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Abstract. In [KS] A. Kas and M. Schlessinger construct a versal deformation

of an analytic space which is a local complete intersection. An immediate

corollary of their theorem is that a flat family of nodal curves can be locally
obtained by pullback of the standard family xy = t. In this article, we spell

out how this result follows from the theorem of Kas and Schlessinger.

This is an expository paper about Kas and Schlessinger’s construction of a ver-
sal deformation space for an analytic space which is locally a complete intersection.
This result has a distinct algebro-geometric flavor, but we do not assume any famil-
iarity with concepts from algebraic geometry such as flatness or nonreducedness. In
fact, we hope this paper can serve as an introduction to these ideas for geometers
dealing with analytic spaces.

We extract the following definition from “Deformations of complex spaces,” [P].
Let V0 be an analytic space. A deformation of V0 is a flat morphism π : V → T
of analytic spaces such that π−1(0) ∼= V0. Two deformations π1 : V1 → T1 and
π2 : V2 → T2 are isomorphic if

• there are neighborhoods U1 ⊆ V1 and U2 ⊆ V2 of the fibers π−1
1 (0) and

π−1
2 (0),

• there are neighborhoods B1 ⊆ T1 and B2 ⊆ T2 of the basepoints 0 ∈ T1

and 0 ∈ T2, and
• an isomorphism U1 → U2, and an isomorphism B1 → B2 sending 0 7→ 0,

such that πi(Ui) ⊆ Bi and the following diagram commutes

U1
//

π1

��

U2

π2

��
B1

// B2

where the induced isomorphism π−1
1 (0) → π−1

2 (0) is compatible with the isomor-
phisms π−1

1 (0) ∼= V0
∼= π−1

2 (0). This definition is natural in the context of germs of
analytic spaces as discussed in Section 2.

We say that the deformation π : V → T is versal if any other deformation
W → S of V0 is induced from π by a map U → T where U ⊆ S is a neighborhood
of 0, such that the deformations W → S and V ×T U → U are isomorphic.
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Given such a V0 which is a complete intersection in a neighborhood of an iso-
lated singularity, Kas and Schlessinger [KS] construct an explicit versal deformation
of a sufficiently small neighborhood of the singularity. We will explain the state-
ment of their theorem, sketch their proof and single out the special cases which
imply that flat families of nodal curves π : X → T , can be obtained locally by
pullback of the standard family

C := {((x, y), t) ∈ C2×C : xy = t} and ρ : C → C given by ρ : ((x, y), t) 7→ t.

Remark 0.1. As a note of independent interest, Theorem 2.1, asserts that a flat
family of stable curves is locally obtained by pullback of the standard family. A
stable curve is a nodal curve of finite type, admitting only finitely many automor-
phisms. A proper flat family of stable curves p : X → T is a flat morphism which
is proper, where every fiber is a stable curve. Proper flat families of stable curves
arise in certain moduli problems. In particular, let Mg,n denote the moduli space
of curves of genus g with n marked points. The Deligne-Mumford compactification
Mg,n is a coarse moduli space for the stable curves functor see [HK] (in that paper,
the definition of a flat family of nodal curves is given by Corollary 3.1; in fact,
this was the primary motivation for writing our paper). An independent proof of
Corollary 3.1 can be found in [ACG, Proposition 2.1].

1. Preliminaries

1.1. A warning about analytic spaces. Many sources define analytic spaces
to be reduced, but it is necessary for us to allow spaces which are not necessarily
reduced since even for a morphism between reduced analytic spaces, some of the
fibers can be nonreduced, as shown in the following example.

Example 1.1. Let X = {(x, t) ∈ C2 : x(x − t) = 0} and let p : X → C be given
by (x, t) 7→ t. The fiber over t 6= 0 consists of the points {0, t}, and is reduced.
But the fiber above t = 0 is just the point {0}, counted with multiplicity 2; more
precisely, the ring of germs of functions at 0 is OC,0/(x

2).

This is an important example as it shows that the local rings of functions
(opposed to just the sets of points involved) play a crucial role in the definition of
fibers and pullbacks for analytic spaces.

