MATH 340 Example of pivoting to optimal solution(s).
We considered the following LP in standard inequality form

$$
\max \begin{array}{rrrrr}
4 x_{1}+3 x_{2} & +x_{3} & +x_{4} & & \\
x_{1}+2 x_{2} & & -x_{4} & \leq 3 \\
2 x_{1}+x_{2} & -x_{3} & +x_{4} & \leq 2 \\
& x_{2} & +x_{3} & & \leq 2
\end{array} \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

We add slack variables x_{5}, x_{6}, x_{7} corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0$. We form our first dictionary

$$
\begin{array}{rlrrrr}
x_{5} & =3 & -x_{1} & -2 x_{2} & & +x_{4} \\
x_{6} & = & -2 x_{1} & -x_{2} & +x_{3} & -x_{4} \\
x_{7} & =2 & & -x_{2} & -x_{3} & \\
z & = & 4 x_{1} & +3 x_{2} & +x_{3} & +x_{4}
\end{array}
$$

It is traditional to use z for the objective function. There is an obvious solution to these 4 equations, namely $x_{5}=3, x_{6}=2, x_{7}=2$ and $x_{1}=x_{2}=x_{3}=x_{4}=0$ with $z=0$. (this is called a basic feasible solution)

We now use Anstee's rule trying to increase a variable from 0 in the current obvious solution so we greedily choose x_{1} to increase and hence enter. We leave $x_{2}=x_{3}=x_{4}=0$. The choice of x_{1} as the variable with the largest coefficient in dictionary expression for z (and in the case of ties choosing the variable of smallest subscript) is called Anstee's Rule in this course.

$$
\begin{array}{rlr}
x_{5} & =3 & -x_{1} \\
x_{6} & =2 & -2 x_{1} \\
x_{7} & =2 & \\
z & = & 4 x_{1}
\end{array}
$$

we deduce that x_{1} can be increased to 1 while decreasing x_{6} to 0 . We obtain a new dictionary by having x_{1} only appear on the left and x_{6} is now on the right of the equation signs.

$$
\begin{array}{rlrrrr}
x_{5} & =2 & +\frac{1}{2} x_{6} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} & +\frac{3}{2} x_{4} \\
x_{1} & =1 & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{2} & +\frac{1}{2} x_{3} & -\frac{1}{2} x_{4} \\
x_{7} & =2 & & -x_{2} & -x_{3} & \\
z & =4 & -2 x_{6} & +x_{2} & +3 x_{3} & -x_{4}
\end{array}
$$

There is an obvious solution to these 4 equations, namely $x_{5}=2, x_{1}=1, x_{7}=2$ and $x_{6}=x_{2}=$ $x_{3}=x_{4}=0$ with $z=4$. Note how I keep all the entries of each variable in neat columns. It makes adding and subtracting equations much more reliable.

By Anstee's rule we would wish to increase x_{3} leaving $x_{6}=x_{2}=x_{4}=0$

$$
\begin{array}{rlr}
x_{5} & =2-\frac{1}{2} x_{3} \\
x_{1} & =1 & +\frac{1}{2} x_{3} \\
x_{7} & =2 & -x_{3} \\
z & =4+3 x_{3}
\end{array}
$$

and we deduce that we could increase x_{3} to 2 while driving x_{7} to 0 and so we say x_{3} enters and x_{7} leaves.

$$
\left.\begin{array}{rlrrrr}
x_{5} & = & 1 & +\frac{1}{2} x_{6} & -x_{2} & +\frac{1}{2} x_{7} \\
x_{1} & = & 2 & -\frac{3}{2} x_{4} \\
x_{3} & = & 2 & & -x_{2} & -\frac{1}{2} x_{7}
\end{array}-\frac{1}{2} x_{4}\right)
$$

