MATH 340 Coffee stain problem

Consider the following 'puzzle' which uses our duality theory. Determine the maximum value of z (the objective function) in the LP:

We do not know c_1, c_2 (which you can imagine were lost in a coffee stain) but we are told an optimal dual solution $(y_1^*, y_2^*, y_3^*, y_4^*)$ exists with $y_1^* = 1$. Do not try to solve using the simplex method. Instead use our duality theorems and some clever inequalities.

Solution: The dual to the given LP is:

We do not know c_1, c_2 . We are told an optimal dual solution $(y_1^*, y_2^*, y_3^*, y_4^*)$ exists with $y_1^* = 1$. By the Theorem of Complementary Slackness, we deduce that $x_1^* - x_2^* = 2$. Substituting this into the second inequality of the primal, results in the inequality $x_3^* \ge 1$. Now by Complementary Slackness, we deduce that $-y_2^* - 2y_3^* - 2y_4^* = -2$. We substitute $x_1^* - x_2^* = 2$ in the third inequality of the primal, and find that the inequality becomes $4 - 2x_3^* \le 2.13$ and then using $x_3^* \ge 1$ we see that the inequality must be a strict inequality (i.e. the third primal slack is at least .13 and hence > 0). By Complementary Slackness, $y_3^* = 0$. We try again in the fourth inequality of the primal and deduce the fourth slack is $3 - x_1^* + 2x_2^* + 2x_3^*$. Substituting $x_1^* - x_2^* = 2$, $x_2 \ge 0$ and $x_3^* \ge 1$ we get that the fourth slack is at least $3 + x_2^* > 0$ and so by Complementary Slackness we find that $y_4^* = 0$. Using the equation $-y_2^* - 2y_3^* - 2y_4^* = -2$ we deduce that $y_2^* = 2$. Now we have a complete optimal dual solution $y_1^* = 1, y_2^* = 3, y_3^* = 0, y_4^* = 0$ of value $2 \cdot 1 - 3 \cdot 2 + 2.13 \cdot 0 + 3 \cdot 0 = -4$ and so by Strong Duality, the maximum value of z in the primal is -4.

A reasonable question is to determine if there are any values for c_1, c_2 such that the answer above is true. One possibility is to take $c_1 = -1, c_2 = 1$ and then take $x_1^* = 2, x_2^* = 0, x_3^* = 1$.