We now recall the construction of pullbacks in the category of analytic spaces.
Given analytic spaces X, Y and S with maps f : X → S and g : Y → S, the
pullback, denoted by X ×S Y has as its underlying set of points the expected
{(x, y) ∈ X × Y : f(x) = g(y)} and the local ring of germs at a point (x, y) with
f(x) = g(y) =: s is given by

OX×SY,(x,y) = OX,x⊗̂OS,s
OY,y.

Here the symbol ⊗̂ denotes the analytic tensor product, a variant of the tensor
product better suited for the kinds of local rings arising in the study of analytic
spaces: local analytic C-algebras, which are defined to be local rings isomorphic to
quotients of some OCn,0 by a finitely generated ideal. The analytic tensor product
is the categorical pushout in the category of local analytic C-algebras, just as the
ordinary tensor product is the pushout in the category of commutative rings. To
compute analytic tensor products of local analytic algebras of the special form
OCn,0/I where the ideal I is generated by finitely many polynomials, one can simply
pretend all holomorphic functions are polynomials, do the computation using the
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ordinary tensor product and then unpretend. More precisely, replace the algebras
by the corresponding ones of the form (C[z1, . . . , zn]/I)m, compute the ordinary
tensor product and perform the inverse replacement on the result. See [A1] for
more information on analytic tensor products and local analytic algebras.

Finally, recall that by the fiber of a map p : X → Y of analytic spaces at a
point y ∈ Y we mean the analytic space given by the pullback X ×Y {y}. So, for
example, the local ring of the fiber at 0 in Example 1.1 is computed as follows:

Op−1(0),0 = OX×C{0},((0,0),0)

= OX,(0,0)⊗̂OC,0O{0},0
= OC2,(0,0)/(x(x− t))⊗̂OC,0C
= OC2,(0,0)/(x(x− t))⊗̂OC,0OC,0/(t)

= OC,0/(x
2).

1.2. Families of nodal curves. A curve X is a reduced 1-dimensional ana-
lytic space. A point x ∈ X is a node if it has a neighborhood in X isomorphic to
a neighborhood of the origin in the curve of equation xy = 0 in C2. A curve X is
nodal if for all x ∈ X, x is a node or a smooth point. Note that nodal curves are
not necessarily of finite type.

A family of nodal curves is a morphism π : X → T such that for all t ∈ T ,
p−1(t) is a curve with nodes.

Example 1.2. Let X = {(x, y, t) ∈ C3 : x2y3 = t} and let p : X → C be given
by p : (x, y, t) → t. The family p : X → C is not a family of nodal curves; indeed,
although the fiber over t = 0 is the union of the x-axis and the y-axis (as a set of
points), the fiber is not reduced, so as analytic space, there is no neighborhood of
the node which is isomorphic to a neighborhood of the origin in the curve xy = 0.

1.3. Flatness. In many geometric branches of mathematics, families of spaces
parametrized by the points of another space play an important role. Often, this kind
of notion involves some sort of local triviality, making all of the fibers isomorphic in
an appropriate sense. But if one wants to study singular spaces it is best to allow
families of spaces that degenerate in a continuous way. The concept of a flat family
is one of the most useful ways of capturing this idea of fibers varying continuously
in both algebraic geometry and analytic geometry.

We now present the notion of flatness in both the algebraic and geometric
contexts, as well as several criteria for flatness. The underlying theme is that
flatness means something like “no unavoidable relations”, and since the relevant
relations are between equations or relations, it may be more precise to say “no
unexpected syzygies”.

1.3.1. Flat modules. Recall that M is a flat module over the ring A if tensoring
with M (over A) preserves monomorphisms; that is, for every submodule N ′ of a
module N , the natural map

M ⊗A N ′ →M ⊗A N
is injective.

It is an exercise in commutative algebra to check that this is equivalent to the
following definition:

An A-module M is flat if and only if for every ideal I of A, the natural map
I ⊗AM → IM is an isomorphism.
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This last definition can be seen as an example of “no unavoidable syzygies”. In
geometric terms, A can be thought of as the ring of functions on some space X (in
algebraic geometry one writes X = SpecA) and M as (the module of sections of) of
a (quasicoherent) sheaf on X. An ideal I of A cuts out a subspace Y of X and we
can ask which sections of M vanish on Y . The restriction of M to Y = Spec(A/I) is
given by M ⊗AA/I = M/IM , so the sections that vanish on Y are IM . These are,
of course, generated by sections of the form fσ with f ∈ I. Some relations between
these generators are unavoidable, namely, the ones coming from A-bilinearity of
(f, σ) 7→ fσ. So I ⊗A M represents the freest possible module of sections that
vanish on X, IM is the actual module of vanishing sections, and the natural map
between them being an isomorphism represents having no unavoidable relations.