There is an obvious solution to these 4 equations, namely $x_{5}=1, x_{1}=2, x_{3}=2$ and $x_{6}=x_{2}=$ $x_{7}=x_{4}=0$ with $z=10$. But now the equation $z=10-2 x_{6}-2 x_{2}-3 x_{7}-x_{4}$ combined with the four inequalities $x_{6} \geq 0, x_{2} \geq 0, x_{7} \geq 0, x_{4} \geq 0$ yields $z \leq 10$. Thus we have found an optimal solution to the LP. In fact $z \leq 10$ with equality if and only if $x_{6}=x_{2}=x_{7}=x_{4}=0$. Now setting $x_{6}=x_{2}=x_{7}=x_{4}=0$ in our third dictionary yields $x_{5}=1, x_{1}=2, x_{3}=2$. Thus we have found the unique optimal solution in this case.

In general optimal solutions are not unique (although of course the optimal value of the objective function z would be unique!). Consider the following minor variant of our problem where we have increased the coefficient of x_{2} in the objective function from 3 to 5 .

$$
\begin{array}{rlll}
\max & 4 x_{1}+5 x_{2}+x_{3}+x_{4} & \leq \\
x_{1}+2 x_{2} & -x_{4} & \leq 3 \\
2 x_{1}+x_{2} & -x_{3} & +x_{4} & \leq 2
\end{array} \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

We add slack variables x_{5}, x_{6}, x_{7} corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0$. We form our first dictionary

$$
\begin{array}{rlrrrr}
x_{5} & =3 & -2 x_{1} & -2 x_{2} & & +x_{4} \\
x_{6} & =2 & -2 x_{1} & -x_{2} & +x_{3} & -x_{4} \\
x_{7} & =2 & & -x_{2} & -x_{3} & \\
z & = & 4 x_{1} & +5 x_{2} & +x_{3} & +x_{4}
\end{array}
$$

Now ignore Anstee's rule and have x_{1} enter and x_{6} leave which yields the dictionary

$$
\begin{array}{rlrrrr}
x_{5} & =2 & +\frac{1}{2} x_{6} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} & +\frac{3}{2} x_{4} \\
x_{1} & =1 & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{2} & +\frac{1}{2} x_{3} & -\frac{1}{2} x_{4} \\
x_{7} & =2 & & -x_{2} & -x_{3} & \\
z & =4 & -2 x_{6} & +3 x_{2} & +3 x_{3} & -x_{4}
\end{array}
$$

Again ignore Anstee's rule and have x_{3} enter and x_{7} leave to yield the following dictionary.

$$
\left.\begin{array}{rlrlrl}
x_{5} & = & 1 & +\frac{1}{2} x_{6} & -x_{2} & +\frac{1}{2} x_{7} \\
x_{1} & = & 2 & -\frac{3}{2} x_{4} \\
x_{3} & = & 2 & & -x_{2} & -\frac{1}{2} x_{7}
\end{array}-\frac{1}{2} x_{4}\right)
$$

There is an obvious solution to these 4 equations, namely $x_{5}=1, x_{1}=2, x_{3}=2$ and $x_{6}=x_{2}=$ $x_{7}=x_{4}=0$ with $z=10$. But now the equation $z=10-2 x_{6}-3 x_{7}-x_{4}$ combined with the three inequalities $x_{6} \geq 0, x_{7} \geq 0, x_{4} \geq 0$ yields $z \leq 10$. Thus we have found an optimal solution to the new LP. In fact $z \leq 10$ with equality if and only if $x_{6}=x_{7}=x_{4}=0$ (the coefficient of x_{2} is 0 in the expression for z). Now setting $x_{6}=x_{7}=x_{4}=0$ in our third dictionary yields

$$
\begin{aligned}
& x_{5}=1-x_{2} \\
& x_{1}=2-x_{2} \\
& x_{3}=2-x_{2} \\
& z=10
\end{aligned}
$$

We deduce that $0 \leq x_{2} \leq 1$ and setting $t=x_{2}$ we can write all possible optimal solutions to the LP as $x_{1}=2-t, x_{2}=t, x_{3}=2-t, x_{4}=0$ with $x_{5}=1-t, x_{6}=0$ and $x_{7}=0$ and $z=10$. Remember that you can check this.

