots, a_\ell \in \mathbb{Z}^n$.

La vecindad tubular de L está determinada por $(a_1, \ldots, a_\ell, \operatorname{Hol}(L))$.

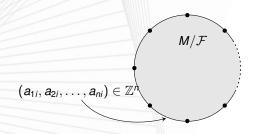
Espacio de hojas con invariantes

Consideramos (M, \mathcal{F}) una foliación por toros sobre una variedad compacta, simplemente conexa, y consideramos M/\mathcal{F} junto con la información $\{(a_1(L), \ldots, a_k(L), \operatorname{Hol}(L)) \mid L \in \mathcal{F}\}.$

Espacio de hojas con invariantes

Consideramos (M, \mathcal{F}) una foliación por toros sobre una variedad compacta, simplemente conexa, y consideramos M/\mathcal{F} junto con la información $\{(a_1(L), \ldots, a_k(L), \operatorname{Hol}(L)) \mid L \in \mathcal{F}\}.$

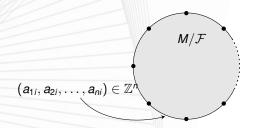
Ejemplo: Codimensión 2 con hojas singulares



Espacio de hojas con invariantes

Consideramos (M, \mathcal{F}) una foliación por toros sobre una variedad compacta, simplemente conexa, y consideramos M/\mathcal{F} junto con la información $\{(a_1(L), \ldots, a_k(L), \operatorname{Hol}(L)) \mid L \in \mathcal{F}\}.$

Ejemplo: Codimensión 2 con hojas singulares



Pregunta

¿Los invariantes locales determinan la variedad y/o foliación?

Clasificación

Definición

Una sección para una foliación (M, \mathcal{F}) es un mapa continuo $\sigma \colon M/\mathcal{F} \to M$, tal que:

$$\mathrm{Id}_{M/\mathcal{F}} = \pi \circ \sigma \colon M/\mathcal{F} \to M \to M/\mathcal{F}.$$

Clasificación

Definición

Una sección para una foliación (M, \mathcal{F}) es un mapa continuo $\sigma \colon M/\mathcal{F} \to M$, tal que:

$$\mathrm{Id}_{M/\mathcal{F}} = \pi \circ \sigma \colon M/\mathcal{F} \to M \to M/\mathcal{F}.$$

Teorema (- 2018)

Sean (M_1, \mathcal{F}_1) y (M_2, \mathcal{F}_2) foliaciones por toros sobre variedades compactas, simplemente conexas. Supongamos que para i=1,2 existen secciones $\sigma_i \colon M_i/\mathcal{F}_i \to M_i$. Si M_1/\mathcal{F}_1 es homeomorfo a M_2/\mathcal{F}_2 y este homeomorfísmo preserva los invariantes $\{(a_1(L),\ldots,a_k(L),\operatorname{Hol}(L))\mid L\in\mathcal{F}_i\}$, entonces (M_1,\mathcal{F}_1) es foliada homeomorfa a (M_2,\mathcal{F}_2) .

▶ ¿Sistema transnormal: $(M, \mathcal{F}, d_g) \rightarrow (M/\mathcal{F}, d^*)$ submetría, implica que \mathcal{F} es una foliación singular suave? I.e. ¿ T_pL_p varia de manera suave con respecto a p?.

- ▶ ¿Sistema transnormal: $(M, \mathcal{F}, d_g) \rightarrow (M/\mathcal{F}, d^*)$ submetría, implica que \mathcal{F} es una foliación singular suave? I.e. ¿ T_pL_p varia de manera suave con respecto a p?.
- ▶ Clasificación de foliaciones infinitesimales $(\mathbb{S}^n, \mathcal{F})$ de baja codimensión.

- ▶ ¿Sistema transnormal: $(M, \mathcal{F}, d_g) \rightarrow (M/\mathcal{F}, d^*)$ submetría, implica que \mathcal{F} es una foliación singular suave? I.e. ¿ T_pL_p varia de manera suave con respecto a p?.
- ▶ Clasificación de foliaciones infinitesimales $(\mathbb{S}^n, \mathcal{F})$ de baja codimensión.
- Las secciones intuitivamente nos permiten pegar vecindades tubulares. ¿Hay otras maneras?

- ▶ ¿Sistema transnormal: $(M, \mathcal{F}, d_g) \rightarrow (M/\mathcal{F}, d^*)$ submetría, implica que \mathcal{F} es una foliación singular suave? I.e. ¿ T_pL_p varia de manera suave con respecto a p?.
- Clasificación de foliaciones infinitesimales $(\mathbb{S}^n, \mathcal{F})$ de baja codimensión.
- Las secciones intuitivamente nos permiten pegar vecindades tubulares. ¿Hay otras maneras?
- \blacktriangleright ¿Existen particiones \mathcal{C}^{∞} de la unidad foliadas?

- ▶ ¿Sistema transnormal: $(M, \mathcal{F}, d_g) \rightarrow (M/\mathcal{F}, d^*)$ submetría, implica que \mathcal{F} es una foliación singular suave? I.e. ¿ T_pL_p varia de manera suave con respecto a p?.
- Clasificación de foliaciones infinitesimales $(\mathbb{S}^n, \mathcal{F})$ de baja codimensión.
- Las secciones intuitivamente nos permiten pegar vecindades tubulares. ¿Hay otras maneras?
- ightharpoonup ¿Existen particiones \mathcal{C}^{∞} de la unidad foliadas?

Gracias por su atención