In practice, to check whether a module M is flat over A, the following definition
is perhaps the most useful: the A-module M is flat if and only if

TorA1 (M,N) = 0, for any A-module N .

To check that M is flat, it is sufficient to verify this for N = A/I, where I is a
finitely generated ideal of A.

1.3.2. Analytic flatness. The following definition comes from algebraic geome-
try where it used for a morphism of schemes π : X → T .

If π : X → T is a morphism of analytic spaces, then for all x ∈ X, π determines
a map of local rings:

π∗ : OT,f(x) → OX,x
where OX,x denotes the ring of germs of analytic functions in a neighborhood of x in
X. The map π∗ turns OX,x into a module over OT,f(x). The morphism π : X → T
is flat at x ∈ X if for all x ∈ X, OX,x is a flat module over OT,f(x). We say that

π : X → T is flat over a point t ∈ T if for all x ∈ π−1(t), OX,x is a flat module over
OT,f(x). Note that this definition is local in T since it only depends on the local
rings.

Following the standard terminology, we will sometimes refer to a flat morphism
π : X → T as a flat family π : X → T over the base T .

This definition is a bit opaque, and the reader will be forgiven for not imme-
diately realizing its geometric content; even David Mumford in [M] wrote: “The
concept of flatness is a riddle that comes out of algebra, but which technically is the
answer to many prayers.” A priori, flatness does not seem to be a very geometric
concept; however, given certain constraints on the analytic spaces involved, there
are some nice geometric descriptions.

Intuitively, a flat family π : X → T is one where the fibers vary continuously.
More precisely, we have the following result from [EH].

Proposition 1.3 (Eisenbud-Harris). If the base T is a smooth 1-dimensional va-
riety, and X is a closed subvariety of T × Cn, then the family π : X → T is flat if
and only if for any t ∈ T the closure (as an analytic space) of X − π−1(t) in X is
equal to X.

That is, if we remove the fiber over t and take the closure of what remains, we
obtain our original space X.

Remark 1.4. Note that the closure in Proposition 1.3 is as analytic space; that is
in a neighborhood of x ∈ π−1(t) the closure of X − π−1(t) in X is defined by the
ideal of analytic functions that vanish on X − π−1(t). This is necessary because a
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closed analytic subspace of an analytic space X is not determined solely by a closed
subspace of the underlying topological space of X. Indeed, the analytic structure
would be missing: the sheaf of germs of analytic functions would not be specified.

Example 1.5. Consider the standard family ρ : C → C, where

C =
{

((x, y), t) ∈ C2 × C : xy = t
}
, and ρ : ((x, y), t) 7→ t.

The fiber over t 6= 0 is the hyperbola xy = t in C2, which degenerates to the union
of the axes x = 0 and y = 0 over t = 0. For t 6= 0, the family is smooth and
therefore flat. If we take the closure of the locus {xy − t : t 6= 0} ⊆ A, we clearly
obtain the whole space C. By the criterion in Proposition 1.3, the family ρ : C → C
is therefore flat.

The hypothesis of the 1-dimensional base from Proposition 1.3 is necessary as
demonstrated by the following example.

Example 1.6. Consider the family π : X → T where

X :=
{

((x, y), (s, t)) ∈ C2 × C2 : sx+ ty = 0
}
, T = C2 and

π : ((x, y), (s, t)) 7→ (s, t).

Consider the line La,b = {(s, t) ∈ T | as+ bt = 0} in the base T . For each (s, t) 6=
(0, 0) in this line, the fiber π−1((s, t)) is bx− ay = 0. That is, for (s, t) 6= (0, 0), the
fiber is constant along La,b. The closure of X − π−1(0, 0) must include all lines of
the form bx− ay = 0 in {(0, 0)}×C2. Therefore this family satisfies all hypotheses
of Proposition 1.3, except the base is not 1-dimensional.

The family is not flat because when restricted to any La,b ⊆ T , the fiber is
constant if (s, t) 6= (0, 0); however, π−1(0, 0) = C2, so by Proposition 1.3, this
restriction is not flat.

Remark 1.7. The restriction of a flat family π : X → T to a subvariety T ′ ⊆ T
is flat. This is a special case of the fact that pullbacks of flat families are flat
families, since the restriction is simply (defined to be) the pullback X ×T T ′ along
the inclusion T ′ ↪→ T .

Proposition 1.3 can still be useful to determine if a family over a higher-
dimensional base is flat, according to the following proposition.

Proposition 1.8 (Eisenbud-Harris). If the base T is a smooth variety, and X is
a closed subvariety of T × Cn, then the family π : X → T is flat if and only if for
any 1-dimensional variety T ′ mapping to T via a map ι : T ′ → T , the pullback1 of
the family π : X → T is flat; that is, ι∗X → T ′ is flat.

1.4. Relations criterion. Let F1(x, t), . . . Fk(x, t) be holomorphic functions
in the variables x = (x1, . . . , xn) and t = (t1, . . . , tm), and consider the family
π : X → Cm where

X := {(x, t) ∈ Cn × Cm : ∀i Fi(x, t) = 0}, and π is given by π : (x, t) 7→ t.

Proposition 1.9. The family π : X → Cm defined above is flat at t = 0 if and
only if for all relations

k∑
i=1

pi(x)Fi(x,0) = 0 with holomorphic coefficients pi,

1The pullback is taken in the analytic category, see Section 1.
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there exist holomorphic functions Pi(x, t), defined on Cn × U , where U ⊆ Cm is a
neighborhood of 0, such that Pi(x,0) = pi(x), and

k∑
i=1

Pi(x, t)Fi(x, t) = 0.

Note that the fiber over t = 0 is given by {x ∈ Cn : ∀ i, Fi(x,0) = 0}.
Proposition 1.9 essentially says that all of the relations corresponding to the

fiber over t = 0,
∑
pi(x)Fi(x,0) = 0, come from relations in the nearby fibers,∑

Pi(x, t)Fi(x, t) = 0, informally, the fiber only satisfies the relations it can’t
avoid satisfying by continuity.

The proof of the corresponding statement for schemes in algebraic geometry can
be found in [A2, Part 1, Section 3]. The same proof works to prove the statement
above with some slight modification: tensor products must be replaced by analytic
tensor products, as discussed in Section 1.1, and one needs a replacement for the
following statement: a finitely generated module M over a finite dimensional local
C-algebra A is flat if and only if TorA1 (M,C) = 0. In the setting of analytic spaces,

the corresponding result has T̂or (the derived functor of the analytic tensor product)
in place of Tor and can be found in [A1, Proposition 4.4].

Remark 1.10. The base in Proposition 1.9 was taken to be Cm; this is not nec-
essary. There is a more general statement for an arbitrary affine variety as the
base, and the proof indicated above actually gives this more general version. Since
analytic spaces are locally affine varieties, the more general statement can be used
to test for flatness for an arbitrary family π : X → T .

2. The theorem of A. Kas and M. Schlessinger

This theorem is really a theorem about what Kas and Schlessinger call local
complex spaces, which we will call germs of analytic spaces; our spaces will have
basepoints, and two germs (X, a) and (Y, b) are isomorphic if there are neighbor-
hoods (UX , a) and (UY , b) such that there is an analytic isomorphism (UX , a) →
(UY , b). Because we are working locally, we may assume that our spaces are affine
varieties (possibly nonreduced, see Example 1.1).

Let V0 ⊆ Cn be an analytic variety of dimension n − p. Kas and Schlessinger
[KS] give an analytic construction for a versal deformation of its germ at 0 for the
case where

(1) V0 has an isolated singularity at 0, and
(2) V0 is a local complete intersection at 0; that is, in a neighborhood U of

0, we can find p = codim(V0) holomorphic functions f1, . . . , fp : U → C
whose zero locus is equal to U ∩ V0.

We now give their construction. Let M be the submodule of
∏p

1OCn,0 defined by

M :=


p∑
i=1

fiai +

n∑
j=1

gj

〈
∂f1

∂zj
, · · · , ∂fp

∂zj

〉∣∣∣∣∣∣ai ∈
p∏
1

OCn,0, gj ∈ OCn,0

 .

Point (1) is equivalent to the condition that

dimC

(
p∏
1

OCn,0/M

)
<∞.
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To see this, note that the same formula defining M , but without taking germs at 0,
defines a sheaf of O-modules. This sheaf is supported at the singular locus of V0 and
has finite rank as an O-module. If it is finite dimensional over C, then the singular
locus has no holomorphic functions on it (even locally) other than constants, so the
singularity must be isolated (see [A2, p. 13]).

Now, suppose point (1) holds, and let P1, . . . ,Pl ∈
∏p

1OCn,0 be representatives
for a basis of the quotient. Let V ⊆ U × Cl be the analytic space defined by

Fj(z, t) = fj(z) +

l∑
i=1

tiPi,j(z)

where Pi,j is the jth coordinate of Pi. We will use F : U × Cl → Cp to denote the
vector of the Fj .

Let π : V → Cl be the projection π : (z, t) 7→ t. Point (2) guarantees that
π is flat. Indeed, this follows from Proposition 1.9 because being a local complete
intersection implies that any relation among the fi is a linear combination of trivial
relations fjfi − fifj = 0, which clearly extend to relations among the Fi (see
[P]). This statement has a short proof in terms of Koszul cohomology: having the
trivial relations span all relations is equivalent to the first Koszul cohomology group
vanishing, while being a local complete intersection implies all Koszul cohomology
vanishes (see Theorem 9.4 of [H]).

Theorem 2.1 (Kas & Schlessinger, [KS]). The family π : (V,0) → (Cl,0) is a
versal deformation of the germ (V0,0); that is, any flat deformation φ : (W,0) →
(S,0) of (V0,0) is induced from π : (V,0)→ (Cl,0) by a map ψ : (S,0)→ (Cl,0).

2.1. Outlining the proof of Kas and Schlessinger. Their proof can be
decomposed into three parts:

(1) setting up equations for the map ψ and the isomorphism

Ω : (V,0)×(Cl,0) (S,0) ∼= (W,0),

(2) constructing many solutions to the equations from (1) in the ring of formal
power series, and

(3) showing that the series solution can be made convergent in a neighborhood
(if appropriate choices are made in part (2)).

Step (1): We can assume that (S,0) ⊆ (Cr,0). The flatness of φ implies that
(W,0) can be taken to be a subset of (Cn,0)× (S,0), for the same n which appears
in the definition of V0 (see [KS]).

We will again use flatness to show that (W,0) defined by p = codim(V0) equa-
tions of the form Gj(w, s) = 0, j = 1, . . . , p for some functions Gj such that for all
j, Gj(w,0) = fj(w).

Indeed, since φ−1(0) = V0, for each j, we can choose a Gj(w, s) such that
Gj(w,0) = fj(w). We must show that these already define (W,0). Complete
{G1, . . . , Gp} to a generating set of the ideal defining (W,0), and letG be an element
of this generating set. Since f1, . . . fp generate the ideal defining V0, G(w,0) must
be of the form

G(w,0) =

p∑
i=1

bi(w)fi(w).
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By Proposition 1.9, there exist B0, and B1, . . . , Bp such that

B0(w, s)G(w, s) =

p∑
i=1

Bi(w, s)Gi(w, s),

where B0(w,0) = 1 which means the germ B0(w, s) is a unit, showing that G is in
the ideal generated by {G1, . . . , Gp}.

We seek a map ψ : (S,0)→ (Cl,0) together with an isomorphism

Ω : (V,0)×(Cl,0) (S,0)→ (W,0),

commuting with the projections to (S,0). It turns out to be simpler to find a
map ψ : (Cr,0)→ (Cl,0) (which restricts to the desired map ψ); we will similarly
enlarge the natural domains of the other maps in the equations.

The isomorphism Ω, must be of the form Ω : ((z, t), s) 7→ (ω(z, s), s); so we
will look for a map ω : (Cn,0)× (Cr,0)→ (Cn,0), and to guarantee that the map
((z, t), s) 7→ (ω(z, s), s) restricts to a map (V,0)×(Cl,0) (S,0)→ (W,0) we also seek
a map H : (Cn,0)× (Cr,0)→ (Mp(C),O) = {p× p matrices over C} such that

(2.1) G(ω(z, s), s) = (Id +H(z, s))F(z, ψ(s)).

The unknowns should satisfy the obvious basepoint conditions:

(2.2) ψ(0) = 0, ω(z,0) = z, and H(z,0) = O.

We have reduced the proof of Theorem 2.1 to finding analytic solutions to these
equations. Indeed, any solution will define a map ω, and hence a map Ω. It follows
from the implicit function theorem that for a given s, ω(z, s) is an isomorphism,
whose inverse is analytic. Since the matrix Id+H(z, s) appearing in condition (2.1)
is invertible, we have that G(ω(z, s), s) = 0 if and only if F(z, ψ(s)) = 0 as required
for Ω to be a bijection between its stated domain and codomain.

Step (2): We’ll give the argument from [KS]. We’ll consider the unknown
functions ω(z, s), ψ(s), and H(z, s) as power series in s (whose coefficients are
functions of z) and try to solve for them one degree at a time. Let ω<N denote the
sum of all terms in ω of degree at most N − 1 (degree in s); similarly for ψ<N and
H<N . If we’ve already found power series solving equation 2.1 to order N −1, then

AN := G(ω<N (z, s), s)− (Id +H<N (z, s))F(z, ψ<N (s)) = o(‖s‖N );

and to solve the equation to degree N , the terms of degree N , ωN , ψN , and HN ,
must satisfy

AN+1 = AN −
l∑

k=1

Pk(z)ψN,k(s) +BN = o(‖s‖N+1).

where

BN :=

n∑
j=1

ωN,j(z, s)

〈
∂f1

∂zj
, · · · , ∂fp

∂zj

〉
−HN (z, s).

Since the Pk, k = 1 . . . l, form a basis of
∏p

1OCn,0/M , the coefficients ψN are
uniquely determined as is BN ∈M . However, the coefficient functions ωN and HN

appearing in the formula for BN are not unique, since the formula writes BN in
terms of the generators of M which are not independent.

Remark 2.2. The nonuniqueness seen here reflects the fact that the deformation
π : (V,0)→ (Cl,0) is versal opposed to universal.
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Step (3): We won’t say much about this step. It follows from Artin’s powerful
realizability theorem [A3], which says that if a system of finitely many analytic
equations has solutions which are formal power series with no constant term, then
it also has solutions which are convergent power series.

Kas and Schelssinger include an argument for the specific system of equations
(2.1) needed here. Their overall strategy is as follows: using complex analysis,
Kas and Schlessinger first prove a lemma which asserts that certain bounds can
be achieved for the coefficients ωN and HN chosen at each step. The rest of their
argument shows that the greedy procedure of making independent choices at each
step yields convergent power series.

3. Flat families of nodal curves

In this section we apply Theorem 2.1 to show that a flat family of nodal curves
is locally a pullback of the standard family ρ : C → C in Example 1.5.

Corollary 3.1. Let p : A→ B be a flat family of nodal curves. Then for every a ∈
A, there is a neighborhood U of a, neighborhood V of b := p(a), a map ψ : V → C
and an open embedding ψ̃ : U ↪→ ψ∗C such that the diagram

U
ψ̃ //� � ψ̃ //

p
!!

ψ∗C //

��

C

ρ

��
V

ψ // C
commutes.

Proof. First suppose that a ∈ A is a smooth point; that is, a is not a node in
its fiber. Then the germ (p−1(b), a) is isomorphic to (C, 0), and Theorem 2.1 proves
that the family is trivial near a; that is, it is obtained by pullback via a constant
map ψ 6= 0.

Now suppose that a ∈ A is a singular point; that is, a is a node in its fiber. Then
the germ (p−1(b), a) is isomorphic to ({(x, y) ∈ C2 : xy = 0},0). We now compute
the versal deformation according to Theorem 2.1. The construction simplifies when
V0 = {(x, y) ∈ C2 : xy = 0} is defined by a single equation, so p = 1. Let
f(x, y) = xy; we need a basis of

OC,0

/(
f,
∂f

∂x
,
∂f

∂y

)
.

We may take the basis {−1}, so l = 1 and P1(x, y) = −1. The versal deformation
is defined by the single equation F ((x, y), t) = f(x, y) + tP1(x, y) = xy− t = 0. �
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